1 /*
2 * Copyright (c) 2018-2023, Arm Limited. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 */
7 /**
8 * \file psa/crypto_values.h
9 *
10 * \brief PSA cryptography module: macros to build and analyze integer values.
11 *
12 * \note This file may not be included directly. Applications must
13 * include psa/crypto.h. Drivers must include the appropriate driver
14 * header file.
15 *
16 * This file contains portable definitions of macros to build and analyze
17 * values of integral types that encode properties of cryptographic keys,
18 * designations of cryptographic algorithms, and error codes returned by
19 * the library.
20 *
21 * Note that many of the constants defined in this file are embedded in
22 * the persistent key store, as part of key metadata (including usage
23 * policies). As a consequence, they must not be changed (unless the storage
24 * format version changes).
25 *
26 * This header file only defines preprocessor macros.
27 */
28
29 #ifndef PSA_CRYPTO_VALUES_H
30 #define PSA_CRYPTO_VALUES_H
31
32 /** \defgroup error Error codes
33 * @{
34 */
35
36 /* PSA error codes */
37
38 /* Error codes are standardized across PSA domains (framework, crypto, storage,
39 * etc.). Do not change the values in this section or even the expansions
40 * of each macro: it must be possible to `#include` both this header
41 * and some other PSA component's headers in the same C source,
42 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
43 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
44 * to the same sequence of tokens.
45 *
46 * If you must add a new
47 * value, check with the Arm PSA framework group to pick one that other
48 * domains aren't already using. */
49
50 /* Tell uncrustify not to touch the constant definitions, otherwise
51 * it might change the spacing to something that is not PSA-compliant
52 * (e.g. adding a space after casts).
53 *
54 * *INDENT-OFF*
55 */
56
57 /** The action was completed successfully. */
58 #ifndef PSA_SUCCESS
59 #define PSA_SUCCESS ((psa_status_t)0)
60 #endif
61
62 /** An error occurred that does not correspond to any defined
63 * failure cause.
64 *
65 * Implementations may use this error code if none of the other standard
66 * error codes are applicable. */
67 #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
68
69 /** The requested operation or a parameter is not supported
70 * by this implementation.
71 *
72 * Implementations should return this error code when an enumeration
73 * parameter such as a key type, algorithm, etc. is not recognized.
74 * If a combination of parameters is recognized and identified as
75 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
76 #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
77
78 /** The requested action is denied by a policy.
79 *
80 * Implementations should return this error code when the parameters
81 * are recognized as valid and supported, and a policy explicitly
82 * denies the requested operation.
83 *
84 * If a subset of the parameters of a function call identify a
85 * forbidden operation, and another subset of the parameters are
86 * not valid or not supported, it is unspecified whether the function
87 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
88 * #PSA_ERROR_INVALID_ARGUMENT. */
89 #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
90
91 /** An output buffer is too small.
92 *
93 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
94 * description to determine a sufficient buffer size.
95 *
96 * Implementations should preferably return this error code only
97 * in cases when performing the operation with a larger output
98 * buffer would succeed. However implementations may return this
99 * error if a function has invalid or unsupported parameters in addition
100 * to the parameters that determine the necessary output buffer size. */
101 #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
102
103 /** Asking for an item that already exists
104 *
105 * Implementations should return this error, when attempting
106 * to write an item (like a key) that already exists. */
107 #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
108
109 /** Asking for an item that doesn't exist
110 *
111 * Implementations should return this error, if a requested item (like
112 * a key) does not exist. */
113 #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
114
115 /** The requested action cannot be performed in the current state.
116 *
117 * Multipart operations return this error when one of the
118 * functions is called out of sequence. Refer to the function
119 * descriptions for permitted sequencing of functions.
120 *
121 * Implementations shall not return this error code to indicate
122 * that a key either exists or not,
123 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
124 * as applicable.
125 *
126 * Implementations shall not return this error code to indicate that a
127 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
128 * instead. */
129 #define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
130
131 /** The parameters passed to the function are invalid.
132 *
133 * Implementations may return this error any time a parameter or
134 * combination of parameters are recognized as invalid.
135 *
136 * Implementations shall not return this error code to indicate that a
137 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
138 * instead.
139 */
140 #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
141
142 /** There is not enough runtime memory.
143 *
144 * If the action is carried out across multiple security realms, this
145 * error can refer to available memory in any of the security realms. */
146 #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
147
148 /** There is not enough persistent storage.
149 *
150 * Functions that modify the key storage return this error code if
151 * there is insufficient storage space on the host media. In addition,
152 * many functions that do not otherwise access storage may return this
153 * error code if the implementation requires a mandatory log entry for
154 * the requested action and the log storage space is full. */
155 #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
156
157 /** There was a communication failure inside the implementation.
158 *
159 * This can indicate a communication failure between the application
160 * and an external cryptoprocessor or between the cryptoprocessor and
161 * an external volatile or persistent memory. A communication failure
162 * may be transient or permanent depending on the cause.
163 *
164 * \warning If a function returns this error, it is undetermined
165 * whether the requested action has completed or not. Implementations
166 * should return #PSA_SUCCESS on successful completion whenever
167 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
168 * if the requested action was completed successfully in an external
169 * cryptoprocessor but there was a breakdown of communication before
170 * the cryptoprocessor could report the status to the application.
171 */
172 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
173
174 /** There was a storage failure that may have led to data loss.
175 *
176 * This error indicates that some persistent storage is corrupted.
177 * It should not be used for a corruption of volatile memory
178 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
179 * between the cryptoprocessor and its external storage (use
180 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
181 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
182 *
183 * Note that a storage failure does not indicate that any data that was
184 * previously read is invalid. However this previously read data may no
185 * longer be readable from storage.
186 *
187 * When a storage failure occurs, it is no longer possible to ensure
188 * the global integrity of the keystore. Depending on the global
189 * integrity guarantees offered by the implementation, access to other
190 * data may or may not fail even if the data is still readable but
191 * its integrity cannot be guaranteed.
192 *
193 * Implementations should only use this error code to report a
194 * permanent storage corruption. However application writers should
195 * keep in mind that transient errors while reading the storage may be
196 * reported using this error code. */
197 #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
198
199 /** A hardware failure was detected.
200 *
201 * A hardware failure may be transient or permanent depending on the
202 * cause. */
203 #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
204
205 /** A tampering attempt was detected.
206 *
207 * If an application receives this error code, there is no guarantee
208 * that previously accessed or computed data was correct and remains
209 * confidential. Applications should not perform any security function
210 * and should enter a safe failure state.
211 *
212 * Implementations may return this error code if they detect an invalid
213 * state that cannot happen during normal operation and that indicates
214 * that the implementation's security guarantees no longer hold. Depending
215 * on the implementation architecture and on its security and safety goals,
216 * the implementation may forcibly terminate the application.
217 *
218 * This error code is intended as a last resort when a security breach
219 * is detected and it is unsure whether the keystore data is still
220 * protected. Implementations shall only return this error code
221 * to report an alarm from a tampering detector, to indicate that
222 * the confidentiality of stored data can no longer be guaranteed,
223 * or to indicate that the integrity of previously returned data is now
224 * considered compromised. Implementations shall not use this error code
225 * to indicate a hardware failure that merely makes it impossible to
226 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
227 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
228 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
229 * instead).
230 *
231 * This error indicates an attack against the application. Implementations
232 * shall not return this error code as a consequence of the behavior of
233 * the application itself. */
234 #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
235
236 /** There is not enough entropy to generate random data needed
237 * for the requested action.
238 *
239 * This error indicates a failure of a hardware random generator.
240 * Application writers should note that this error can be returned not
241 * only by functions whose purpose is to generate random data, such
242 * as key, IV or nonce generation, but also by functions that execute
243 * an algorithm with a randomized result, as well as functions that
244 * use randomization of intermediate computations as a countermeasure
245 * to certain attacks.
246 *
247 * Implementations should avoid returning this error after psa_crypto_init()
248 * has succeeded. Implementations should generate sufficient
249 * entropy during initialization and subsequently use a cryptographically
250 * secure pseudorandom generator (PRNG). However implementations may return
251 * this error at any time if a policy requires the PRNG to be reseeded
252 * during normal operation. */
253 #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
254
255 /** The signature, MAC or hash is incorrect.
256 *
257 * Verification functions return this error if the verification
258 * calculations completed successfully, and the value to be verified
259 * was determined to be incorrect.
260 *
261 * If the value to verify has an invalid size, implementations may return
262 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
263 #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
264
265 /** The decrypted padding is incorrect.
266 *
267 * \warning In some protocols, when decrypting data, it is essential that
268 * the behavior of the application does not depend on whether the padding
269 * is correct, down to precise timing. Applications should prefer
270 * protocols that use authenticated encryption rather than plain
271 * encryption. If the application must perform a decryption of
272 * unauthenticated data, the application writer should take care not
273 * to reveal whether the padding is invalid.
274 *
275 * Implementations should strive to make valid and invalid padding
276 * as close as possible to indistinguishable to an external observer.
277 * In particular, the timing of a decryption operation should not
278 * depend on the validity of the padding. */
279 #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
280
281 /** Return this error when there's insufficient data when attempting
282 * to read from a resource. */
283 #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
284
285 /** The key identifier is not valid. See also :ref:\`key-handles\`.
286 */
287 #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
288
289 /** Stored data has been corrupted.
290 *
291 * This error indicates that some persistent storage has suffered corruption.
292 * It does not indicate the following situations, which have specific error
293 * codes:
294 *
295 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
296 * - A communication error between the cryptoprocessor and its external
297 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
298 * - When the storage is in a valid state but is full - use
299 * #PSA_ERROR_INSUFFICIENT_STORAGE.
300 * - When the storage fails for other reasons - use
301 * #PSA_ERROR_STORAGE_FAILURE.
302 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
303 *
304 * \note A storage corruption does not indicate that any data that was
305 * previously read is invalid. However this previously read data might no
306 * longer be readable from storage.
