1 /**
2  * \file psa/crypto_values.h
3  *
4  * \brief PSA cryptography module: macros to build and analyze integer values.
5  *
6  * \note This file may not be included directly. Applications must
7  * include psa/crypto.h. Drivers must include the appropriate driver
8  * header file.
9  *
10  * This file contains portable definitions of macros to build and analyze
11  * values of integral types that encode properties of cryptographic keys,
12  * designations of cryptographic algorithms, and error codes returned by
13  * the library.
14  *
15  * Note that many of the constants defined in this file are embedded in
16  * the persistent key store, as part of key metadata (including usage
17  * policies). As a consequence, they must not be changed (unless the storage
18  * format version changes).
19  *
20  * This header file only defines preprocessor macros.
21  */
22 /*
23  *  Copyright The Mbed TLS Contributors
24  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
25  */
26 
27 #ifndef PSA_CRYPTO_VALUES_H
28 #define PSA_CRYPTO_VALUES_H
29 #include "mbedtls/private_access.h"
30 
31 /** \defgroup error Error codes
32  * @{
33  */
34 
35 /* PSA error codes */
36 
37 /* Error codes are standardized across PSA domains (framework, crypto, storage,
38  * etc.). Do not change the values in this section or even the expansions
39  * of each macro: it must be possible to `#include` both this header
40  * and some other PSA component's headers in the same C source,
41  * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42  * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43  * to the same sequence of tokens.
44  *
45  * If you must add a new
46  * value, check with the Arm PSA framework group to pick one that other
47  * domains aren't already using. */
48 
49 /* Tell uncrustify not to touch the constant definitions, otherwise
50  * it might change the spacing to something that is not PSA-compliant
51  * (e.g. adding a space after casts).
52  *
53  * *INDENT-OFF*
54  */
55 
56 /** The action was completed successfully. */
57 #define PSA_SUCCESS ((psa_status_t)0)
58 
59 /** An error occurred that does not correspond to any defined
60  * failure cause.
61  *
62  * Implementations may use this error code if none of the other standard
63  * error codes are applicable. */
64 #define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)
65 
66 /** The requested operation or a parameter is not supported
67  * by this implementation.
68  *
69  * Implementations should return this error code when an enumeration
70  * parameter such as a key type, algorithm, etc. is not recognized.
71  * If a combination of parameters is recognized and identified as
72  * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
73 #define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)
74 
75 /** The requested action is denied by a policy.
76  *
77  * Implementations should return this error code when the parameters
78  * are recognized as valid and supported, and a policy explicitly
79  * denies the requested operation.
80  *
81  * If a subset of the parameters of a function call identify a
82  * forbidden operation, and another subset of the parameters are
83  * not valid or not supported, it is unspecified whether the function
84  * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85  * #PSA_ERROR_INVALID_ARGUMENT. */
86 #define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)
87 
88 /** An output buffer is too small.
89  *
90  * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91  * description to determine a sufficient buffer size.
92  *
93  * Implementations should preferably return this error code only
94  * in cases when performing the operation with a larger output
95  * buffer would succeed. However implementations may return this
96  * error if a function has invalid or unsupported parameters in addition
97  * to the parameters that determine the necessary output buffer size. */
98 #define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)
99 
100 /** Asking for an item that already exists
101  *
102  * Implementations should return this error, when attempting
103  * to write an item (like a key) that already exists. */
104 #define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)
105 
106 /** Asking for an item that doesn't exist
107  *
108  * Implementations should return this error, if a requested item (like
109  * a key) does not exist. */
110 #define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)
111 
112 /** The requested action cannot be performed in the current state.
113  *
114  * Multipart operations return this error when one of the
115  * functions is called out of sequence. Refer to the function
116  * descriptions for permitted sequencing of functions.
117  *
118  * Implementations shall not return this error code to indicate
119  * that a key either exists or not,
120  * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
121  * as applicable.
122  *
123  * Implementations shall not return this error code to indicate that a
124  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125  * instead. */
126 #define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)
127 
128 /** The parameters passed to the function are invalid.
129  *
130  * Implementations may return this error any time a parameter or
131  * combination of parameters are recognized as invalid.
132  *
133  * Implementations shall not return this error code to indicate that a
134  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
135  * instead.
136  */
137 #define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)
138 
139 /** There is not enough runtime memory.
140  *
141  * If the action is carried out across multiple security realms, this
142  * error can refer to available memory in any of the security realms. */
143 #define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)
144 
145 /** There is not enough persistent storage.
146  *
147  * Functions that modify the key storage return this error code if
148  * there is insufficient storage space on the host media. In addition,
149  * many functions that do not otherwise access storage may return this
150  * error code if the implementation requires a mandatory log entry for
151  * the requested action and the log storage space is full. */
152 #define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)
153 
154 /** There was a communication failure inside the implementation.
155  *
156  * This can indicate a communication failure between the application
157  * and an external cryptoprocessor or between the cryptoprocessor and
158  * an external volatile or persistent memory. A communication failure
159  * may be transient or permanent depending on the cause.
160  *
161  * \warning If a function returns this error, it is undetermined
162  * whether the requested action has completed or not. Implementations
163  * should return #PSA_SUCCESS on successful completion whenever
164  * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165  * if the requested action was completed successfully in an external
166  * cryptoprocessor but there was a breakdown of communication before
167  * the cryptoprocessor could report the status to the application.
168  */
169 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
170 
171 /** There was a storage failure that may have led to data loss.
172  *
173  * This error indicates that some persistent storage is corrupted.
174  * It should not be used for a corruption of volatile memory
175  * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
176  * between the cryptoprocessor and its external storage (use
177  * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178  * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179  *
180  * Note that a storage failure does not indicate that any data that was
181  * previously read is invalid. However this previously read data may no
182  * longer be readable from storage.
183  *
184  * When a storage failure occurs, it is no longer possible to ensure
185  * the global integrity of the keystore. Depending on the global
186  * integrity guarantees offered by the implementation, access to other
187  * data may or may not fail even if the data is still readable but
188  * its integrity cannot be guaranteed.
189  *
190  * Implementations should only use this error code to report a
191  * permanent storage corruption. However application writers should
192  * keep in mind that transient errors while reading the storage may be
193  * reported using this error code. */
194 #define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)
195 
196 /** A hardware failure was detected.
197  *
198  * A hardware failure may be transient or permanent depending on the
199  * cause. */
200 #define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)
201 
202 /** A tampering attempt was detected.
203  *
204  * If an application receives this error code, there is no guarantee
205  * that previously accessed or computed data was correct and remains
206  * confidential. Applications should not perform any security function
207  * and should enter a safe failure state.
208  *
209  * Implementations may return this error code if they detect an invalid
210  * state that cannot happen during normal operation and that indicates
211  * that the implementation's security guarantees no longer hold. Depending
212  * on the implementation architecture and on its security and safety goals,
213  * the implementation may forcibly terminate the application.
214  *
215  * This error code is intended as a last resort when a security breach
216  * is detected and it is unsure whether the keystore data is still
217  * protected. Implementations shall only return this error code
218  * to report an alarm from a tampering detector, to indicate that
219  * the confidentiality of stored data can no longer be guaranteed,
220  * or to indicate that the integrity of previously returned data is now
221  * considered compromised. Implementations shall not use this error code
222  * to indicate a hardware failure that merely makes it impossible to
223  * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224  * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225  * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226  * instead).
227  *
228  * This error indicates an attack against the application. Implementations
229  * shall not return this error code as a consequence of the behavior of
230  * the application itself. */
231 #define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)
232 
233 /** There is not enough entropy to generate random data needed
234  * for the requested action.
235  *
236  * This error indicates a failure of a hardware random generator.
237  * Application writers should note that this error can be returned not
238  * only by functions whose purpose is to generate random data, such
239  * as key, IV or nonce generation, but also by functions that execute
240  * an algorithm with a randomized result, as well as functions that
241  * use randomization of intermediate computations as a countermeasure
242  * to certain attacks.
243  *
244  * Implementations should avoid returning this error after psa_crypto_init()
245  * has succeeded. Implementations should generate sufficient
246  * entropy during initialization and subsequently use a cryptographically
247  * secure pseudorandom generator (PRNG). However implementations may return
248  * this error at any time if a policy requires the PRNG to be reseeded
249  * during normal operation. */
250 #define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)
251 
252 /** The signature, MAC or hash is incorrect.
253  *
254  * Verification functions return this error if the verification
255  * calculations completed successfully, and the value to be verified
256  * was determined to be incorrect.
257  *
258  * If the value to verify has an invalid size, implementations may return
259  * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
260 #define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)
261 
262 /** The decrypted padding is incorrect.
263  *
264  * \warning In some protocols, when decrypting data, it is essential that
265  * the behavior of the application does not depend on whether the padding
266  * is correct, down to precise timing. Applications should prefer
267  * protocols that use authenticated encryption rather than plain
268  * encryption. If the application must perform a decryption of
269  * unauthenticated data, the application writer should take care not
270  * to reveal whether the padding is invalid.
271  *
272  * Implementations should strive to make valid and invalid padding
273  * as close as possible to indistinguishable to an external observer.