307 *
308 * When a storage failure occurs, it is no longer possible to ensure the
309 * global integrity of the keystore.
310 */
311 #define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
312
313 /** Data read from storage is not valid for the implementation.
314 *
315 * This error indicates that some data read from storage does not have a valid
316 * format. It does not indicate the following situations, which have specific
317 * error codes:
318 *
319 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
320 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
321 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
322 *
323 * This error is typically a result of either storage corruption on a
324 * cleartext storage backend, or an attempt to read data that was
325 * written by an incompatible version of the library.
326 */
327 #define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
328
329 /** The function that returns this status is defined as interruptible and
330 * still has work to do, thus the user should call the function again with the
331 * same operation context until it either returns #PSA_SUCCESS or any other
332 * error. This is not an error per se, more a notification of status.
333 */
334 #define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
335
336 /* *INDENT-ON* */
337
338 /**@}*/
339
340 /** \defgroup crypto_types Key and algorithm types
341 * @{
342 */
343
344 /* Note that key type values, including ECC family and DH group values, are
345 * embedded in the persistent key store, as part of key metadata. As a
346 * consequence, they must not be changed (unless the storage format version
347 * changes).
348 */
349
350 /** An invalid key type value.
351 *
352 * Zero is not the encoding of any key type.
353 */
354 #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
355
356 /** Vendor-defined key type flag.
357 *
358 * Key types defined by this standard will never have the
359 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
360 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
361 * respect the bitwise structure used by standard encodings whenever practical.
362 */
363 #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
364
365 #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
366 #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
367 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
368 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
369 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
370
371 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
372
373 /** Whether a key type is vendor-defined.
374 *
375 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
376 */
377 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
378 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
379
380 /** Whether a key type is an unstructured array of bytes.
381 *
382 * This encompasses both symmetric keys and non-key data.
383 */
384 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
385 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
386 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
387
388 /** Whether a key type is asymmetric: either a key pair or a public key. */
389 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
390 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
391 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
392 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393 /** Whether a key type is the public part of a key pair. */
394 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
395 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
396 /** Whether a key type is a key pair containing a private part and a public
397 * part. */
398 #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
399 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
400 /** The key pair type corresponding to a public key type.
401 *
402 * You may also pass a key pair type as \p type, it will be left unchanged.
403 *
404 * \param type A public key type or key pair type.
405 *
406 * \return The corresponding key pair type.
407 * If \p type is not a public key or a key pair,
408 * the return value is undefined.
409 */
410 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
411 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
412 /** The public key type corresponding to a key pair type.
413 *
414 * You may also pass a key pair type as \p type, it will be left unchanged.
415 *
416 * \param type A public key type or key pair type.
417 *
418 * \return The corresponding public key type.
419 * If \p type is not a public key or a key pair,
420 * the return value is undefined.
421 */
422 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
423 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
424
425 /** Raw data.
426 *
427 * A "key" of this type cannot be used for any cryptographic operation.
428 * Applications may use this type to store arbitrary data in the keystore. */
429 #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
430
431 /** HMAC key.
432 *
433 * The key policy determines which underlying hash algorithm the key can be
434 * used for.
435 *
436 * HMAC keys should generally have the same size as the underlying hash.
437 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
438 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
439 #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
440
441 /** A secret for key derivation.
442 *
443 * This key type is for high-entropy secrets only. For low-entropy secrets,
444 * #PSA_KEY_TYPE_PASSWORD should be used instead.
445 *
446 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
447 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for.
451 */
452 #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
453
454 /** A low-entropy secret for password hashing or key derivation.
455 *
456 * This key type is suitable for passwords and passphrases which are typically
457 * intended to be memorizable by humans, and have a low entropy relative to
458 * their size. It can be used for randomly generated or derived keys with
459 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
460 * for such keys. It is not suitable for passwords with extremely low entropy,
461 * such as numerical PINs.
462 *
463 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
464 * key derivation algorithms. Algorithms that accept such an input were
465 * designed to accept low-entropy secret and are known as password hashing or
466 * key stretching algorithms.
467 *
468 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
469 * key derivation algorithms, as the algorithms that take such an input expect
470 * it to be high-entropy.
471 *
472 * The key policy determines which key derivation algorithm the key can be
473 * used for, among the permissible subset defined above.
474 */
475 #define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
476
477 /** A secret value that can be used to verify a password hash.
478 *
479 * The key policy determines which key derivation algorithm the key
480 * can be used for, among the same permissible subset as for
481 * #PSA_KEY_TYPE_PASSWORD.
482 */
483 #define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
484
485 /** A secret value that can be used in when computing a password hash.
486 *
487 * The key policy determines which key derivation algorithm the key
488 * can be used for, among the subset of algorithms that can use pepper.
489 */
490 #define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
491
492 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
493 *
494 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
495 * 32 bytes (AES-256).
496 */
497 #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
498
499 /** Key for a cipher, AEAD or MAC algorithm based on the
500 * ARIA block cipher. */
501 #define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
502
503 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
504 *
505 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
506 * 192 bits (3-key 3DES).
507 *
508 * Note that single DES and 2-key 3DES are weak and strongly
509 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
510 * is weak and deprecated and should only be used in legacy protocols.
511 */
512 #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
513
514 /** Key for a cipher, AEAD or MAC algorithm based on the
515 * Camellia block cipher. */
516 #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
517
518 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
519 *
520 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
521 *
522 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
523 * 12-byte nonces.
524 *
525 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
526 * with the initial counter value 1, you can process and discard a
527 * 64-byte block before the real data.
528 */
529 #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
530
531 /** RSA public key.
532 *
533 * The size of an RSA key is the bit size of the modulus.
534 */
535 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
536 /** RSA key pair (private and public key).
537 *
538 * The size of an RSA key is the bit size of the modulus.
539 */
540 #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
541 /** Whether a key type is an RSA key (pair or public-only). */
542 #define PSA_KEY_TYPE_IS_RSA(type) \
543 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
544
545 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
546 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
547 #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
548 /** Elliptic curve key pair.
549 *
550 * The size of an elliptic curve key is the bit size associated with the curve,
551 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
552 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
553 *
554 * \param curve A value of type ::psa_ecc_family_t that
555 * identifies the ECC curve to be used.
556 */
557 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
558 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
559 /** Elliptic curve public key.
560 *
561 * The size of an elliptic curve public key is the same as the corresponding
562 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
563 * `PSA_ECC_FAMILY_xxx` curve families).
564 *
565 * \param curve A value of type ::psa_ecc_family_t that
566 * identifies the ECC curve to be used.
567 */
568 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
569 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
570
571 /** Whether a key type is an elliptic curve key (pair or public-only). */
572 #define PSA_KEY_TYPE_IS_ECC(type) \
573 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
574 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
575 /** Whether a key type is an elliptic curve key pair. */
576 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
577 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
578 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
579 /** Whether a key type is an elliptic curve public key. */
580 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
581 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
582 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
583
584 /** Extract the curve from an elliptic curve key type. */
585 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
586 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
587 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
588 0))
589
590 /** Check if the curve of given family is Weierstrass elliptic curve. */
591 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
592
593 /** SEC Koblitz curves over prime fields.
594 *
595 * This family comprises the following curves:
596 * secp192k1, secp224k1, secp256k1.
597 * They are defined in _Standards for Efficient Cryptography_,
598 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
599 * https://www.secg.org/sec2-v2.pdf
600 */
601 #define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
602
603 /** SEC random curves over prime fields.
604 *
605 * This family comprises the following curves:
606 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
607 * They are defined in _Standards for Efficient Cryptography_,
608 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
609 * https://www.secg.org/sec2-v2.pdf
610 */
611 #define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
612 /* SECP160R2 (SEC2 v1, obsolete) */
613 #define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
614
615 /** SEC Koblitz curves over binary fields.
616 *
617 * This family comprises the following curves:
618 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
619 * They are defined in _Standards for Efficient Cryptography_,
620 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
621 * https://www.secg.org/sec2-v2.pdf
622 */
623 #define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
624
625 /** SEC random curves over binary fields.
626 *
627 * This family comprises the following curves:
628 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
629 * They are defined in _Standards for Efficient Cryptography_,
630 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
631 * https://www.secg.org/sec2-v2.pdf
632 */
633 #define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
634
635 /** SEC additional random curves over binary fields.
636 *
637 * This family comprises the following curve:
638 * sect163r2.
639 * It is defined in _Standards for Efficient Cryptography_,
640 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
641 * https://www.secg.org/sec2-v2.pdf
642 */
643 #define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
644
645 /** Brainpool P random curves.
646 *
647 * This family comprises the following curves:
648 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
649 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
650 * It is defined in RFC 5639.
651 */
652 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
653
654 /** Curve25519 and Curve448.
655 *
656 * This family comprises the following Montgomery curves:
657 * - 255-bit: Bernstein et al.,
658 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
659 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
660 * - 448-bit: Hamburg,
661 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
662 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
663 */
664 #define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
665
666 /** The twisted Edwards curves Ed25519 and Ed448.
667 *
668 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
669 * #PSA_ALG_ED25519PH for the 255-bit curve,
670 * #PSA_ALG_ED448PH for the 448-bit curve).
671 *
672 * This family comprises the following twisted Edwards curves:
673 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
674 * to Curve25519.
675 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
676 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
677 * to Curve448.
678 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
679 */
680 #define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
681
682 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
683 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
684 #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
685 /** Diffie-Hellman key pair.
686 *
687 * \param group A value of type ::psa_dh_family_t that identifies the
688 * Diffie-Hellman group to be used.
689 */
690 #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
691 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
692 /** Diffie-Hellman public key.
693 *
694 * \param group A value of type ::psa_dh_family_t that identifies the
695 * Diffie-Hellman group to be used.