274  * In particular, the timing of a decryption operation should not
275  * depend on the validity of the padding. */
276 #define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)
277 
278 /** Return this error when there's insufficient data when attempting
279  * to read from a resource. */
280 #define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)
281 
282 /** The key identifier is not valid. See also :ref:\`key-handles\`.
283  */
284 #define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)
285 
286 /** Stored data has been corrupted.
287  *
288  * This error indicates that some persistent storage has suffered corruption.
289  * It does not indicate the following situations, which have specific error
290  * codes:
291  *
292  * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
293  * - A communication error between the cryptoprocessor and its external
294  *   storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
295  * - When the storage is in a valid state but is full - use
296  *   #PSA_ERROR_INSUFFICIENT_STORAGE.
297  * - When the storage fails for other reasons - use
298  *   #PSA_ERROR_STORAGE_FAILURE.
299  * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
300  *
301  * \note A storage corruption does not indicate that any data that was
302  * previously read is invalid. However this previously read data might no
303  * longer be readable from storage.
304  *
305  * When a storage failure occurs, it is no longer possible to ensure the
306  * global integrity of the keystore.
307  */
308 #define PSA_ERROR_DATA_CORRUPT          ((psa_status_t)-152)
309 
310 /** Data read from storage is not valid for the implementation.
311  *
312  * This error indicates that some data read from storage does not have a valid
313  * format. It does not indicate the following situations, which have specific
314  * error codes:
315  *
316  * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
317  * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
318  * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
319  *
320  * This error is typically a result of either storage corruption on a
321  * cleartext storage backend, or an attempt to read data that was
322  * written by an incompatible version of the library.
323  */
324 #define PSA_ERROR_DATA_INVALID          ((psa_status_t)-153)
325 
326 /** The function that returns this status is defined as interruptible and
327  *  still has work to do, thus the user should call the function again with the
328  *  same operation context until it either returns #PSA_SUCCESS or any other
329  *  error. This is not an error per se, more a notification of status.
330  */
331 #define PSA_OPERATION_INCOMPLETE           ((psa_status_t)-248)
332 
333 /* *INDENT-ON* */
334 
335 /**@}*/
336 
337 /** \defgroup crypto_types Key and algorithm types
338  * @{
339  */
340 
341 /* Note that key type values, including ECC family and DH group values, are
342  * embedded in the persistent key store, as part of key metadata. As a
343  * consequence, they must not be changed (unless the storage format version
344  * changes).
345  */
346 
347 /** An invalid key type value.
348  *
349  * Zero is not the encoding of any key type.
350  */
351 #define PSA_KEY_TYPE_NONE                           ((psa_key_type_t) 0x0000)
352 
353 /** Vendor-defined key type flag.
354  *
355  * Key types defined by this standard will never have the
356  * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
357  * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
358  * respect the bitwise structure used by standard encodings whenever practical.
359  */
360 #define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t) 0x8000)
361 
362 #define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t) 0x7000)
363 #define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t) 0x1000)
364 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t) 0x2000)
365 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t) 0x4000)
366 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t) 0x7000)
367 
368 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t) 0x3000)
369 
370 /** Whether a key type is vendor-defined.
371  *
372  * See also #PSA_KEY_TYPE_VENDOR_FLAG.
373  */
374 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
375     (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
376 
377 /** Whether a key type is an unstructured array of bytes.
378  *
379  * This encompasses both symmetric keys and non-key data.
380  */
381 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
382     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
383      ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
384 
385 /** Whether a key type is asymmetric: either a key pair or a public key. */
386 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
387     (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
388       & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
389      PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
390 /** Whether a key type is the public part of a key pair. */
391 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
392     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393 /** Whether a key type is a key pair containing a private part and a public
394  * part. */
395 #define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
396     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
397 /** The key pair type corresponding to a public key type.
398  *
399  * You may also pass a key pair type as \p type, it will be left unchanged.
400  *
401  * \param type      A public key type or key pair type.
402  *
403  * \return          The corresponding key pair type.
404  *                  If \p type is not a public key or a key pair,
405  *                  the return value is undefined.
406  */
407 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
408     ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409 /** The public key type corresponding to a key pair type.
410  *
411  * You may also pass a key pair type as \p type, it will be left unchanged.
412  *
413  * \param type      A public key type or key pair type.
414  *
415  * \return          The corresponding public key type.
416  *                  If \p type is not a public key or a key pair,
417  *                  the return value is undefined.
418  */
419 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
420     ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421 
422 /** Raw data.
423  *
424  * A "key" of this type cannot be used for any cryptographic operation.
425  * Applications may use this type to store arbitrary data in the keystore. */
426 #define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t) 0x1001)
427 
428 /** HMAC key.
429  *
430  * The key policy determines which underlying hash algorithm the key can be
431  * used for.
432  *
433  * HMAC keys should generally have the same size as the underlying hash.
434  * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
435  * \c alg is the HMAC algorithm or the underlying hash algorithm. */
436 #define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t) 0x1100)
437 
438 /** A secret for key derivation.
439  *
440  * This key type is for high-entropy secrets only. For low-entropy secrets,
441  * #PSA_KEY_TYPE_PASSWORD should be used instead.
442  *
443  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
444  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
445  *
446  * The key policy determines which key derivation algorithm the key
447  * can be used for.
448  */
449 #define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t) 0x1200)
450 
451 /** A low-entropy secret for password hashing or key derivation.
452  *
453  * This key type is suitable for passwords and passphrases which are typically
454  * intended to be memorizable by humans, and have a low entropy relative to
455  * their size. It can be used for randomly generated or derived keys with
456  * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
457  * for such keys. It is not suitable for passwords with extremely low entropy,
458  * such as numerical PINs.
459  *
460  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
461  * key derivation algorithms. Algorithms that accept such an input were
462  * designed to accept low-entropy secret and are known as password hashing or
463  * key stretching algorithms.
464  *
465  * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
466  * key derivation algorithms, as the algorithms that take such an input expect
467  * it to be high-entropy.
468  *
469  * The key policy determines which key derivation algorithm the key can be
470  * used for, among the permissible subset defined above.
471  */
472 #define PSA_KEY_TYPE_PASSWORD                       ((psa_key_type_t) 0x1203)
473 
474 /** A secret value that can be used to verify a password hash.
475  *
476  * The key policy determines which key derivation algorithm the key
477  * can be used for, among the same permissible subset as for
478  * #PSA_KEY_TYPE_PASSWORD.
479  */
480 #define PSA_KEY_TYPE_PASSWORD_HASH                  ((psa_key_type_t) 0x1205)
481 
482 /** A secret value that can be used in when computing a password hash.
483  *
484  * The key policy determines which key derivation algorithm the key
485  * can be used for, among the subset of algorithms that can use pepper.
486  */
487 #define PSA_KEY_TYPE_PEPPER                         ((psa_key_type_t) 0x1206)
488 
489 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
490  *
491  * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
492  * 32 bytes (AES-256).
493  */
494 #define PSA_KEY_TYPE_AES                            ((psa_key_type_t) 0x2400)
495 
496 /** Key for a cipher, AEAD or MAC algorithm based on the
497  * ARIA block cipher. */
498 #define PSA_KEY_TYPE_ARIA                           ((psa_key_type_t) 0x2406)
499 
500 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
501  *
502  * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
503  * 192 bits (3-key 3DES).
504  *
505  * Note that single DES and 2-key 3DES are weak and strongly
506  * deprecated and should only be used to decrypt legacy data. 3-key 3DES
507  * is weak and deprecated and should only be used in legacy protocols.
508  */
509 #define PSA_KEY_TYPE_DES                            ((psa_key_type_t) 0x2301)
510 
511 /** Key for a cipher, AEAD or MAC algorithm based on the
512  * Camellia block cipher. */
513 #define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t) 0x2403)
514 
515 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
516  *
517  * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
518  *
519  * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
520  *       12-byte nonces.
521  *
522  * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
523  *       with the initial counter value 1, you can process and discard a
524  *       64-byte block before the real data.
525  */
526 #define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t) 0x2004)
527 
528 /** RSA public key.
529  *
530  * The size of an RSA key is the bit size of the modulus.
531  */
532 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t) 0x4001)
533 /** RSA key pair (private and public key).
534  *
535  * The size of an RSA key is the bit size of the modulus.
536  */
537 #define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t) 0x7001)
538 /** Whether a key type is an RSA key (pair or public-only). */
539 #define PSA_KEY_TYPE_IS_RSA(type)                                       \
540     (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
541 
542 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t) 0x4100)
543 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t) 0x7100)
544 #define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t) 0x00ff)
545 /** Elliptic curve key pair.
546  *
547  * The size of an elliptic curve key is the bit size associated with the curve,
548  * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
549  * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
550  *
551  * \param curve     A value of type ::psa_ecc_family_t that
552  *                  identifies the ECC curve to be used.
553  */
554 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
555     (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
556 /** Elliptic curve public key.
557  *
558  * The size of an elliptic curve public key is the same as the corresponding
559  * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
560  * `PSA_ECC_FAMILY_xxx` curve families).
561  *
562  * \param curve     A value of type ::psa_ecc_family_t that
563  *                  identifies the ECC curve to be used.