696 */
697 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
698 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
699
700 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
701 #define PSA_KEY_TYPE_IS_DH(type) \
702 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
703 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
704 /** Whether a key type is a Diffie-Hellman key pair. */
705 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
706 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
707 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
708 /** Whether a key type is a Diffie-Hellman public key. */
709 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
710 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
711 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
712
713 /** Extract the group from a Diffie-Hellman key type. */
714 #define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
715 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
716 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
717 0))
718
719 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
720 *
721 * This family includes groups with the following key sizes (in bits):
722 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
723 * all of these sizes or only a subset.
724 */
725 #define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
726
727 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
728 (((type) >> 8) & 7)
729 /** The block size of a block cipher.
730 *
731 * \param type A cipher key type (value of type #psa_key_type_t).
732 *
733 * \return The block size for a block cipher, or 1 for a stream cipher.
734 * The return value is undefined if \p type is not a supported
735 * cipher key type.
736 *
737 * \note It is possible to build stream cipher algorithms on top of a block
738 * cipher, for example CTR mode (#PSA_ALG_CTR).
739 * This macro only takes the key type into account, so it cannot be
740 * used to determine the size of the data that #psa_cipher_update()
741 * might buffer for future processing in general.
742 *
743 * \note This macro returns a compile-time constant if its argument is one.
744 *
745 * \warning This macro may evaluate its argument multiple times.
746 */
747 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
748 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
749 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
750 0u)
751
752 /* Note that algorithm values are embedded in the persistent key store,
753 * as part of key metadata. As a consequence, they must not be changed
754 * (unless the storage format version changes).
755 */
756
757 /** Vendor-defined algorithm flag.
758 *
759 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
760 * bit set. Vendors who define additional algorithms must use an encoding with
761 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
762 * used by standard encodings whenever practical.
763 */
764 #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
765
766 #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
767 #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
768 #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
769 #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
770 #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
771 #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
772 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
773 #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
774 #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
775
776 /** Whether an algorithm is vendor-defined.
777 *
778 * See also #PSA_ALG_VENDOR_FLAG.
779 */
780 #define PSA_ALG_IS_VENDOR_DEFINED(alg) \
781 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
782
783 /** Whether the specified algorithm is a hash algorithm.
784 *
785 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
786 *
787 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
788 * This macro may return either 0 or 1 if \p alg is not a supported
789 * algorithm identifier.
790 */
791 #define PSA_ALG_IS_HASH(alg) \
792 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
793
794 /** Whether the specified algorithm is a MAC algorithm.
795 *
796 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
797 *
798 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
799 * This macro may return either 0 or 1 if \p alg is not a supported
800 * algorithm identifier.
801 */
802 #define PSA_ALG_IS_MAC(alg) \
803 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
804
805 /** Whether the specified algorithm is a symmetric cipher algorithm.
806 *
807 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
808 *
809 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
810 * This macro may return either 0 or 1 if \p alg is not a supported
811 * algorithm identifier.
812 */
813 #define PSA_ALG_IS_CIPHER(alg) \
814 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
815
816 /** Whether the specified algorithm is an authenticated encryption
817 * with associated data (AEAD) algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825 #define PSA_ALG_IS_AEAD(alg) \
826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
827
828 /** Whether the specified algorithm is an asymmetric signature algorithm,
829 * also known as public-key signature algorithm.
830 *
831 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
832 *
833 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
834 * This macro may return either 0 or 1 if \p alg is not a supported
835 * algorithm identifier.
836 */
837 #define PSA_ALG_IS_SIGN(alg) \
838 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
839
840 /** Whether the specified algorithm is an asymmetric encryption algorithm,
841 * also known as public-key encryption algorithm.
842 *
843 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
844 *
845 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
846 * This macro may return either 0 or 1 if \p alg is not a supported
847 * algorithm identifier.
848 */
849 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
850 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
851
852 /** Whether the specified algorithm is a key agreement algorithm.
853 *
854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
855 *
856 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
857 * This macro may return either 0 or 1 if \p alg is not a supported
858 * algorithm identifier.
859 */
860 #define PSA_ALG_IS_KEY_AGREEMENT(alg) \
861 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
862
863 /** Whether the specified algorithm is a key derivation algorithm.
864 *
865 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
866 *
867 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
868 * This macro may return either 0 or 1 if \p alg is not a supported
869 * algorithm identifier.
870 */
871 #define PSA_ALG_IS_KEY_DERIVATION(alg) \
872 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
873
874 /** Whether the specified algorithm is a key stretching / password hashing
875 * algorithm.
876 *
877 * A key stretching / password hashing algorithm is a key derivation algorithm
878 * that is suitable for use with a low-entropy secret such as a password.
879 * Equivalently, it's a key derivation algorithm that uses a
880 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
881 *
882 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
883 *
884 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
885 * otherwise. This macro may return either 0 or 1 if \p alg is not a
886 * supported algorithm identifier.
887 */
888 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
889 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
890 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
891
892 /** An invalid algorithm identifier value. */
893 #define PSA_ALG_NONE ((psa_algorithm_t)0)
894
895 #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
896 /** MD5 */
897 #define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
898 /** PSA_ALG_RIPEMD160 */
899 #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
900 /** SHA1 */
901 #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
902 /** SHA2-224 */
903 #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
904 /** SHA2-256 */
905 #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
906 /** SHA2-384 */
907 #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
908 /** SHA2-512 */
909 #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
910 /** SHA2-512/224 */
911 #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
912 /** SHA2-512/256 */
913 #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
914 /** SHA3-224 */
915 #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
916 /** SHA3-256 */
917 #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
918 /** SHA3-384 */
919 #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
920 /** SHA3-512 */
921 #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
922 /** The first 512 bits (64 bytes) of the SHAKE256 output.
923 *
924 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
925 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
926 * has the same output size and a (theoretically) higher security strength.
927 */
928 #define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
929
930 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
931 *
932 * This value may be used to form the algorithm usage field of a policy
933 * for a signature algorithm that is parametrized by a hash. The key
934 * may then be used to perform operations using the same signature
935 * algorithm parametrized with any supported hash.
936 *
937 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
938 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
939 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
940 * Then you may create and use a key as follows:
941 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
942 * ```
943 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
944 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
945 * ```
946 * - Import or generate key material.
947 * - Call psa_sign_hash() or psa_verify_hash(), passing
948 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
949 * call to sign or verify a message may use a different hash.
950 * ```
951 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
952 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
953 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
954 * ```
955 *
956 * This value may not be used to build other algorithms that are
957 * parametrized over a hash. For any valid use of this macro to build
958 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
959 *
960 * This value may not be used to build an algorithm specification to
961 * perform an operation. It is only valid to build policies.
962 */
963 #define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
964
965 #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
966 #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
967 /** Macro to build an HMAC algorithm.
968 *
969 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
970 *
971 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
972 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
973 *
974 * \return The corresponding HMAC algorithm.
975 * \return Unspecified if \p hash_alg is not a supported
976 * hash algorithm.
977 */
978 #define PSA_ALG_HMAC(hash_alg) \
979 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
980
981 #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
982 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
983
984 /** Whether the specified algorithm is an HMAC algorithm.
985 *
986 * HMAC is a family of MAC algorithms that are based on a hash function.
987 *
988 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
989 *
990 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
991 * This macro may return either 0 or 1 if \p alg is not a supported
992 * algorithm identifier.
993 */
994 #define PSA_ALG_IS_HMAC(alg) \
995 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
996 PSA_ALG_HMAC_BASE)
997
998 /* In the encoding of a MAC algorithm, the bits corresponding to
999 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1000 * truncated. As an exception, the value 0 means the untruncated algorithm,
1001 * whatever its length is. The length is encoded in 6 bits, so it can
1002 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1003 * to full length is correctly encoded as 0 and any non-trivial truncation
1004 * is correctly encoded as a value between 1 and 63. */
1005 #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
1006 #define PSA_MAC_TRUNCATION_OFFSET 16
1007
1008 /* In the encoding of a MAC algorithm, the bit corresponding to
1009 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1010 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1011 * algorithm policy can be used with any algorithm corresponding to the
1012 * same base class and having a (potentially truncated) MAC length greater or
1013 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1014 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1015
1016 /** Macro to build a truncated MAC algorithm.
1017 *
1018 * A truncated MAC algorithm is identical to the corresponding MAC
1019 * algorithm except that the MAC value for the truncated algorithm
1020 * consists of only the first \p mac_length bytes of the MAC value
1021 * for the untruncated algorithm.
1022 *
1023 * \note This macro may allow constructing algorithm identifiers that
1024 * are not valid, either because the specified length is larger
1025 * than the untruncated MAC or because the specified length is
1026 * smaller than permitted by the implementation.
1027 *
1028 * \note It is implementation-defined whether a truncated MAC that
1029 * is truncated to the same length as the MAC of the untruncated
1030 * algorithm is considered identical to the untruncated algorithm
1031 * for policy comparison purposes.
1032 *
1033 * \param mac_alg A MAC algorithm identifier (value of type
1034 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1035 * is true). This may be a truncated or untruncated
1036 * MAC algorithm.
1037 * \param mac_length Desired length of the truncated MAC in bytes.
1038 * This must be at most the full length of the MAC
1039 * and must be at least an implementation-specified
1040 * minimum. The implementation-specified minimum
1041 * shall not be zero.
1042 *
1043 * \return The corresponding MAC algorithm with the specified
1044 * length.
1045 * \return Unspecified if \p mac_alg is not a supported
1046 * MAC algorithm or if \p mac_length is too small or
1047 * too large for the specified MAC algorithm.
1048 */
1049 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1050 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1051 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
1052 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1053
1054 /** Macro to build the base MAC algorithm corresponding to a truncated
1055 * MAC algorithm.
1056 *
1057 * \param mac_alg A MAC algorithm identifier (value of type
1058 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1059 * is true). This may be a truncated or untruncated
1060 * MAC algorithm.
1061 *
1062 * \return The corresponding base MAC algorithm.
1063 * \return Unspecified if \p mac_alg is not a supported
1064 * MAC algorithm.
1065 */
1066 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1067 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1068 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1069
1070 /** Length to which a MAC algorithm is truncated.
1071 *
1072 * \param mac_alg A MAC algorithm identifier (value of type
1073 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1074 * is true).