564  */
565 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
566     (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
567 
568 /** Whether a key type is an elliptic curve key (pair or public-only). */
569 #define PSA_KEY_TYPE_IS_ECC(type)                                       \
570     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
571       ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
572 /** Whether a key type is an elliptic curve key pair. */
573 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
574     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
575      PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
576 /** Whether a key type is an elliptic curve public key. */
577 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
578     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
579      PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
580 
581 /** Extract the curve from an elliptic curve key type. */
582 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
583     ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
584                          ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
585                          0))
586 
587 /** Check if the curve of given family is Weierstrass elliptic curve. */
588 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
589 
590 /** SEC Koblitz curves over prime fields.
591  *
592  * This family comprises the following curves:
593  * secp192k1, secp224k1, secp256k1.
594  * They are defined in _Standards for Efficient Cryptography_,
595  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596  * https://www.secg.org/sec2-v2.pdf
597  */
598 #define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)
599 
600 /** SEC random curves over prime fields.
601  *
602  * This family comprises the following curves:
603  * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
604  * They are defined in _Standards for Efficient Cryptography_,
605  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
606  * https://www.secg.org/sec2-v2.pdf
607  */
608 #define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
609 /* SECP160R2 (SEC2 v1, obsolete) */
610 #define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)
611 
612 /** SEC Koblitz curves over binary fields.
613  *
614  * This family comprises the following curves:
615  * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
616  * They are defined in _Standards for Efficient Cryptography_,
617  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
618  * https://www.secg.org/sec2-v2.pdf
619  */
620 #define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)
621 
622 /** SEC random curves over binary fields.
623  *
624  * This family comprises the following curves:
625  * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
626  * They are defined in _Standards for Efficient Cryptography_,
627  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
628  * https://www.secg.org/sec2-v2.pdf
629  */
630 #define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)
631 
632 /** SEC additional random curves over binary fields.
633  *
634  * This family comprises the following curve:
635  * sect163r2.
636  * It is defined in _Standards for Efficient Cryptography_,
637  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
638  * https://www.secg.org/sec2-v2.pdf
639  */
640 #define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)
641 
642 /** Brainpool P random curves.
643  *
644  * This family comprises the following curves:
645  * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
646  * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
647  * It is defined in RFC 5639.
648  */
649 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)
650 
651 /** Curve25519 and Curve448.
652  *
653  * This family comprises the following Montgomery curves:
654  * - 255-bit: Bernstein et al.,
655  *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
656  *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
657  * - 448-bit: Hamburg,
658  *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
659  *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
660  */
661 #define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)
662 
663 /** The twisted Edwards curves Ed25519 and Ed448.
664  *
665  * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
666  * #PSA_ALG_ED25519PH for the 255-bit curve,
667  * #PSA_ALG_ED448PH for the 448-bit curve).
668  *
669  * This family comprises the following twisted Edwards curves:
670  * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
671  *   to Curve25519.
672  *   Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
673  * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
674  *   to Curve448.
675  *   Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
676  */
677 #define PSA_ECC_FAMILY_TWISTED_EDWARDS   ((psa_ecc_family_t) 0x42)
678 
679 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t) 0x4200)
680 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t) 0x7200)
681 #define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t) 0x00ff)
682 /** Diffie-Hellman key pair.
683  *
684  * \param group     A value of type ::psa_dh_family_t that identifies the
685  *                  Diffie-Hellman group to be used.
686  */
687 #define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
688     (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
689 /** Diffie-Hellman public key.
690  *
691  * \param group     A value of type ::psa_dh_family_t that identifies the
692  *                  Diffie-Hellman group to be used.
693  */
694 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
695     (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
696 
697 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
698 #define PSA_KEY_TYPE_IS_DH(type)                                        \
699     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
700       ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
701 /** Whether a key type is a Diffie-Hellman key pair. */
702 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
703     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
704      PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
705 /** Whether a key type is a Diffie-Hellman public key. */
706 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
707     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
708      PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
709 
710 /** Extract the group from a Diffie-Hellman key type. */
711 #define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
712     ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
713                         ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
714                         0))
715 
716 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
717  *
718  * This family includes groups with the following key sizes (in bits):
719  * 2048, 3072, 4096, 6144, 8192. A given implementation may support
720  * all of these sizes or only a subset.
721  */
722 #define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)
723 
724 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
725     (((type) >> 8) & 7)
726 /** The block size of a block cipher.
727  *
728  * \param type  A cipher key type (value of type #psa_key_type_t).
729  *
730  * \return      The block size for a block cipher, or 1 for a stream cipher.
731  *              The return value is undefined if \p type is not a supported
732  *              cipher key type.
733  *
734  * \note It is possible to build stream cipher algorithms on top of a block
735  *       cipher, for example CTR mode (#PSA_ALG_CTR).
736  *       This macro only takes the key type into account, so it cannot be
737  *       used to determine the size of the data that #psa_cipher_update()
738  *       might buffer for future processing in general.
739  *
740  * \note This macro returns a compile-time constant if its argument is one.
741  *
742  * \warning This macro may evaluate its argument multiple times.
743  */
744 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type)                                     \
745     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
746      1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                         \
747         0u)
748 
749 /* Note that algorithm values are embedded in the persistent key store,
750  * as part of key metadata. As a consequence, they must not be changed
751  * (unless the storage format version changes).
752  */
753 
754 /** Vendor-defined algorithm flag.
755  *
756  * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
757  * bit set. Vendors who define additional algorithms must use an encoding with
758  * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
759  * used by standard encodings whenever practical.
760  */
761 #define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t) 0x80000000)
762 
763 #define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t) 0x7f000000)
764 #define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t) 0x02000000)
765 #define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t) 0x03000000)
766 #define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t) 0x04000000)
767 #define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t) 0x05000000)
768 #define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t) 0x06000000)
769 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t) 0x07000000)
770 #define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t) 0x08000000)
771 #define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t) 0x09000000)
772 
773 /** Whether an algorithm is vendor-defined.
774  *
775  * See also #PSA_ALG_VENDOR_FLAG.
776  */
777 #define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
778     (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
779 
780 /** Whether the specified algorithm is a hash algorithm.
781  *
782  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
783  *
784  * \return 1 if \p alg is a hash algorithm, 0 otherwise.
785  *         This macro may return either 0 or 1 if \p alg is not a supported
786  *         algorithm identifier.
787  */
788 #define PSA_ALG_IS_HASH(alg)                                            \
789     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
790 
791 /** Whether the specified algorithm is a MAC algorithm.
792  *
793  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
794  *
795  * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
796  *         This macro may return either 0 or 1 if \p alg is not a supported
797  *         algorithm identifier.
798  */
799 #define PSA_ALG_IS_MAC(alg)                                             \
800     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
801 
802 /** Whether the specified algorithm is a symmetric cipher algorithm.
803  *
804  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
805  *
806  * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
807  *         This macro may return either 0 or 1 if \p alg is not a supported
808  *         algorithm identifier.
809  */
810 #define PSA_ALG_IS_CIPHER(alg)                                          \
811     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
812 
813 /** Whether the specified algorithm is an authenticated encryption
814  * with associated data (AEAD) algorithm.
815  *
816  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817  *
818  * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
819  *         This macro may return either 0 or 1 if \p alg is not a supported
820  *         algorithm identifier.
821  */
822 #define PSA_ALG_IS_AEAD(alg)                                            \
823     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
824 
825 /** Whether the specified algorithm is an asymmetric signature algorithm,
826  * also known as public-key signature algorithm.
827  *
828  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
829  *
830  * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
831  *         This macro may return either 0 or 1 if \p alg is not a supported
832  *         algorithm identifier.
833  */
834 #define PSA_ALG_IS_SIGN(alg)                                            \
835     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
836 
837 /** Whether the specified algorithm is an asymmetric encryption algorithm,
838  * also known as public-key encryption algorithm.
839  *
840  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841  *
842  * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
843  *         This macro may return either 0 or 1 if \p alg is not a supported
844  *         algorithm identifier.
845  */
846 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
847     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
848 
849 /** Whether the specified algorithm is a key agreement algorithm.
850  *
851  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
852  *
853  * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
854  *         This macro may return either 0 or 1 if \p alg is not a supported
855  *         algorithm identifier.
856  */
857 #define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
858     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
859 
860 /** Whether the specified algorithm is a key derivation algorithm.
861  *
862  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
863  *
864  * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
865  *         This macro may return either 0 or 1 if \p alg is not a supported
866  *         algorithm identifier.
867  */
868 #define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
869     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
870 
871 /** Whether the specified algorithm is a key stretching / password hashing
872  * algorithm.
873  *
874  * A key stretching / password hashing algorithm is a key derivation algorithm
875  * that is suitable for use with a low-entropy secret such as a password.
876  * Equivalently, it's a key derivation algorithm that uses a
877  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
878  *
879  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
880  *
881  * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
882  *         otherwise. This macro may return either 0 or 1 if \p alg is not a
883  *         supported algorithm identifier.