1075 *
1076 * \return Length of the truncated MAC in bytes.
1077 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1078 * \return Unspecified if \p mac_alg is not a supported
1079 * MAC algorithm.
1080 */
1081 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1082 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1083
1084 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1085 *
1086 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1087 * sharing the same base algorithm, and where the (potentially truncated) MAC
1088 * length of the specific algorithm is equal to or larger then the wildcard
1089 * algorithm's minimum MAC length.
1090 *
1091 * \note When setting the minimum required MAC length to less than the
1092 * smallest MAC length allowed by the base algorithm, this effectively
1093 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1094 *
1095 * \param mac_alg A MAC algorithm identifier (value of type
1096 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1097 * is true).
1098 * \param min_mac_length Desired minimum length of the message authentication
1099 * code in bytes. This must be at most the untruncated
1100 * length of the MAC and must be at least 1.
1101 *
1102 * \return The corresponding MAC wildcard algorithm with the
1103 * specified minimum length.
1104 * \return Unspecified if \p mac_alg is not a supported MAC
1105 * algorithm or if \p min_mac_length is less than 1 or
1106 * too large for the specified MAC algorithm.
1107 */
1108 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1109 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1110 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
1111
1112 #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
1113 /** The CBC-MAC construction over a block cipher
1114 *
1115 * \warning CBC-MAC is insecure in many cases.
1116 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1117 */
1118 #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
1119 /** The CMAC construction over a block cipher */
1120 #define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
1121
1122 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1123 *
1124 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1125 *
1126 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1127 * This macro may return either 0 or 1 if \p alg is not a supported
1128 * algorithm identifier.
1129 */
1130 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1131 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1132 PSA_ALG_CIPHER_MAC_BASE)
1133
1134 #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1135 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1136
1137 /** Whether the specified algorithm is a stream cipher.
1138 *
1139 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1140 * by applying a bitwise-xor with a stream of bytes that is generated
1141 * from a key.
1142 *
1143 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1144 *
1145 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1146 * This macro may return either 0 or 1 if \p alg is not a supported
1147 * algorithm identifier or if it is not a symmetric cipher algorithm.
1148 */
1149 #define PSA_ALG_IS_STREAM_CIPHER(alg) \
1150 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1151 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1152
1153 /** The stream cipher mode of a stream cipher algorithm.
1154 *
1155 * The underlying stream cipher is determined by the key type.
1156 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1157 */
1158 #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
1159
1160 /** The CTR stream cipher mode.
1161 *
1162 * CTR is a stream cipher which is built from a block cipher.
1163 * The underlying block cipher is determined by the key type.
1164 * For example, to use AES-128-CTR, use this algorithm with
1165 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1166 */
1167 #define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
1168
1169 /** The CFB stream cipher mode.
1170 *
1171 * The underlying block cipher is determined by the key type.
1172 */
1173 #define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
1174
1175 /** The OFB stream cipher mode.
1176 *
1177 * The underlying block cipher is determined by the key type.
1178 */
1179 #define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
1180
1181 /** The XTS cipher mode.
1182 *
1183 * XTS is a cipher mode which is built from a block cipher. It requires at
1184 * least one full block of input, but beyond this minimum the input
1185 * does not need to be a whole number of blocks.
1186 */
1187 #define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
1188
1189 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1190 *
1191 * \warning ECB mode does not protect the confidentiality of the encrypted data
1192 * except in extremely narrow circumstances. It is recommended that applications
1193 * only use ECB if they need to construct an operating mode that the
1194 * implementation does not provide. Implementations are encouraged to provide
1195 * the modes that applications need in preference to supporting direct access
1196 * to ECB.
1197 *
1198 * The underlying block cipher is determined by the key type.
1199 *
1200 * This symmetric cipher mode can only be used with messages whose lengths are a
1201 * multiple of the block size of the chosen block cipher.
1202 *
1203 * ECB mode does not accept an initialization vector (IV). When using a
1204 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1205 * and psa_cipher_set_iv() must not be called.
1206 */
1207 #define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1208
1209 /** The CBC block cipher chaining mode, with no padding.
1210 *
1211 * The underlying block cipher is determined by the key type.
1212 *
1213 * This symmetric cipher mode can only be used with messages whose lengths
1214 * are whole number of blocks for the chosen block cipher.
1215 */
1216 #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
1217
1218 /** The CBC block cipher chaining mode with PKCS#7 padding.
1219 *
1220 * The underlying block cipher is determined by the key type.
1221 *
1222 * This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
1223 */
1224 #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
1225
1226 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1227
1228 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1229 *
1230 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1231 *
1232 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1233 * a block cipher, 0 otherwise.
1234 * This macro may return either 0 or 1 if \p alg is not a supported
1235 * algorithm identifier.
1236 */
1237 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1238 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1239 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1240
1241 /** The CCM authenticated encryption algorithm.
1242 *
1243 * The underlying block cipher is determined by the key type.
1244 */
1245 #define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
1246
1247 /** The CCM* cipher mode without authentication.
1248 *
1249 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1250 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1251 *
1252 * The underlying block cipher is determined by the key type.
1253 *
1254 * Currently only 13-byte long IV's are supported.
1255 */
1256 #define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1257
1258 /** The GCM authenticated encryption algorithm.
1259 *
1260 * The underlying block cipher is determined by the key type.
1261 */
1262 #define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
1263
1264 /** The Chacha20-Poly1305 AEAD algorithm.
1265 *
1266 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1267 *
1268 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1269 * and should reject other sizes.
1270 *
1271 * Implementations must support 16-byte tags and should reject other sizes.
1272 */
1273 #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
1274
1275 /* In the encoding of an AEAD algorithm, the bits corresponding to
1276 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1277 * The constants for default lengths follow this encoding.
1278 */
1279 #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1280 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1281
1282 /* In the encoding of an AEAD algorithm, the bit corresponding to
1283 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1284 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1285 * algorithm policy can be used with any algorithm corresponding to the
1286 * same base class and having a tag length greater than or equal to the one
1287 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1288 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1289
1290 /** Macro to build a shortened AEAD algorithm.
1291 *
1292 * A shortened AEAD algorithm is similar to the corresponding AEAD
1293 * algorithm, but has an authentication tag that consists of fewer bytes.
1294 * Depending on the algorithm, the tag length may affect the calculation
1295 * of the ciphertext.
1296 *
1297 * \param aead_alg An AEAD algorithm identifier (value of type
1298 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1299 * is true).
1300 * \param tag_length Desired length of the authentication tag in bytes.
1301 *
1302 * \return The corresponding AEAD algorithm with the specified
1303 * length.
1304 * \return Unspecified if \p aead_alg is not a supported
1305 * AEAD algorithm or if \p tag_length is not valid
1306 * for the specified AEAD algorithm.
1307 */
1308 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
1309 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1310 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
1311 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1312 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1313
1314 /** Retrieve the tag length of a specified AEAD algorithm
1315 *
1316 * \param aead_alg An AEAD algorithm identifier (value of type
1317 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1318 * is true).
1319 *
1320 * \return The tag length specified by the input algorithm.
1321 * \return Unspecified if \p aead_alg is not a supported
1322 * AEAD algorithm.
1323 */
1324 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1325 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1326 PSA_AEAD_TAG_LENGTH_OFFSET )
1327
1328 /** Calculate the corresponding AEAD algorithm with the default tag length.
1329 *
1330 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1331 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1332 *
1333 * \return The corresponding AEAD algorithm with the default
1334 * tag length for that algorithm.
1335 */
1336 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
1337 ( \
1338 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1339 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1340 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1341 0)
1342 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1343 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1344 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
1345 ref :
1346
1347 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1348 *
1349 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1350 * sharing the same base algorithm, and where the tag length of the specific
1351 * algorithm is equal to or larger then the minimum tag length specified by the
1352 * wildcard algorithm.
1353 *
1354 * \note When setting the minimum required tag length to less than the
1355 * smallest tag length allowed by the base algorithm, this effectively
1356 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
1357 *
1358 * \param aead_alg An AEAD algorithm identifier (value of type
1359 * #psa_algorithm_t such that
1360 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1361 * \param min_tag_length Desired minimum length of the authentication tag in
1362 * bytes. This must be at least 1 and at most the largest
1363 * allowed tag length of the algorithm.
1364 *
1365 * \return The corresponding AEAD wildcard algorithm with the
1366 * specified minimum length.
1367 * \return Unspecified if \p aead_alg is not a supported
1368 * AEAD algorithm or if \p min_tag_length is less than 1
1369 * or too large for the specified AEAD algorithm.
1370 */
1371 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1372 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1373 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
1374
1375 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
1376 /** RSA PKCS#1 v1.5 signature with hashing.
1377 *
1378 * This is the signature scheme defined by RFC 8017
1379 * (PKCS#1: RSA Cryptography Specifications) under the name
1380 * RSASSA-PKCS1-v1_5.
1381 *
1382 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1383 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1384 * This includes #PSA_ALG_ANY_HASH
1385 * when specifying the algorithm in a usage policy.
1386 *
1387 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
1388 * \return Unspecified if \p hash_alg is not a supported
1389 * hash algorithm.
1390 */
1391 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1392 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1393 /** Raw PKCS#1 v1.5 signature.
1394 *
1395 * The input to this algorithm is the DigestInfo structure used by
1396 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
1397 * steps 3–6.
1398 */
1399 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1400 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1401 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1402
1403 #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
1404 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
1405 /** RSA PSS signature with hashing.
1406 *
1407 * This is the signature scheme defined by RFC 8017
1408 * (PKCS#1: RSA Cryptography Specifications) under the name
1409 * RSASSA-PSS, with the message generation function MGF1, and with
1410 * a salt length equal to the length of the hash, or the largest
1411 * possible salt length for the algorithm and key size if that is
1412 * smaller than the hash length. The specified hash algorithm is
1413 * used to hash the input message, to create the salted hash, and
1414 * for the mask generation.
1415 *
1416 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1417 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1418 * This includes #PSA_ALG_ANY_HASH
1419 * when specifying the algorithm in a usage policy.
1420 *
1421 * \return The corresponding RSA PSS signature algorithm.
1422 * \return Unspecified if \p hash_alg is not a supported
1423 * hash algorithm.
1424 */
1425 #define PSA_ALG_RSA_PSS(hash_alg) \
1426 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1427
1428 /** RSA PSS signature with hashing with relaxed verification.
1429 *
1430 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1431 * but allows an arbitrary salt length (including \c 0) when verifying a
1432 * signature.
1433 *
1434 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1435 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1436 * This includes #PSA_ALG_ANY_HASH
1437 * when specifying the algorithm in a usage policy.
1438 *
1439 * \return The corresponding RSA PSS signature algorithm.
1440 * \return Unspecified if \p hash_alg is not a supported
1441 * hash algorithm.
1442 */
1443 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1444 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1445
1446 /** Whether the specified algorithm is RSA PSS with standard salt.
1447 *
1448 * \param alg An algorithm value or an algorithm policy wildcard.
1449 *
1450 * \return 1 if \p alg is of the form
1451 * #PSA_ALG_RSA_PSS(\c hash_alg),
1452 * where \c hash_alg is a hash algorithm or
1453 * #PSA_ALG_ANY_HASH. 0 otherwise.
1454 * This macro may return either 0 or 1 if \p alg is not
1455 * a supported algorithm identifier or policy.
1456 */
1457 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
1458 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1459
1460 /** Whether the specified algorithm is RSA PSS with any salt.
1461 *
1462 * \param alg An algorithm value or an algorithm policy wildcard.
1463 *
1464 * \return 1 if \p alg is of the form
1465 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1466 * where \c hash_alg is a hash algorithm or
1467 * #PSA_ALG_ANY_HASH. 0 otherwise.
1468 * This macro may return either 0 or 1 if \p alg is not
1469 * a supported algorithm identifier or policy.
1470 */
1471 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1472 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1473
1474 /** Whether the specified algorithm is RSA PSS.
1475 *
1476 * This includes any of the RSA PSS algorithm variants, regardless of the
1477 * constraints on salt length.
1478 *
1479 * \param alg An algorithm value or an algorithm policy wildcard.
1480 *
1481 * \return 1 if \p alg is of the form
1482 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1483 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1484 * where \c hash_alg is a hash algorithm or
1485 * #PSA_ALG_ANY_HASH. 0 otherwise.
1486 * This macro may return either 0 or 1 if \p alg is not
1487 * a supported algorithm identifier or policy.
1488 */
1489 #define PSA_ALG_IS_RSA_PSS(alg) \
1490 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1491 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1492
1493 #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
1494 /** ECDSA signature with hashing.
1495 *
1496 * This is the ECDSA signature scheme defined by ANSI X9.62,
1497 * with a random per-message secret number (*k*).
1498 *
1499 * The representation of the signature as a byte string consists of
1500 * the concatenation of the signature values *r* and *s*. Each of
1501 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1502 * of the base point of the curve in octets. Each value is represented
1503 * in big-endian order (most significant octet first).
1504 *
1505 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1506 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1507 * This includes #PSA_ALG_ANY_HASH
1508 * when specifying the algorithm in a usage policy.
1509 *
1510 * \return The corresponding ECDSA signature algorithm.
1511 * \return Unspecified if \p hash_alg is not a supported
1512 * hash algorithm.
1513 */
1514 #define PSA_ALG_ECDSA(hash_alg) \
1515 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1516 /** ECDSA signature without hashing.
1517 *
1518 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1519 * without specifying a hash algorithm. This algorithm may only be
1520 * used to sign or verify a sequence of bytes that should be an
1521 * already-calculated hash. Note that the input is padded with
1522 * zeros on the left or truncated on the left as required to fit
1523 * the curve size.
1524 */
1525 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1526 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
1527 /** Deterministic ECDSA signature with hashing.
1528 *
1529 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1530 *
1531 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1532 *
1533 * Note that when this algorithm is used for verification, signatures
1534 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1535 * same private key are accepted. In other words,
1536 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1537 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1538 *
1539 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1540 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1541 * This includes #PSA_ALG_ANY_HASH
1542 * when specifying the algorithm in a usage policy.
1543 *
1544 * \return The corresponding deterministic ECDSA signature
1545 * algorithm.
1546 * \return Unspecified if \p hash_alg is not a supported
1547 * hash algorithm.
1548 */
1549 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1550 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1551 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
1552 #define PSA_ALG_IS_ECDSA(alg) \
1553 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
1554 PSA_ALG_ECDSA_BASE)
1555 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1556 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1557 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1558 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1559 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1560 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1561
1562 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1563 * using standard parameters.
1564 *
1565 * Contexts are not supported in the current version of this specification
1566 * because there is no suitable signature interface that can take the
1567 * context as a parameter. A future version of this specification may add
1568 * suitable functions and extend this algorithm to support contexts.
1569 *
1570 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1571 * In this specification, the following curves are supported:
1572 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1573 * in RFC 8032.
1574 * The curve is Edwards25519.
1575 * The hash function used internally is SHA-512.
1576 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1577 * in RFC 8032.
1578 * The curve is Edwards448.
1579 * The hash function used internally is the first 114 bytes of the
1580 * SHAKE256 output.
1581 *
1582 * This algorithm can be used with psa_sign_message() and
1583 * psa_verify_message(). Since there is no prehashing, it cannot be used
1584 * with psa_sign_hash() or psa_verify_hash().
1585 *
1586 * The signature format is the concatenation of R and S as defined by
1587 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1588 * string for Ed448).
1589 */
1590 #define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1591
1592 #define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1593 #define PSA_ALG_IS_HASH_EDDSA(alg) \
1594 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1595
1596 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1597 * using SHA-512 and the Edwards25519 curve.
1598 *
1599 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1600 *
1601 * This algorithm is Ed25519 as specified in RFC 8032.
1602 * The curve is Edwards25519.
1603 * The prehash is SHA-512.
1604 * The hash function used internally is SHA-512.
1605 *
1606 * This is a hash-and-sign algorithm: to calculate a signature,
1607 * you can either:
1608 * - call psa_sign_message() on the message;
1609 * - or calculate the SHA-512 hash of the message
1610 * with psa_hash_compute()
1611 * or with a multi-part hash operation started with psa_hash_setup(),
1612 * using the hash algorithm #PSA_ALG_SHA_512,
1613 * then sign the calculated hash with psa_sign_hash().
1614 * Verifying a signature is similar, using psa_verify_message() or
1615 * psa_verify_hash() instead of the signature function.
1616 */
1617 #define PSA_ALG_ED25519PH \
1618 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1619
1620 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1621 * using SHAKE256 and the Edwards448 curve.
1622 *
1623 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1624 *
1625 * This algorithm is Ed448 as specified in RFC 8032.
1626 * The curve is Edwards448.
1627 * The prehash is the first 64 bytes of the SHAKE256 output.
1628 * The hash function used internally is the first 114 bytes of the
1629 * SHAKE256 output.
1630 *
1631 * This is a hash-and-sign algorithm: to calculate a signature,
1632 * you can either:
1633 * - call psa_sign_message() on the message;
1634 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1635 * with psa_hash_compute()
1636 * or with a multi-part hash operation started with psa_hash_setup(),
1637 * using the hash algorithm #PSA_ALG_SHAKE256_512,
1638 * then sign the calculated hash with psa_sign_hash().
1639 * Verifying a signature is similar, using psa_verify_message() or
1640 * psa_verify_hash() instead of the signature function.
1641 */
1642 #define PSA_ALG_ED448PH \
1643 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1644
1645 /* Default definition, to be overridden if the library is extended with
1646 * more hash-and-sign algorithms that we want to keep out of this header
1647 * file. */
1648 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1649
1650 /** Whether the specified algorithm is a signature algorithm that can be used
1651 * with psa_sign_hash() and psa_verify_hash().
1652 *
1653 * This encompasses all strict hash-and-sign algorithms categorized by
1654 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1655 * paradigm more loosely:
1656 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1657 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1658 *
1659 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1660 *
1661 * \return 1 if alg is a signature algorithm that can be used to sign a
1662 * hash. 0 if alg is a signature algorithm that can only be used
1663 * to sign a message. 0 if alg is not a signature algorithm.
1664 * This macro can return either 0 or 1 if alg is not a
1665 * supported algorithm identifier.
1666 */
1667 #define PSA_ALG_IS_SIGN_HASH(alg) \
1668 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1669 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1670 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1671
1672 /** Whether the specified algorithm is a signature algorithm that can be used
1673 * with psa_sign_message() and psa_verify_message().
1674 *
1675 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1676 *
1677 * \return 1 if alg is a signature algorithm that can be used to sign a
1678 * message. 0 if \p alg is a signature algorithm that can only be used
1679 * to sign an already-calculated hash. 0 if \p alg is not a signature
1680 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1681 * supported algorithm identifier.
1682 */
1683 #define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1684 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1685
1686 /** Whether the specified algorithm is a hash-and-sign algorithm.
1687 *
1688 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1689 * structured in two parts: first the calculation of a hash in a way that
1690 * does not depend on the key, then the calculation of a signature from the
1691 * hash value and the key. Hash-and-sign algorithms encode the hash
1692 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1693 * to extract this algorithm.
1694 *
1695 * Thus, for a hash-and-sign algorithm,
1696 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1697 * ```
1698 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1699 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1700 * ```
1701 * Most usefully, separating the hash from the signature allows the hash
1702 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1703 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1704 * calculating the hash and then calling psa_verify_hash().
1705 *
1706 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1707 *
1708 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1709 * This macro may return either 0 or 1 if \p alg is not a supported
1710 * algorithm identifier.
1711 */
1712 #define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1713 (PSA_ALG_IS_SIGN_HASH(alg) && \
1714 ((alg) & PSA_ALG_HASH_MASK) != 0)
1715
1716 /** Get the hash used by a hash-and-sign signature algorithm.