884  */
885 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg)                                  \
886     (PSA_ALG_IS_KEY_DERIVATION(alg) &&              \
887      (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
888 
889 /** An invalid algorithm identifier value. */
890 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
891 #define PSA_ALG_NONE                            ((psa_algorithm_t)0)
892 /* *INDENT-ON* */
893 
894 #define PSA_ALG_HASH_MASK                       ((psa_algorithm_t) 0x000000ff)
895 /** MD5 */
896 #define PSA_ALG_MD5                             ((psa_algorithm_t) 0x02000003)
897 /** PSA_ALG_RIPEMD160 */
898 #define PSA_ALG_RIPEMD160                       ((psa_algorithm_t) 0x02000004)
899 /** SHA1 */
900 #define PSA_ALG_SHA_1                           ((psa_algorithm_t) 0x02000005)
901 /** SHA2-224 */
902 #define PSA_ALG_SHA_224                         ((psa_algorithm_t) 0x02000008)
903 /** SHA2-256 */
904 #define PSA_ALG_SHA_256                         ((psa_algorithm_t) 0x02000009)
905 /** SHA2-384 */
906 #define PSA_ALG_SHA_384                         ((psa_algorithm_t) 0x0200000a)
907 /** SHA2-512 */
908 #define PSA_ALG_SHA_512                         ((psa_algorithm_t) 0x0200000b)
909 /** SHA2-512/224 */
910 #define PSA_ALG_SHA_512_224                     ((psa_algorithm_t) 0x0200000c)
911 /** SHA2-512/256 */
912 #define PSA_ALG_SHA_512_256                     ((psa_algorithm_t) 0x0200000d)
913 /** SHA3-224 */
914 #define PSA_ALG_SHA3_224                        ((psa_algorithm_t) 0x02000010)
915 /** SHA3-256 */
916 #define PSA_ALG_SHA3_256                        ((psa_algorithm_t) 0x02000011)
917 /** SHA3-384 */
918 #define PSA_ALG_SHA3_384                        ((psa_algorithm_t) 0x02000012)
919 /** SHA3-512 */
920 #define PSA_ALG_SHA3_512                        ((psa_algorithm_t) 0x02000013)
921 /** The first 512 bits (64 bytes) of the SHAKE256 output.
922  *
923  * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
924  * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
925  * has the same output size and a (theoretically) higher security strength.
926  */
927 #define PSA_ALG_SHAKE256_512                    ((psa_algorithm_t) 0x02000015)
928 
929 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
930  *
931  * This value may be used to form the algorithm usage field of a policy
932  * for a signature algorithm that is parametrized by a hash. The key
933  * may then be used to perform operations using the same signature
934  * algorithm parametrized with any supported hash.
935  *
936  * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
937  * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
938  * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
939  * Then you may create and use a key as follows:
940  * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
941  *   ```
942  *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
943  *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
944  *   ```
945  * - Import or generate key material.
946  * - Call psa_sign_hash() or psa_verify_hash(), passing
947  *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
948  *   call to sign or verify a message may use a different hash.
949  *   ```
950  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
951  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
952  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
953  *   ```
954  *
955  * This value may not be used to build other algorithms that are
956  * parametrized over a hash. For any valid use of this macro to build
957  * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
958  *
959  * This value may not be used to build an algorithm specification to
960  * perform an operation. It is only valid to build policies.
961  */
962 #define PSA_ALG_ANY_HASH                        ((psa_algorithm_t) 0x020000ff)
963 
964 #define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t) 0x00c00000)
965 #define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t) 0x03800000)
966 /** Macro to build an HMAC algorithm.
967  *
968  * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
969  *
970  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
971  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
972  *
973  * \return              The corresponding HMAC algorithm.
974  * \return              Unspecified if \p hash_alg is not a supported
975  *                      hash algorithm.
976  */
977 #define PSA_ALG_HMAC(hash_alg)                                  \
978     (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
979 
980 #define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
981     (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
982 
983 /** Whether the specified algorithm is an HMAC algorithm.
984  *
985  * HMAC is a family of MAC algorithms that are based on a hash function.
986  *
987  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
988  *
989  * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
990  *         This macro may return either 0 or 1 if \p alg is not a supported
991  *         algorithm identifier.
992  */
993 #define PSA_ALG_IS_HMAC(alg)                                            \
994     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
995      PSA_ALG_HMAC_BASE)
996 
997 /* In the encoding of a MAC algorithm, the bits corresponding to
998  * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
999  * truncated. As an exception, the value 0 means the untruncated algorithm,
1000  * whatever its length is. The length is encoded in 6 bits, so it can
1001  * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1002  * to full length is correctly encoded as 0 and any non-trivial truncation
1003  * is correctly encoded as a value between 1 and 63. */
1004 #define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t) 0x003f0000)
1005 #define PSA_MAC_TRUNCATION_OFFSET 16
1006 
1007 /* In the encoding of a MAC algorithm, the bit corresponding to
1008  * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1009  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1010  * algorithm policy can be used with any algorithm corresponding to the
1011  * same base class and having a (potentially truncated) MAC length greater or
1012  * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1013 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG   ((psa_algorithm_t) 0x00008000)
1014 
1015 /** Macro to build a truncated MAC algorithm.
1016  *
1017  * A truncated MAC algorithm is identical to the corresponding MAC
1018  * algorithm except that the MAC value for the truncated algorithm
1019  * consists of only the first \p mac_length bytes of the MAC value
1020  * for the untruncated algorithm.
1021  *
1022  * \note    This macro may allow constructing algorithm identifiers that
1023  *          are not valid, either because the specified length is larger
1024  *          than the untruncated MAC or because the specified length is
1025  *          smaller than permitted by the implementation.
1026  *
1027  * \note    It is implementation-defined whether a truncated MAC that
1028  *          is truncated to the same length as the MAC of the untruncated
1029  *          algorithm is considered identical to the untruncated algorithm
1030  *          for policy comparison purposes.
1031  *
1032  * \param mac_alg       A MAC algorithm identifier (value of type
1033  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1034  *                      is true). This may be a truncated or untruncated
1035  *                      MAC algorithm.
1036  * \param mac_length    Desired length of the truncated MAC in bytes.
1037  *                      This must be at most the full length of the MAC
1038  *                      and must be at least an implementation-specified
1039  *                      minimum. The implementation-specified minimum
1040  *                      shall not be zero.
1041  *
1042  * \return              The corresponding MAC algorithm with the specified
1043  *                      length.
1044  * \return              Unspecified if \p mac_alg is not a supported
1045  *                      MAC algorithm or if \p mac_length is too small or
1046  *                      too large for the specified MAC algorithm.
1047  */
1048 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)              \
1049     (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |               \
1050                     PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |   \
1051      ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1052 
1053 /** Macro to build the base MAC algorithm corresponding to a truncated
1054  * MAC algorithm.
1055  *
1056  * \param mac_alg       A MAC algorithm identifier (value of type
1057  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1058  *                      is true). This may be a truncated or untruncated
1059  *                      MAC algorithm.
1060  *
1061  * \return              The corresponding base MAC algorithm.
1062  * \return              Unspecified if \p mac_alg is not a supported
1063  *                      MAC algorithm.
1064  */
1065 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg)                        \
1066     ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |                \
1067                    PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1068 
1069 /** Length to which a MAC algorithm is truncated.
1070  *
1071  * \param mac_alg       A MAC algorithm identifier (value of type
1072  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1073  *                      is true).
1074  *
1075  * \return              Length of the truncated MAC in bytes.
1076  * \return              0 if \p mac_alg is a non-truncated MAC algorithm.
1077  * \return              Unspecified if \p mac_alg is not a supported
1078  *                      MAC algorithm.
1079  */
1080 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
1081     (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1082 
1083 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1084  *
1085  * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1086  * sharing the same base algorithm, and where the (potentially truncated) MAC
1087  * length of the specific algorithm is equal to or larger then the wildcard
1088  * algorithm's minimum MAC length.
1089  *
1090  * \note    When setting the minimum required MAC length to less than the
1091  *          smallest MAC length allowed by the base algorithm, this effectively
1092  *          becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1093  *
1094  * \param mac_alg         A MAC algorithm identifier (value of type
1095  *                        #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1096  *                        is true).
1097  * \param min_mac_length  Desired minimum length of the message authentication
1098  *                        code in bytes. This must be at most the untruncated
1099  *                        length of the MAC and must be at least 1.
1100  *
1101  * \return                The corresponding MAC wildcard algorithm with the
1102  *                        specified minimum length.
1103  * \return                Unspecified if \p mac_alg is not a supported MAC
1104  *                        algorithm or if \p min_mac_length is less than 1 or
1105  *                        too large for the specified MAC algorithm.
1106  */
1107 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length)   \
1108     (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) |              \
1109      PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
1110 
1111 #define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t) 0x03c00000)
1112 /** The CBC-MAC construction over a block cipher
1113  *
1114  * \warning CBC-MAC is insecure in many cases.
1115  * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1116  */
1117 #define PSA_ALG_CBC_MAC                         ((psa_algorithm_t) 0x03c00100)
1118 /** The CMAC construction over a block cipher */
1119 #define PSA_ALG_CMAC                            ((psa_algorithm_t) 0x03c00200)
1120 
1121 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1122  *
1123  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1124  *
1125  * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1126  *         This macro may return either 0 or 1 if \p alg is not a supported
1127  *         algorithm identifier.
1128  */
1129 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
1130     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1131      PSA_ALG_CIPHER_MAC_BASE)
1132 
1133 #define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t) 0x00800000)
1134 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t) 0x00400000)
1135 
1136 /** Whether the specified algorithm is a stream cipher.