1717 *
1718 * A hash-and-sign algorithm is a signature algorithm which is
1719 * composed of two phases: first a hashing phase which does not use
1720 * the key and produces a hash of the input message, then a signing
1721 * phase which only uses the hash and the key and not the message
1722 * itself.
1723 *
1724 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1725 * #PSA_ALG_IS_SIGN(\p alg) is true).
1726 *
1727 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1728 * algorithm.
1729 * \return 0 if \p alg is a signature algorithm that does not
1730 * follow the hash-and-sign structure.
1731 * \return Unspecified if \p alg is not a signature algorithm or
1732 * if it is not supported by the implementation.
1733 */
1734 #define PSA_ALG_SIGN_GET_HASH(alg) \
1735 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1736 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1737 0)
1738
1739 /** RSA PKCS#1 v1.5 encryption.
1740 */
1741 #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
1742
1743 #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
1744 /** RSA OAEP encryption.
1745 *
1746 * This is the encryption scheme defined by RFC 8017
1747 * (PKCS#1: RSA Cryptography Specifications) under the name
1748 * RSAES-OAEP, with the message generation function MGF1.
1749 *
1750 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1751 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1752 * for MGF1.
1753 *
1754 * \return The corresponding RSA OAEP encryption algorithm.
1755 * \return Unspecified if \p hash_alg is not a supported
1756 * hash algorithm.
1757 */
1758 #define PSA_ALG_RSA_OAEP(hash_alg) \
1759 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1760 #define PSA_ALG_IS_RSA_OAEP(alg) \
1761 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1762 #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1763 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1764 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1765 0)
1766
1767 #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
1768 /** Macro to build an HKDF algorithm.
1769 *
1770 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1771 *
1772 * This key derivation algorithm uses the following inputs:
1773 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1774 * It is optional; if omitted, the derivation uses an empty salt.
1775 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1776 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1777 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1778 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1779 * starting to generate output.
1780 *
1781 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1782 * if the salt is longer than the block size of the hash algorithm; then
1783 * pad with null bytes up to the block size. As a result, it is possible
1784 * for distinct salt inputs to result in the same outputs. To ensure
1785 * unique outputs, it is recommended to use a fixed length for salt values.
1786 *
1787 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1788 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1789 *
1790 * \return The corresponding HKDF algorithm.
1791 * \return Unspecified if \p hash_alg is not a supported
1792 * hash algorithm.
1793 */
1794 #define PSA_ALG_HKDF(hash_alg) \
1795 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1796 /** Whether the specified algorithm is an HKDF algorithm.
1797 *
1798 * HKDF is a family of key derivation algorithms that are based on a hash
1799 * function and the HMAC construction.
1800 *
1801 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1802 *
1803 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1804 * This macro may return either 0 or 1 if \c alg is not a supported
1805 * key derivation algorithm identifier.
1806 */
1807 #define PSA_ALG_IS_HKDF(alg) \
1808 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1809 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1810 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1811
1812 #define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t)0x08000400)
1813 /** Macro to build an HKDF-Extract algorithm.
1814 *
1815 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA256)` is
1816 * HKDF-Extract using HMAC-SHA-256.
1817 *
1818 * This key derivation algorithm uses the following inputs:
1819 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1820 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1821 * "extract" step.
1822 * The inputs are mandatory and must be passed in the order above.
1823 * Each input may only be passed once.
1824 *
1825 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1826 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1827 * as a separate algorithm for the sake of protocols that use it as a
1828 * building block. It may also be a slight performance optimization
1829 * in applications that use HKDF with the same salt and key but many
1830 * different info strings.
1831 *
1832 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1833 * if the salt is longer than the block size of the hash algorithm; then
1834 * pad with null bytes up to the block size. As a result, it is possible
1835 * for distinct salt inputs to result in the same outputs. To ensure
1836 * unique outputs, it is recommended to use a fixed length for salt values.
1837 *
1838 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1839 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1840 *
1841 * \return The corresponding HKDF-Extract algorithm.
1842 * \return Unspecified if \p hash_alg is not a supported
1843 * hash algorithm.
1844 */
1845 #define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1846 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1847 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1848 *
1849 * HKDF-Extract is a family of key derivation algorithms that are based
1850 * on a hash function and the HMAC construction.
1851 *
1852 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1853 *
1854 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1855 * This macro may return either 0 or 1 if \c alg is not a supported
1856 * key derivation algorithm identifier.
1857 */
1858 #define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1859 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1860
1861 #define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t)0x08000500)
1862 /** Macro to build an HKDF-Expand algorithm.
1863 *
1864 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA256)` is
1865 * HKDF-Expand using HMAC-SHA-256.
1866 *
1867 * This key derivation algorithm uses the following inputs:
1868 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1869 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1870 *
1871 * The inputs are mandatory and must be passed in the order above.
1872 * Each input may only be passed once.
1873 *
1874 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1875 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1876 * a separate algorithm for the sake of protocols that use it as a building
1877 * block. It may also be a slight performance optimization in applications
1878 * that use HKDF with the same salt and key but many different info strings.
1879 *
1880 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1881 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1882 *
1883 * \return The corresponding HKDF-Expand algorithm.
1884 * \return Unspecified if \p hash_alg is not a supported
1885 * hash algorithm.
1886 */
1887 #define PSA_ALG_HKDF_EXPAND(hash_alg) \
1888 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1889 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1890 *
1891 * HKDF-Expand is a family of key derivation algorithms that are based
1892 * on a hash function and the HMAC construction.
1893 *
1894 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1895 *
1896 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1897 * This macro may return either 0 or 1 if \c alg is not a supported
1898 * key derivation algorithm identifier.
1899 */
1900 #define PSA_ALG_IS_HKDF_EXPAND(alg) \
1901 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1902
1903 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1904 * HKDF-Expand algorithm.
1905 *
1906 *
1907 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1908 *
1909 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1910 * This macro may return either 0 or 1 if \c alg is not a supported
1911 * key derivation algorithm identifier.
1912 */
1913 #define PSA_ALG_IS_ANY_HKDF(alg) \
1914 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1915 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1916 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1917
1918 #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
1919 /** Macro to build a TLS-1.2 PRF algorithm.
1920 *
1921 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1922 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1923 * used with either SHA-256 or SHA-384.
1924 *
1925 * This key derivation algorithm uses the following inputs, which must be
1926 * passed in the order given here:
1927 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1928 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1929 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1930 *
1931 * For the application to TLS-1.2 key expansion, the seed is the
1932 * concatenation of ServerHello.Random + ClientHello.Random,
1933 * and the label is "key expansion".
1934 *
1935 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1936 * TLS 1.2 PRF using HMAC-SHA-256.
1937 *
1938 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1939 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1940 *
1941 * \return The corresponding TLS-1.2 PRF algorithm.
1942 * \return Unspecified if \p hash_alg is not a supported
1943 * hash algorithm.
1944 */
1945 #define PSA_ALG_TLS12_PRF(hash_alg) \
1946 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1947
1948 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1949 *
1950 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1951 *
1952 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1953 * This macro may return either 0 or 1 if \c alg is not a supported
1954 * key derivation algorithm identifier.
1955 */
1956 #define PSA_ALG_IS_TLS12_PRF(alg) \
1957 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1958 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1959 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1960
1961 #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
1962 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1963 *
1964 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1965 * from the PreSharedKey (PSK) through the application of padding
1966 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1967 * The latter is based on HMAC and can be used with either SHA-256
1968 * or SHA-384.
1969 *
1970 * This key derivation algorithm uses the following inputs, which must be
1971 * passed in the order given here:
1972 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1973 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1974 * computation of the premaster secret. This input is optional;
1975 * if omitted, it defaults to a string of null bytes with the same length
1976 * as the secret (PSK) input.
1977 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1978 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1979 *
1980 * For the application to TLS-1.2, the seed (which is
1981 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1982 * ClientHello.Random + ServerHello.Random,
1983 * the label is "master secret" or "extended master secret" and
1984 * the other secret depends on the key exchange specified in the cipher suite:
1985 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1986 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1987 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1988 * (RFC 5489, Section 2), the other secret should be the output of the
1989 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1990 * The recommended way to pass this input is to use a key derivation
1991 * algorithm constructed as
1992 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1993 * and to call psa_key_derivation_key_agreement(). Alternatively,
1994 * this input may be an output of `psa_raw_key_agreement()` passed with
1995 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1996 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1997 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
1998 * should be the 48-byte client challenge (the PreMasterSecret of
1999 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2000 * a 46-byte random string chosen by the client. On the server, this is
2001 * typically an output of psa_asymmetric_decrypt() using
2002 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2003 * with `psa_key_derivation_input_bytes()`.
2004 *
2005 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
2006 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2007 *
2008 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2009 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2010 *
2011 * \return The corresponding TLS-1.2 PSK to MS algorithm.
2012 * \return Unspecified if \p hash_alg is not a supported
2013 * hash algorithm.
2014 */
2015 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2016 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2017
2018 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2019 *
2020 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2021 *
2022 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2023 * This macro may return either 0 or 1 if \c alg is not a supported
2024 * key derivation algorithm identifier.
2025 */
2026 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2027 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2028 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2029 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2030
2031 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2032 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2033 * will use to derive the session secret, as defined by step 2 of
2034 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2035 * Uses PSA_ALG_SHA_256.
2036 * This function takes a single input:
2037 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2038 * The only supported curve is secp256r1 (the 256-bit curve in
2039 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2040 * The output has to be read as a single chunk of 32 bytes, defined as
2041 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2042 */
2043 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)
2044
2045 /* This flag indicates whether the key derivation algorithm is suitable for
2046 * use on low-entropy secrets such as password - these algorithms are also
2047 * known as key stretching or password hashing schemes. These are also the
2048 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2049 *
2050 * Those algorithms cannot be combined with a key agreement algorithm.
2051 */
2052 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
2053
2054 #define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
2055 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2056 *
2057 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2058 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2059 * HMAC with the specified hash.
2060 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
2061 * using the PRF HMAC-SHA-256.
2062 *
2063 * This key derivation algorithm uses the following inputs, which must be
2064 * provided in the following order:
2065 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2066 * This input step must be used exactly once.
2067 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2068 * This input step must be used one or more times; if used several times, the
2069 * inputs will be concatenated. This can be used to build the final salt
2070 * from multiple sources, both public and secret (also known as pepper).
2071 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2072 * This input step must be used exactly once.
2073 *
2074 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2075 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2076 *
2077 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2078 * \return Unspecified if \p hash_alg is not a supported
2079 * hash algorithm.
2080 */
2081 #define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2082 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2083
2084 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2085 *
2086 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2087 *
2088 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2089 * This macro may return either 0 or 1 if \c alg is not a supported
2090 * key derivation algorithm identifier.
2091 */
2092 #define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2093 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2094
2095 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2096 *
2097 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2098 * This macro specifies the PBKDF2 algorithm constructed using the
2099 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2100 *
2101 * This key derivation algorithm uses the same inputs as
2102 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2103 */
2104 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
2105
2106 #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
2107 #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
2108
2109 /** Macro to build a combined algorithm that chains a key agreement with
2110 * a key derivation.
2111 *
2112 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2113 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2114 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2115 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2116 *
2117 * \return The corresponding key agreement and derivation
2118 * algorithm.
2119 * \return Unspecified if \p ka_alg is not a supported
2120 * key agreement algorithm or \p kdf_alg is not a
2121 * supported key derivation algorithm.
2122 */
2123 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2124 ((ka_alg) | (kdf_alg))
2125
2126 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2127 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2128
2129 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2130 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2131
2132 /** Whether the specified algorithm is a raw key agreement algorithm.
2133 *
2134 * A raw key agreement algorithm is one that does not specify
2135 * a key derivation function.
2136 * Usually, raw key agreement algorithms are constructed directly with
2137 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2138 * constructed with #PSA_ALG_KEY_AGREEMENT().
2139 *
2140 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2141 *
2142 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2143 * This macro may return either 0 or 1 if \p alg is not a supported
2144 * algorithm identifier.
2145 */
2146 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
2147 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2148 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2149
2150 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2151 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2152
2153 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2154 *
2155 * The shared secret produced by key agreement is
2156 * `g^{ab}` in big-endian format.
2157 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2158 * in bits.
2159 */
2160 #define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
2161
2162 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2163 *
2164 * This includes the raw finite field Diffie-Hellman algorithm as well as
2165 * finite-field Diffie-Hellman followed by any supporter key derivation
2166 * algorithm.
2167 *
2168 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2169 *
2170 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2171 * This macro may return either 0 or 1 if \c alg is not a supported
2172 * key agreement algorithm identifier.
2173 */
2174 #define PSA_ALG_IS_FFDH(alg) \
2175 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2176
2177 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2178 *
2179 * The shared secret produced by key agreement is the x-coordinate of
2180 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2181 * `m` is the bit size associated with the curve, i.e. the bit size of the
2182 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2183 * the byte containing the most significant bit of the shared secret
2184 * is padded with zero bits. The byte order is either little-endian
2185 * or big-endian depending on the curve type.
2186 *
2187 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2188 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2189 * in little-endian byte order.
2190 * The bit size is 448 for Curve448 and 255 for Curve25519.
2191 * - For Weierstrass curves over prime fields (curve types
2192 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2193 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2194 * in big-endian byte order.
2195 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2196 * - For Weierstrass curves over binary fields (curve types
2197 * `PSA_ECC_FAMILY_SECTXXX`),
2198 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2199 * in big-endian byte order.
2200 * The bit size is `m` for the field `F_{2^m}`.
2201 */
2202 #define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
2203
2204 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2205 * algorithm.
2206 *
2207 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2208 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2209 * algorithm.
2210 *
2211 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2212 *
2213 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2214 * 0 otherwise.
2215 * This macro may return either 0 or 1 if \c alg is not a supported
2216 * key agreement algorithm identifier.
2217 */
2218 #define PSA_ALG_IS_ECDH(alg) \
2219 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2220
2221 /** Whether the specified algorithm encoding is a wildcard.
2222 *
2223 * Wildcard values may only be used to set the usage algorithm field in
2224 * a policy, not to perform an operation.
2225 *
2226 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2227 *
2228 * \return 1 if \c alg is a wildcard algorithm encoding.
2229 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2230 * an operation).
2231 * \return This macro may return either 0 or 1 if \c alg is not a supported
2232 * algorithm identifier.
2233 */
2234 #define PSA_ALG_IS_WILDCARD(alg) \
2235 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2236 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2237 PSA_ALG_IS_MAC(alg) ? \
2238 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2239 PSA_ALG_IS_AEAD(alg) ? \
2240 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2241 (alg) == PSA_ALG_ANY_HASH)
2242
2243 /** Get the hash used by a composite algorithm.
2244 *
2245 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2246 *
2247 * \return The underlying hash algorithm if alg is a composite algorithm that
2248 * uses a hash algorithm.
2249 *
2250 * \return \c 0 if alg is not a composite algorithm that uses a hash.
2251 */
2252 #define PSA_ALG_GET_HASH(alg) \
2253 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
2254
2255 /**@}*/
2256
2257 /** \defgroup key_lifetimes Key lifetimes
2258 * @{
2259 */
2260
2261 /* Note that location and persistence level values are embedded in the
2262 * persistent key store, as part of key metadata. As a consequence, they
2263 * must not be changed (unless the storage format version changes).
2264 */
2265
2266 /** The default lifetime for volatile keys.
2267 *
2268 * A volatile key only exists as long as the identifier to it is not destroyed.
2269 * The key material is guaranteed to be erased on a power reset.
2270 *
2271 * A key with this lifetime is typically stored in the RAM area of the
2272 * PSA Crypto subsystem. However this is an implementation choice.
2273 * If an implementation stores data about the key in a non-volatile memory,
2274 * it must release all the resources associated with the key and erase the
2275 * key material if the calling application terminates.
2276 */
2277 #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2278
2279 /** The default lifetime for persistent keys.
2280 *
2281 * A persistent key remains in storage until it is explicitly destroyed or
2282 * until the corresponding storage area is wiped. This specification does
2283 * not define any mechanism to wipe a storage area, but integrations may
2284 * provide their own mechanism (for example to perform a factory reset,
2285 * to prepare for device refurbishment, or to uninstall an application).
2286 *
2287 * This lifetime value is the default storage area for the calling
2288 * application. Integrations of Mbed TLS may support other persistent lifetimes.
2289 * See ::psa_key_lifetime_t for more information.
2290 */
2291 #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2292
2293 /** The persistence level of volatile keys.
2294 *
2295 * See ::psa_key_persistence_t for more information.
2296 */
2297 #define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
2298
2299 /** The default persistence level for persistent keys.
2300 *
2301 * See ::psa_key_persistence_t for more information.
2302 */
2303 #define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
2304
2305 /** A persistence level indicating that a key is never destroyed.
2306 *
2307 * See ::psa_key_persistence_t for more information.
2308 */
2309 #define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
2310
2311 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
2312 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
2313
2314 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
2315 ((psa_key_location_t)((lifetime) >> 8))
2316
2317 /** Whether a key lifetime indicates that the key is volatile.
2318 *
2319 * A volatile key is automatically destroyed by the implementation when
2320 * the application instance terminates. In particular, a volatile key
2321 * is automatically destroyed on a power reset of the device.
2322 *
2323 * A key that is not volatile is persistent. Persistent keys are
2324 * preserved until the application explicitly destroys them or until an
2325 * implementation-specific device management event occurs (for example,
2326 * a factory reset).
2327 *
2328 * \param lifetime The lifetime value to query (value of type
2329 * ::psa_key_lifetime_t).
2330 *
2331 * \return \c 1 if the key is volatile, otherwise \c 0.
2332 */
2333 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2334 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2335 PSA_KEY_PERSISTENCE_VOLATILE)
2336
2337 /** Whether a key lifetime indicates that the key is read-only.
2338 *
2339 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2340 * They must be created through platform-specific means that bypass the API.
2341 *
2342 * Some platforms may offer ways to destroy read-only keys. For example,
2343 * consider a platform with multiple levels of privilege, where a
2344 * low-privilege application can use a key but is not allowed to destroy
2345 * it, and the platform exposes the key to the application with a read-only
2346 * lifetime. High-privilege code can destroy the key even though the
2347 * application sees the key as read-only.
2348 *
2349 * \param lifetime The lifetime value to query (value of type
2350 * ::psa_key_lifetime_t).
2351 *
2352 * \return \c 1 if the key is read-only, otherwise \c 0.
2353 */
2354 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2355 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2356 PSA_KEY_PERSISTENCE_READ_ONLY)
2357
2358 /** Construct a lifetime from a persistence level and a location.
2359 *
2360 * \param persistence The persistence level
2361 * (value of type ::psa_key_persistence_t).
2362 * \param location The location indicator
2363 * (value of type ::psa_key_location_t).
2364 *
2365 * \return The constructed lifetime value.
2366 */
2367 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2368 ((location) << 8 | (persistence))
2369
2370 /** The local storage area for persistent keys.
2371 *
2372 * This storage area is available on all systems that can store persistent
2373 * keys without delegating the storage to a third-party cryptoprocessor.
2374 *
2375 * See ::psa_key_location_t for more information.
2376 */
2377 #define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
2378
2379 #define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
2380
2381 /* Note that key identifier values are embedded in the
2382 * persistent key store, as part of key metadata. As a consequence, they
2383 * must not be changed (unless the storage format version changes).
2384 */
2385
2386 /** The null key identifier.
2387 */
2388 #define PSA_KEY_ID_NULL ((psa_key_id_t)0)
2389 /** The minimum value for a key identifier chosen by the application.
2390 */
2391 #define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
2392 /** The maximum value for a key identifier chosen by the application.