1137  *
1138  * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1139  * by applying a bitwise-xor with a stream of bytes that is generated
1140  * from a key.
1141  *
1142  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1143  *
1144  * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1145  *         This macro may return either 0 or 1 if \p alg is not a supported
1146  *         algorithm identifier or if it is not a symmetric cipher algorithm.
1147  */
1148 #define PSA_ALG_IS_STREAM_CIPHER(alg)            \
1149     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1150      (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1151 
1152 /** The stream cipher mode of a stream cipher algorithm.
1153  *
1154  * The underlying stream cipher is determined by the key type.
1155  * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1156  */
1157 #define PSA_ALG_STREAM_CIPHER                   ((psa_algorithm_t) 0x04800100)
1158 
1159 /** The CTR stream cipher mode.
1160  *
1161  * CTR is a stream cipher which is built from a block cipher.
1162  * The underlying block cipher is determined by the key type.
1163  * For example, to use AES-128-CTR, use this algorithm with
1164  * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1165  */
1166 #define PSA_ALG_CTR                             ((psa_algorithm_t) 0x04c01000)
1167 
1168 /** The CFB stream cipher mode.
1169  *
1170  * The underlying block cipher is determined by the key type.
1171  */
1172 #define PSA_ALG_CFB                             ((psa_algorithm_t) 0x04c01100)
1173 
1174 /** The OFB stream cipher mode.
1175  *
1176  * The underlying block cipher is determined by the key type.
1177  */
1178 #define PSA_ALG_OFB                             ((psa_algorithm_t) 0x04c01200)
1179 
1180 /** The XTS cipher mode.
1181  *
1182  * XTS is a cipher mode which is built from a block cipher. It requires at
1183  * least one full block of input, but beyond this minimum the input
1184  * does not need to be a whole number of blocks.
1185  */
1186 #define PSA_ALG_XTS                             ((psa_algorithm_t) 0x0440ff00)
1187 
1188 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1189  *
1190  * \warning ECB mode does not protect the confidentiality of the encrypted data
1191  * except in extremely narrow circumstances. It is recommended that applications
1192  * only use ECB if they need to construct an operating mode that the
1193  * implementation does not provide. Implementations are encouraged to provide
1194  * the modes that applications need in preference to supporting direct access
1195  * to ECB.
1196  *
1197  * The underlying block cipher is determined by the key type.
1198  *
1199  * This symmetric cipher mode can only be used with messages whose lengths are a
1200  * multiple of the block size of the chosen block cipher.
1201  *
1202  * ECB mode does not accept an initialization vector (IV). When using a
1203  * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1204  * and psa_cipher_set_iv() must not be called.
1205  */
1206 #define PSA_ALG_ECB_NO_PADDING                  ((psa_algorithm_t) 0x04404400)
1207 
1208 /** The CBC block cipher chaining mode, with no padding.
1209  *
1210  * The underlying block cipher is determined by the key type.
1211  *
1212  * This symmetric cipher mode can only be used with messages whose lengths
1213  * are whole number of blocks for the chosen block cipher.
1214  */
1215 #define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t) 0x04404000)
1216 
1217 /** The CBC block cipher chaining mode with PKCS#7 padding.
1218  *
1219  * The underlying block cipher is determined by the key type.
1220  *
1221  * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1222  */
1223 #define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t) 0x04404100)
1224 
1225 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t) 0x00400000)
1226 
1227 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1228  *
1229  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1230  *
1231  * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1232  *         a block cipher, 0 otherwise.
1233  *         This macro may return either 0 or 1 if \p alg is not a supported
1234  *         algorithm identifier.
1235  */
1236 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
1237     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1238      (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1239 
1240 /** The CCM authenticated encryption algorithm.
1241  *
1242  * The underlying block cipher is determined by the key type.
1243  */
1244 #define PSA_ALG_CCM                             ((psa_algorithm_t) 0x05500100)
1245 
1246 /** The CCM* cipher mode without authentication.
1247  *
1248  * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1249  * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1250  *
1251  * The underlying block cipher is determined by the key type.
1252  *
1253  * Currently only 13-byte long IV's are supported.
1254  */
1255 #define PSA_ALG_CCM_STAR_NO_TAG                 ((psa_algorithm_t) 0x04c01300)
1256 
1257 /** The GCM authenticated encryption algorithm.
1258  *
1259  * The underlying block cipher is determined by the key type.
1260  */
1261 #define PSA_ALG_GCM                             ((psa_algorithm_t) 0x05500200)
1262 
1263 /** The Chacha20-Poly1305 AEAD algorithm.
1264  *
1265  * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1266  *
1267  * Implementations must support 12-byte nonces, may support 8-byte nonces,
1268  * and should reject other sizes.
1269  *
1270  * Implementations must support 16-byte tags and should reject other sizes.
1271  */
1272 #define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t) 0x05100500)
1273 
1274 /* In the encoding of an AEAD algorithm, the bits corresponding to
1275  * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1276  * The constants for default lengths follow this encoding.
1277  */
1278 #define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t) 0x003f0000)
1279 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1280 
1281 /* In the encoding of an AEAD algorithm, the bit corresponding to
1282  * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1283  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1284  * algorithm policy can be used with any algorithm corresponding to the
1285  * same base class and having a tag length greater than or equal to the one
1286  * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1287 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG  ((psa_algorithm_t) 0x00008000)
1288 
1289 /** Macro to build a shortened AEAD algorithm.
1290  *
1291  * A shortened AEAD algorithm is similar to the corresponding AEAD
1292  * algorithm, but has an authentication tag that consists of fewer bytes.
1293  * Depending on the algorithm, the tag length may affect the calculation
1294  * of the ciphertext.
1295  *
1296  * \param aead_alg      An AEAD algorithm identifier (value of type
1297  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1298  *                      is true).
1299  * \param tag_length    Desired length of the authentication tag in bytes.
1300  *
1301  * \return              The corresponding AEAD algorithm with the specified
1302  *                      length.
1303  * \return              Unspecified if \p aead_alg is not a supported
1304  *                      AEAD algorithm or if \p tag_length is not valid
1305  *                      for the specified AEAD algorithm.
1306  */
1307 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length)           \
1308     (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK |                     \
1309                      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) |         \
1310      ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
1311         PSA_ALG_AEAD_TAG_LENGTH_MASK))
1312 
1313 /** Retrieve the tag length of a specified AEAD algorithm
1314  *
1315  * \param aead_alg      An AEAD algorithm identifier (value of type
1316  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1317  *                      is true).
1318  *
1319  * \return              The tag length specified by the input algorithm.
1320  * \return              Unspecified if \p aead_alg is not a supported
1321  *                      AEAD algorithm.
1322  */
1323 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg)                           \
1324     (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >>                     \
1325      PSA_AEAD_TAG_LENGTH_OFFSET)
1326 
1327 /** Calculate the corresponding AEAD algorithm with the default tag length.
1328  *
1329  * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
1330  *                      #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1331  *
1332  * \return              The corresponding AEAD algorithm with the default
1333  *                      tag length for that algorithm.
1334  */
1335 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg)                   \
1336     (                                                                    \
1337         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1338         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1339         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1340         0)
1341 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref)         \
1342     PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) ==                      \
1343     PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ?                            \
1344     ref :
1345 
1346 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1347  *
1348  * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1349  * sharing the same base algorithm, and where the tag length of the specific
1350  * algorithm is equal to or larger then the minimum tag length specified by the
1351  * wildcard algorithm.
1352  *
1353  * \note    When setting the minimum required tag length to less than the
1354  *          smallest tag length allowed by the base algorithm, this effectively
1355  *          becomes an 'any-tag-length-allowed' policy for that base algorithm.
1356  *
1357  * \param aead_alg        An AEAD algorithm identifier (value of type
1358  *                        #psa_algorithm_t such that
1359  *                        #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1360  * \param min_tag_length  Desired minimum length of the authentication tag in
1361  *                        bytes. This must be at least 1 and at most the largest
1362  *                        allowed tag length of the algorithm.
1363  *
1364  * \return                The corresponding AEAD wildcard algorithm with the
1365  *                        specified minimum length.
1366  * \return                Unspecified if \p aead_alg is not a supported
1367  *                        AEAD algorithm or if \p min_tag_length is less than 1
1368  *                        or too large for the specified AEAD algorithm.
1369  */
1370 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1371     (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) |            \
1372      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
1373 
1374 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t) 0x06000200)
1375 /** RSA PKCS#1 v1.5 signature with hashing.
1376  *
1377  * This is the signature scheme defined by RFC 8017
1378  * (PKCS#1: RSA Cryptography Specifications) under the name
1379  * RSASSA-PKCS1-v1_5.
1380  *
1381  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1382  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1383  *                      This includes #PSA_ALG_ANY_HASH
1384  *                      when specifying the algorithm in a usage policy.
1385  *
1386  * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
1387  * \return              Unspecified if \p hash_alg is not a supported
1388  *                      hash algorithm.
1389  */
1390 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
1391     (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1392 /** Raw PKCS#1 v1.5 signature.
1393  *
1394  * The input to this algorithm is the DigestInfo structure used by
1395  * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1396  * steps 3&ndash;6.