2393 */
2394 #define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
2395 /** The minimum value for a key identifier chosen by the implementation.
2396 */
2397 #define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
2398 /** The maximum value for a key identifier chosen by the implementation.
2399 */
2400 #define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
2401 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2402
2403 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2404 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2405 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2406
2407 /** Utility to initialize a key identifier at runtime.
2408 *
2409 * \param unused Unused parameter.
2410 * \param key_id Identifier of the key.
2411 */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2412 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2413 unsigned int unused, psa_key_id_t key_id)
2414 {
2415 (void) unused;
2416
2417 return key_id;
2418 }
2419
2420 /** Compare two key identifiers.
2421 *
2422 * \param id1 First key identifier.
2423 * \param id2 Second key identifier.
2424 *
2425 * \return Non-zero if the two key identifier are equal, zero otherwise.
2426 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2427 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2428 mbedtls_svc_key_id_t id2)
2429 {
2430 return id1 == id2;
2431 }
2432
2433 /** Check whether a key identifier is null.
2434 *
2435 * \param key Key identifier.
2436 *
2437 * \return Non-zero if the key identifier is null, zero otherwise.
2438 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2439 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2440 {
2441 return key == 0;
2442 }
2443
2444 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2445 #include "mbedtls/private_access.h"
2446 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2447 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2448 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2449
2450 /** Utility to initialize a key identifier at runtime.
2451 *
2452 * \param owner_id Identifier of the key owner.
2453 * \param key_id Identifier of the key.
2454 */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2455 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2456 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2457 {
2458 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2459 .MBEDTLS_PRIVATE(owner) = owner_id };
2460 }
2461
2462 /** Compare two key identifiers.
2463 *
2464 * \param id1 First key identifier.
2465 * \param id2 Second key identifier.
2466 *
2467 * \return Non-zero if the two key identifier are equal, zero otherwise.
2468 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2469 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2470 mbedtls_svc_key_id_t id2)
2471 {
2472 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2473 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2474 }
2475
2476 /** Check whether a key identifier is null.
2477 *
2478 * \param key Key identifier.
2479 *
2480 * \return Non-zero if the key identifier is null, zero otherwise.
2481 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2482 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2483 {
2484 return key.MBEDTLS_PRIVATE(key_id) == 0;
2485 }
2486
2487 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2488
2489 /**@}*/
2490
2491 /** \defgroup policy Key policies
2492 * @{
2493 */
2494
2495 /* Note that key usage flags are embedded in the
2496 * persistent key store, as part of key metadata. As a consequence, they
2497 * must not be changed (unless the storage format version changes).
2498 */
2499
2500 /** Whether the key may be exported.
2501 *
2502 * A public key or the public part of a key pair may always be exported
2503 * regardless of the value of this permission flag.
2504 *
2505 * If a key does not have export permission, implementations shall not
2506 * allow the key to be exported in plain form from the cryptoprocessor,
2507 * whether through psa_export_key() or through a proprietary interface.
2508 * The key may however be exportable in a wrapped form, i.e. in a form
2509 * where it is encrypted by another key.
2510 */
2511 #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2512
2513 /** Whether the key may be copied.
2514 *
2515 * This flag allows the use of psa_copy_key() to make a copy of the key
2516 * with the same policy or a more restrictive policy.
2517 *
2518 * For lifetimes for which the key is located in a secure element which
2519 * enforce the non-exportability of keys, copying a key outside the secure
2520 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2521 * Copying the key inside the secure element is permitted with just
2522 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2523 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2524 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2525 * is sufficient to permit the copy.
2526 */
2527 #define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2528
2529 /** Whether the key may be used to encrypt a message.
2530 *
2531 * This flag allows the key to be used for a symmetric encryption operation,
2532 * for an AEAD encryption-and-authentication operation,
2533 * or for an asymmetric encryption operation,
2534 * if otherwise permitted by the key's type and policy.
2535 *
2536 * For a key pair, this concerns the public key.
2537 */
2538 #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2539
2540 /** Whether the key may be used to decrypt a message.
2541 *
2542 * This flag allows the key to be used for a symmetric decryption operation,
2543 * for an AEAD decryption-and-verification operation,
2544 * or for an asymmetric decryption operation,
2545 * if otherwise permitted by the key's type and policy.
2546 *
2547 * For a key pair, this concerns the private key.
2548 */
2549 #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2550
2551 /** Whether the key may be used to sign a message.
2552 *
2553 * This flag allows the key to be used for a MAC calculation operation or for
2554 * an asymmetric message signature operation, if otherwise permitted by the
2555 * key’s type and policy.
2556 *
2557 * For a key pair, this concerns the private key.
2558 */
2559 #define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2560
2561 /** Whether the key may be used to verify a message.
2562 *
2563 * This flag allows the key to be used for a MAC verification operation or for
2564 * an asymmetric message signature verification operation, if otherwise
2565 * permitted by the key’s type and policy.
2566 *
2567 * For a key pair, this concerns the public key.
2568 */
2569 #define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2570
2571 /** Whether the key may be used to sign a message.
2572 *
2573 * This flag allows the key to be used for a MAC calculation operation
2574 * or for an asymmetric signature operation,
2575 * if otherwise permitted by the key's type and policy.
2576 *
2577 * For a key pair, this concerns the private key.
2578 */
2579 #define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
2580
2581 /** Whether the key may be used to verify a message signature.
2582 *
2583 * This flag allows the key to be used for a MAC verification operation
2584 * or for an asymmetric signature verification operation,
2585 * if otherwise permitted by the key's type and policy.
2586 *
2587 * For a key pair, this concerns the public key.
2588 */
2589 #define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
2590
2591 /** Whether the key may be used to derive other keys or produce a password
2592 * hash.
2593 *
2594 * This flag allows the key to be used for a key derivation operation or for
2595 * a key agreement operation, if otherwise permitted by the key's type and
2596 * policy.
2597 *
2598 * If this flag is present on all keys used in calls to
2599 * psa_key_derivation_input_key() for a key derivation operation, then it
2600 * permits calling psa_key_derivation_output_bytes() or
2601 * psa_key_derivation_output_key() at the end of the operation.
2602 */
2603 #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
2604
2605 /** Whether the key may be used to verify the result of a key derivation,
2606 * including password hashing.
2607 *
2608 * This flag allows the key to be used:
2609 *
2610 * This flag allows the key to be used in a key derivation operation, if
2611 * otherwise permitted by the key's type and policy.
2612 *
2613 * If this flag is present on all keys used in calls to
2614 * psa_key_derivation_input_key() for a key derivation operation, then it
2615 * permits calling psa_key_derivation_verify_bytes() or
2616 * psa_key_derivation_verify_key() at the end of the operation.
2617 */
2618 #define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
2619
2620 /**@}*/
2621
2622 /** \defgroup derivation Key derivation
2623 * @{
2624 */
2625
2626 /* Key input steps are not embedded in the persistent storage, so you can
2627 * change them if needed: it's only an ABI change. */
2628
2629 /** A secret input for key derivation.
2630 *
2631 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2632 * (passed to psa_key_derivation_input_key())
2633 * or the shared secret resulting from a key agreement
2634 * (obtained via psa_key_derivation_key_agreement()).
2635 *
2636 * The secret can also be a direct input (passed to
2637 * key_derivation_input_bytes()). In this case, the derivation operation
2638 * may not be used to derive keys: the operation will only allow
2639 * psa_key_derivation_output_bytes(),
2640 * psa_key_derivation_verify_bytes(), or
2641 * psa_key_derivation_verify_key(), but not
2642 * psa_key_derivation_output_key().
2643 */
2644 #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
2645
2646 /** A low-entropy secret input for password hashing / key stretching.
2647 *
2648 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2649 * psa_key_derivation_input_key()) or a direct input (passed to
2650 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2651 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2652 * the shared secret resulting from a key agreement.
2653 *
2654 * The secret can also be a direct input (passed to
2655 * key_derivation_input_bytes()). In this case, the derivation operation
2656 * may not be used to derive keys: the operation will only allow
2657 * psa_key_derivation_output_bytes(),
2658 * psa_key_derivation_verify_bytes(), or
2659 * psa_key_derivation_verify_key(), but not
2660 * psa_key_derivation_output_key().
2661 */
2662 #define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2663
2664 /** A high-entropy additional secret input for key derivation.
2665 *
2666 * This is typically the shared secret resulting from a key agreement obtained
2667 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2668 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2669 * a direct input passed to `psa_key_derivation_input_bytes()`.
2670 */
2671 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2672 ((psa_key_derivation_step_t)0x0103)
2673
2674 /** A label for key derivation.
2675 *
2676 * This should be a direct input.
2677 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2678 */
2679 #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
2680
2681 /** A salt for key derivation.
2682 *
2683 * This should be a direct input.
2684 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2685 * #PSA_KEY_TYPE_PEPPER.
2686 */
2687 #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
2688
2689 /** An information string for key derivation.
2690 *
2691 * This should be a direct input.
2692 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2693 */
2694 #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
2695
2696 /** A seed for key derivation.
2697 *
2698 * This should be a direct input.
2699 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2700 */
2701 #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2702
2703 /** A cost parameter for password hashing / key stretching.
2704 *
2705 * This must be a direct input, passed to psa_key_derivation_input_integer().
2706 */
2707 #define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2708
2709 /**@}*/
2710
2711 /** \defgroup helper_macros Helper macros
2712 * @{
2713 */
2714
2715 /* Helper macros */
2716
2717 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2718 * regardless of the tag length they encode.
2719 *
2720 * \param aead_alg_1 An AEAD algorithm identifier.
2721 * \param aead_alg_2 An AEAD algorithm identifier.
2722 *
2723 * \return 1 if both identifiers refer to the same AEAD algorithm,
2724 * 0 otherwise.
2725 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2726 * a supported AEAD algorithm.
2727 */
2728 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2729 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2730 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2731
2732 /**@}*/
2733
2734 #endif /* PSA_CRYPTO_VALUES_H */
2735