1397  */
1398 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1399 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
1400     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1401 
1402 #define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t) 0x06000300)
1403 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE      ((psa_algorithm_t) 0x06001300)
1404 /** RSA PSS signature with hashing.
1405  *
1406  * This is the signature scheme defined by RFC 8017
1407  * (PKCS#1: RSA Cryptography Specifications) under the name
1408  * RSASSA-PSS, with the message generation function MGF1, and with
1409  * a salt length equal to the length of the hash, or the largest
1410  * possible salt length for the algorithm and key size if that is
1411  * smaller than the hash length. The specified hash algorithm is
1412  * used to hash the input message, to create the salted hash, and
1413  * for the mask generation.
1414  *
1415  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1416  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1417  *                      This includes #PSA_ALG_ANY_HASH
1418  *                      when specifying the algorithm in a usage policy.
1419  *
1420  * \return              The corresponding RSA PSS signature algorithm.
1421  * \return              Unspecified if \p hash_alg is not a supported
1422  *                      hash algorithm.
1423  */
1424 #define PSA_ALG_RSA_PSS(hash_alg)                               \
1425     (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1426 
1427 /** RSA PSS signature with hashing with relaxed verification.
1428  *
1429  * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1430  * but allows an arbitrary salt length (including \c 0) when verifying a
1431  * signature.
1432  *
1433  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1434  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1435  *                      This includes #PSA_ALG_ANY_HASH
1436  *                      when specifying the algorithm in a usage policy.
1437  *
1438  * \return              The corresponding RSA PSS signature algorithm.
1439  * \return              Unspecified if \p hash_alg is not a supported
1440  *                      hash algorithm.
1441  */
1442 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg)                      \
1443     (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1444 
1445 /** Whether the specified algorithm is RSA PSS with standard salt.
1446  *
1447  * \param alg           An algorithm value or an algorithm policy wildcard.
1448  *
1449  * \return              1 if \p alg is of the form
1450  *                      #PSA_ALG_RSA_PSS(\c hash_alg),
1451  *                      where \c hash_alg is a hash algorithm or
1452  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1453  *                      This macro may return either 0 or 1 if \p alg is not
1454  *                      a supported algorithm identifier or policy.
1455  */
1456 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg)                   \
1457     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1458 
1459 /** Whether the specified algorithm is RSA PSS with any salt.
1460  *
1461  * \param alg           An algorithm value or an algorithm policy wildcard.
1462  *
1463  * \return              1 if \p alg is of the form
1464  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1465  *                      where \c hash_alg is a hash algorithm or
1466  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1467  *                      This macro may return either 0 or 1 if \p alg is not
1468  *                      a supported algorithm identifier or policy.
1469  */
1470 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)                                \
1471     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1472 
1473 /** Whether the specified algorithm is RSA PSS.
1474  *
1475  * This includes any of the RSA PSS algorithm variants, regardless of the
1476  * constraints on salt length.
1477  *
1478  * \param alg           An algorithm value or an algorithm policy wildcard.
1479  *
1480  * \return              1 if \p alg is of the form
1481  *                      #PSA_ALG_RSA_PSS(\c hash_alg) or
1482  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1483  *                      where \c hash_alg is a hash algorithm or
1484  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1485  *                      This macro may return either 0 or 1 if \p alg is not
1486  *                      a supported algorithm identifier or policy.
1487  */
1488 #define PSA_ALG_IS_RSA_PSS(alg)                                 \
1489     (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) ||                   \
1490      PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1491 
1492 #define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t) 0x06000600)
1493 /** ECDSA signature with hashing.
1494  *
1495  * This is the ECDSA signature scheme defined by ANSI X9.62,
1496  * with a random per-message secret number (*k*).
1497  *
1498  * The representation of the signature as a byte string consists of
1499  * the concatenation of the signature values *r* and *s*. Each of
1500  * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1501  * of the base point of the curve in octets. Each value is represented
1502  * in big-endian order (most significant octet first).
1503  *
1504  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1505  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1506  *                      This includes #PSA_ALG_ANY_HASH
1507  *                      when specifying the algorithm in a usage policy.
1508  *
1509  * \return              The corresponding ECDSA signature algorithm.
1510  * \return              Unspecified if \p hash_alg is not a supported
1511  *                      hash algorithm.
1512  */
1513 #define PSA_ALG_ECDSA(hash_alg)                                 \
1514     (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1515 /** ECDSA signature without hashing.
1516  *
1517  * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1518  * without specifying a hash algorithm. This algorithm may only be
1519  * used to sign or verify a sequence of bytes that should be an
1520  * already-calculated hash. Note that the input is padded with
1521  * zeros on the left or truncated on the left as required to fit
1522  * the curve size.
1523  */
1524 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1525 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t) 0x06000700)
1526 /** Deterministic ECDSA signature with hashing.
1527  *
1528  * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1529  *
1530  * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1531  *
1532  * Note that when this algorithm is used for verification, signatures
1533  * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1534  * same private key are accepted. In other words,
1535  * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1536  * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1537  *
1538  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1539  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1540  *                      This includes #PSA_ALG_ANY_HASH
1541  *                      when specifying the algorithm in a usage policy.
1542  *
1543  * \return              The corresponding deterministic ECDSA signature
1544  *                      algorithm.
1545  * \return              Unspecified if \p hash_alg is not a supported
1546  *                      hash algorithm.
1547  */
1548 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
1549     (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1550 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t) 0x00000100)
1551 #define PSA_ALG_IS_ECDSA(alg)                                           \
1552     (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
1553      PSA_ALG_ECDSA_BASE)
1554 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
1555     (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1556 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
1557     (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1558 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
1559     (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1560 
1561 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1562  * using standard parameters.
1563  *
1564  * Contexts are not supported in the current version of this specification
1565  * because there is no suitable signature interface that can take the
1566  * context as a parameter. A future version of this specification may add
1567  * suitable functions and extend this algorithm to support contexts.
1568  *
1569  * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1570  * In this specification, the following curves are supported:
1571  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1572  *   in RFC 8032.
1573  *   The curve is Edwards25519.
1574  *   The hash function used internally is SHA-512.
1575  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1576  *   in RFC 8032.
1577  *   The curve is Edwards448.
1578  *   The hash function used internally is the first 114 bytes of the
1579  *   SHAKE256 output.
1580  *
1581  * This algorithm can be used with psa_sign_message() and
1582  * psa_verify_message(). Since there is no prehashing, it cannot be used
1583  * with psa_sign_hash() or psa_verify_hash().
1584  *
1585  * The signature format is the concatenation of R and S as defined by
1586  * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1587  * string for Ed448).
1588  */
1589 #define PSA_ALG_PURE_EDDSA                      ((psa_algorithm_t) 0x06000800)
1590 
1591 #define PSA_ALG_HASH_EDDSA_BASE                 ((psa_algorithm_t) 0x06000900)
1592 #define PSA_ALG_IS_HASH_EDDSA(alg)              \
1593     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1594 
1595 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1596  * using SHA-512 and the Edwards25519 curve.
1597  *
1598  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1599  *
1600  * This algorithm is Ed25519 as specified in RFC 8032.
1601  * The curve is Edwards25519.
1602  * The prehash is SHA-512.
1603  * The hash function used internally is SHA-512.
1604  *
1605  * This is a hash-and-sign algorithm: to calculate a signature,
1606  * you can either:
1607  * - call psa_sign_message() on the message;
1608  * - or calculate the SHA-512 hash of the message
1609  *   with psa_hash_compute()
1610  *   or with a multi-part hash operation started with psa_hash_setup(),
1611  *   using the hash algorithm #PSA_ALG_SHA_512,
1612  *   then sign the calculated hash with psa_sign_hash().
1613  * Verifying a signature is similar, using psa_verify_message() or
1614  * psa_verify_hash() instead of the signature function.
1615  */
1616 #define PSA_ALG_ED25519PH                               \
1617     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1618 
1619 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1620  * using SHAKE256 and the Edwards448 curve.
1621  *
1622  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1623  *
1624  * This algorithm is Ed448 as specified in RFC 8032.
1625  * The curve is Edwards448.
1626  * The prehash is the first 64 bytes of the SHAKE256 output.
1627  * The hash function used internally is the first 114 bytes of the
1628  * SHAKE256 output.
1629  *
1630  * This is a hash-and-sign algorithm: to calculate a signature,
1631  * you can either:
1632  * - call psa_sign_message() on the message;
1633  * - or calculate the first 64 bytes of the SHAKE256 output of the message
1634  *   with psa_hash_compute()
1635  *   or with a multi-part hash operation started with psa_hash_setup(),
1636  *   using the hash algorithm #PSA_ALG_SHAKE256_512,
1637  *   then sign the calculated hash with psa_sign_hash().
1638  * Verifying a signature is similar, using psa_verify_message() or
1639  * psa_verify_hash() instead of the signature function.
1640  */
1641 #define PSA_ALG_ED448PH                                 \
1642     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1643 
1644 /* Default definition, to be overridden if the library is extended with
1645  * more hash-and-sign algorithms that we want to keep out of this header
1646  * file. */
1647 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1648 
1649 /** Whether the specified algorithm is a signature algorithm that can be used
1650  * with psa_sign_hash() and psa_verify_hash().
1651  *
1652  * This encompasses all strict hash-and-sign algorithms categorized by
1653  * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1654  * paradigm more loosely:
1655  * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1656  * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1657  *
1658  * \param alg An algorithm identifier (value of type psa_algorithm_t).
1659  *
1660  * \return 1 if alg is a signature algorithm that can be used to sign a
1661  *         hash. 0 if alg is a signature algorithm that can only be used
1662  *         to sign a message. 0 if alg is not a signature algorithm.
1663  *         This macro can return either 0 or 1 if alg is not a
1664  *         supported algorithm identifier.
1665  */
1666 #define PSA_ALG_IS_SIGN_HASH(alg)                                       \
1667     (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
1668      PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) ||             \
1669      PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1670 
1671 /** Whether the specified algorithm is a signature algorithm that can be used
1672  * with psa_sign_message() and psa_verify_message().
1673  *
1674  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1675  *
1676  * \return 1 if alg is a signature algorithm that can be used to sign a
1677  *         message. 0 if \p alg is a signature algorithm that can only be used
1678  *         to sign an already-calculated hash. 0 if \p alg is not a signature
1679  *         algorithm. This macro can return either 0 or 1 if \p alg is not a
1680  *         supported algorithm identifier.
1681  */
1682 #define PSA_ALG_IS_SIGN_MESSAGE(alg)                                    \
1683     (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1684 
1685 /** Whether the specified algorithm is a hash-and-sign algorithm.
1686  *
1687  * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1688  * structured in two parts: first the calculation of a hash in a way that
1689  * does not depend on the key, then the calculation of a signature from the
1690  * hash value and the key. Hash-and-sign algorithms encode the hash
1691  * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1692  * to extract this algorithm.
1693  *
1694  * Thus, for a hash-and-sign algorithm,
1695  * `psa_sign_message(key, alg, input, ...)` is equivalent to
1696  * ```
1697  * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1698  * psa_sign_hash(key, alg, hash, ..., signature, ...);
1699  * ```
1700  * Most usefully, separating the hash from the signature allows the hash
1701  * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1702  * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1703  * calculating the hash and then calling psa_verify_hash().
1704  *
1705  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1706  *
1707  * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1708  *         This macro may return either 0 or 1 if \p alg is not a supported
1709  *         algorithm identifier.
1710  */
1711 #define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
1712     (PSA_ALG_IS_SIGN_HASH(alg) &&                                       \
1713      ((alg) & PSA_ALG_HASH_MASK) != 0)
1714 
1715 /** Get the hash used by a hash-and-sign signature algorithm.
1716  *
1717  * A hash-and-sign algorithm is a signature algorithm which is
1718  * composed of two phases: first a hashing phase which does not use
1719  * the key and produces a hash of the input message, then a signing
1720  * phase which only uses the hash and the key and not the message
1721  * itself.
1722  *
1723  * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
1724  *              #PSA_ALG_IS_SIGN(\p alg) is true).
1725  *
1726  * \return      The underlying hash algorithm if \p alg is a hash-and-sign
1727  *              algorithm.
1728  * \return      0 if \p alg is a signature algorithm that does not
1729  *              follow the hash-and-sign structure.
1730  * \return      Unspecified if \p alg is not a signature algorithm or
1731  *              if it is not supported by the implementation.
1732  */
1733 #define PSA_ALG_SIGN_GET_HASH(alg)                                     \
1734     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
1735      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
1736      0)
1737 
1738 /** RSA PKCS#1 v1.5 encryption.
1739  *
1740  * \warning     Calling psa_asymmetric_decrypt() with this algorithm as a
1741  *              parameter is considered an inherently dangerous function
1742  *              (CWE-242). Unless it is used in a side channel free and safe
1743  *              way (eg. implementing the TLS protocol as per 7.4.7.1 of
1744  *              RFC 5246), the calling code is vulnerable.
1745  *
1746  */
1747 #define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t) 0x07000200)
1748 
1749 #define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t) 0x07000300)
1750 /** RSA OAEP encryption.
1751  *
1752  * This is the encryption scheme defined by RFC 8017
1753  * (PKCS#1: RSA Cryptography Specifications) under the name
1754  * RSAES-OAEP, with the message generation function MGF1.
1755  *
1756  * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
1757  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1758  *                      for MGF1.
1759  *
1760  * \return              The corresponding RSA OAEP encryption algorithm.
1761  * \return              Unspecified if \p hash_alg is not a supported
1762  *                      hash algorithm.
1763  */
1764 #define PSA_ALG_RSA_OAEP(hash_alg)                              \
1765     (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1766 #define PSA_ALG_IS_RSA_OAEP(alg)                                \
1767     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1768 #define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
1769     (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
1770      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
1771      0)
1772 
1773 #define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t) 0x08000100)
1774 /** Macro to build an HKDF algorithm.
1775  *
1776  * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
1777  *
1778  * This key derivation algorithm uses the following inputs:
1779  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1780  *   It is optional; if omitted, the derivation uses an empty salt.
1781  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1782  * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1783  * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1784  * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1785  * starting to generate output.
1786  *
1787  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1788  *  if the salt is longer than the block size of the hash algorithm; then
1789  *  pad with null bytes up to the block size. As a result, it is possible
1790  *  for distinct salt inputs to result in the same outputs. To ensure
1791  *  unique outputs, it is recommended to use a fixed length for salt values.
1792  *
1793  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1794  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1795  *
1796  * \return              The corresponding HKDF algorithm.
1797  * \return              Unspecified if \p hash_alg is not a supported
1798  *                      hash algorithm.
1799  */
1800 #define PSA_ALG_HKDF(hash_alg)                                  \
1801     (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1802 /** Whether the specified algorithm is an HKDF algorithm.
1803  *
1804  * HKDF is a family of key derivation algorithms that are based on a hash
1805  * function and the HMAC construction.
1806  *
1807  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1808  *
1809  * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1810  *         This macro may return either 0 or 1 if \c alg is not a supported
1811  *         key derivation algorithm identifier.
1812  */
1813 #define PSA_ALG_IS_HKDF(alg)                            \
1814     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1815 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
1816     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1817 
1818 #define PSA_ALG_HKDF_EXTRACT_BASE                       ((psa_algorithm_t) 0x08000400)
1819 /** Macro to build an HKDF-Extract algorithm.
1820  *
1821  * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
1822  * HKDF-Extract using HMAC-SHA-256.
1823  *
1824  * This key derivation algorithm uses the following inputs:
1825  *  - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1826  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1827  *    "extract" step.
1828  * The inputs are mandatory and must be passed in the order above.
1829  * Each input may only be passed once.
1830  *
1831  *  \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1832  *  should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1833  *  as a separate algorithm for the sake of protocols that use it as a
1834  *  building block. It may also be a slight performance optimization
1835  *  in applications that use HKDF with the same salt and key but many
1836  *  different info strings.
1837  *
1838  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1839  *  if the salt is longer than the block size of the hash algorithm; then
1840  *  pad with null bytes up to the block size. As a result, it is possible
1841  *  for distinct salt inputs to result in the same outputs. To ensure
1842  *  unique outputs, it is recommended to use a fixed length for salt values.
1843  *
1844  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1845  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1846  *
1847  * \return              The corresponding HKDF-Extract algorithm.
1848  * \return              Unspecified if \p hash_alg is not a supported
1849  *                      hash algorithm.
1850  */
1851 #define PSA_ALG_HKDF_EXTRACT(hash_alg)                                  \
1852     (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1853 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1854  *
1855  * HKDF-Extract is a family of key derivation algorithms that are based
1856  * on a hash function and the HMAC construction.
1857  *
1858  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1859  *
1860  * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1861  *         This macro may return either 0 or 1 if \c alg is not a supported
1862  *         key derivation algorithm identifier.
1863  */
1864 #define PSA_ALG_IS_HKDF_EXTRACT(alg)                            \
1865     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1866 
1867 #define PSA_ALG_HKDF_EXPAND_BASE                       ((psa_algorithm_t) 0x08000500)
1868 /** Macro to build an HKDF-Expand algorithm.
1869  *
1870  * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
1871  * HKDF-Expand using HMAC-SHA-256.
1872  *
1873  * This key derivation algorithm uses the following inputs:
1874  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1875  *  - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1876  *
1877  *  The inputs are mandatory and must be passed in the order above.
1878  *  Each input may only be passed once.
1879  *
1880  *  \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1881  *  should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1882  *  a separate algorithm for the sake of protocols that use it as a building
1883  *  block. It may also be a slight performance optimization in applications
1884  *  that use HKDF with the same salt and key but many different info strings.
1885  *
1886  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1887  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1888  *
1889  * \return              The corresponding HKDF-Expand algorithm.
1890  * \return              Unspecified if \p hash_alg is not a supported
1891  *                      hash algorithm.
1892  */
1893 #define PSA_ALG_HKDF_EXPAND(hash_alg)                                  \
1894     (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1895 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1896  *
1897  * HKDF-Expand is a family of key derivation algorithms that are based
1898  * on a hash function and the HMAC construction.
1899  *
1900  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1901  *
1902  * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1903  *         This macro may return either 0 or 1 if \c alg is not a supported
1904  *         key derivation algorithm identifier.
1905  */
1906 #define PSA_ALG_IS_HKDF_EXPAND(alg)                            \
1907     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1908 
1909 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1910  *  HKDF-Expand algorithm.
1911  *
1912  *
1913  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1914  *
1915  * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1916  *         This macro may return either 0 or 1 if \c alg is not a supported
1917  *         key derivation algorithm identifier.
1918  */
1919 #define PSA_ALG_IS_ANY_HKDF(alg)                                   \
1920     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE ||          \
1921      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE ||  \
1922      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1923 
1924 #define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t) 0x08000200)
1925 /** Macro to build a TLS-1.2 PRF algorithm.
1926  *
1927  * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1928  * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1929  * used with either SHA-256 or SHA-384.
1930  *
1931  * This key derivation algorithm uses the following inputs, which must be
1932  * passed in the order given here:
1933  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1934  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1935  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1936  *
1937  * For the application to TLS-1.2 key expansion, the seed is the
1938  * concatenation of ServerHello.Random + ClientHello.Random,
1939  * and the label is "key expansion".
1940  *
1941  * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
1942  * TLS 1.2 PRF using HMAC-SHA-256.
1943  *
1944  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1945  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1946  *
1947  * \return              The corresponding TLS-1.2 PRF algorithm.
1948  * \return              Unspecified if \p hash_alg is not a supported
1949  *                      hash algorithm.
1950  */
1951 #define PSA_ALG_TLS12_PRF(hash_alg)                                  \
1952     (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1953 
1954 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1955  *
1956  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1957  *
1958  * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1959  *         This macro may return either 0 or 1 if \c alg is not a supported
1960  *         key derivation algorithm identifier.
1961  */
1962 #define PSA_ALG_IS_TLS12_PRF(alg)                                    \
1963     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1964 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
1965     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1966 
1967 #define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t) 0x08000300)
1968 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1969  *
1970  * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1971  * from the PreSharedKey (PSK) through the application of padding
1972  * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1973  * The latter is based on HMAC and can be used with either SHA-256
1974  * or SHA-384.
1975  *
1976  * This key derivation algorithm uses the following inputs, which must be
1977  * passed in the order given here:
1978  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1979  * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1980  *   computation of the premaster secret. This input is optional;
1981  *   if omitted, it defaults to a string of null bytes with the same length
1982  *   as the secret (PSK) input.
1983  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1984  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1985  *
1986  * For the application to TLS-1.2, the seed (which is
1987  * forwarded to the TLS-1.2 PRF) is the concatenation of the
1988  * ClientHello.Random + ServerHello.Random,
1989  * the label is "master secret" or "extended master secret" and
1990  * the other secret depends on the key exchange specified in the cipher suite:
1991  * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1992  *   PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1993  * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1994  *   (RFC 5489, Section 2), the other secret should be the output of the
1995  *   PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1996  *   The recommended way to pass this input is to use a key derivation
1997  *   algorithm constructed as
1998  *   PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1999  *   and to call psa_key_derivation_key_agreement(). Alternatively,
2000  *   this input may be an output of `psa_raw_key_agreement()` passed with
2001  *   psa_key_derivation_input_bytes(), or an equivalent input passed with
2002  *   psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2003  * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2004  *   should be the 48-byte client challenge (the PreMasterSecret of
2005  *   (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2006  *   a 46-byte random string chosen by the client. On the server, this is
2007  *   typically an output of psa_asymmetric_decrypt() using
2008  *   PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2009  *   with `psa_key_derivation_input_bytes()`.
2010  *
2011  * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
2012  * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2013  *
2014  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2015  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2016  *
2017  * \return              The corresponding TLS-1.2 PSK to MS algorithm.
2018  * \return              Unspecified if \p hash_alg is not a supported
2019  *                      hash algorithm.
2020  */
2021 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
2022     (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2023 
2024 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2025  *
2026  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2027  *
2028  * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2029  *         This macro may return either 0 or 1 if \c alg is not a supported
2030  *         key derivation algorithm identifier.
2031  */
2032 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
2033     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2034 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
2035     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2036 
2037 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2038  * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2039  * will use to derive the session secret, as defined by step 2 of
2040  * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2041  * Uses PSA_ALG_SHA_256.
2042  * This function takes a single input:
2043  * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2044  * The only supported curve is secp256r1 (the 256-bit curve in
2045  * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2046  * The output has to be read as a single chunk of 32 bytes, defined as
2047  * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2048  */
2049 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS            ((psa_algorithm_t) 0x08000609)
2050 
2051 /* This flag indicates whether the key derivation algorithm is suitable for
2052  * use on low-entropy secrets such as password - these algorithms are also
2053  * known as key stretching or password hashing schemes. These are also the
2054  * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2055  *
2056  * Those algorithms cannot be combined with a key agreement algorithm.
2057  */
2058 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG  ((psa_algorithm_t) 0x00800000)
2059 
2060 #define PSA_ALG_PBKDF2_HMAC_BASE                ((psa_algorithm_t) 0x08800100)
2061 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2062  *
2063  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2064  * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2065  * HMAC with the specified hash.
2066  * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
2067  * using the PRF HMAC-SHA-256.
2068  *
2069  * This key derivation algorithm uses the following inputs, which must be
2070  * provided in the following order:
2071  * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2072  *   This input step must be used exactly once.
2073  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2074  *   This input step must be used one or more times; if used several times, the
2075  *   inputs will be concatenated. This can be used to build the final salt
2076  *   from multiple sources, both public and secret (also known as pepper).
2077  * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2078  *   This input step must be used exactly once.
2079  *
2080  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2081  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2082  *
2083  * \return              The corresponding PBKDF2-HMAC-XXX algorithm.
2084  * \return              Unspecified if \p hash_alg is not a supported
2085  *                      hash algorithm.
2086  */
2087 #define PSA_ALG_PBKDF2_HMAC(hash_alg)                                  \
2088     (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2089 
2090 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2091  *
2092  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2093  *
2094  * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2095  *         This macro may return either 0 or 1 if \c alg is not a supported
2096  *         key derivation algorithm identifier.
2097  */
2098 #define PSA_ALG_IS_PBKDF2_HMAC(alg)                                    \
2099     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2100 #define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg)                         \
2101     (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
2102 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2103  *
2104  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2105  * This macro specifies the PBKDF2 algorithm constructed using the
2106  * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2107  *
2108  * This key derivation algorithm uses the same inputs as
2109  * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2110  */
2111 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128         ((psa_algorithm_t) 0x08800200)
2112 
2113 #define PSA_ALG_IS_PBKDF2(kdf_alg)                                      \
2114     (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
2115      ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
2116 
2117 #define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t) 0xfe00ffff)
2118 #define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t) 0xffff0000)
2119 
2120 /** Macro to build a combined algorithm that chains a key agreement with
2121  * a key derivation.
2122  *
2123  * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
2124  *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2125  * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
2126  *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2127  *
2128  * \return              The corresponding key agreement and derivation
2129  *                      algorithm.
2130  * \return              Unspecified if \p ka_alg is not a supported
2131  *                      key agreement algorithm or \p kdf_alg is not a
2132  *                      supported key derivation algorithm.
2133  */
2134 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
2135     ((ka_alg) | (kdf_alg))
2136 
2137 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
2138     (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2139 
2140 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
2141     (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2142 
2143 /** Whether the specified algorithm is a raw key agreement algorithm.
2144  *
2145  * A raw key agreement algorithm is one that does not specify
2146  * a key derivation function.
2147  * Usually, raw key agreement algorithms are constructed directly with
2148  * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2149  * constructed with #PSA_ALG_KEY_AGREEMENT().
2150  *
2151  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2152  *
2153  * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2154  *         This macro may return either 0 or 1 if \p alg is not a supported
2155  *         algorithm identifier.
2156  */
2157 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
2158     (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
2159      PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2160 
2161 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
2162     ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2163 
2164 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2165  *
2166  * The shared secret produced by key agreement is
2167  * `g^{ab}` in big-endian format.
2168  * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2169  * in bits.
2170  */
2171 #define PSA_ALG_FFDH                            ((psa_algorithm_t) 0x09010000)
2172 
2173 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2174  *
2175  * This includes the raw finite field Diffie-Hellman algorithm as well as
2176  * finite-field Diffie-Hellman followed by any supporter key derivation
2177  * algorithm.
2178  *
2179  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2180  *
2181  * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2182  *         This macro may return either 0 or 1 if \c alg is not a supported
2183  *         key agreement algorithm identifier.
2184  */
2185 #define PSA_ALG_IS_FFDH(alg) \
2186     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2187 
2188 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2189  *
2190  * The shared secret produced by key agreement is the x-coordinate of
2191  * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2192  * `m` is the bit size associated with the curve, i.e. the bit size of the
2193  * order of the curve's coordinate field. When `m` is not a multiple of 8,
2194  * the byte containing the most significant bit of the shared secret
2195  * is padded with zero bits. The byte order is either little-endian
2196  * or big-endian depending on the curve type.
2197  *
2198  * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2199  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200  *   in little-endian byte order.
2201  *   The bit size is 448 for Curve448 and 255 for Curve25519.
2202  * - For Weierstrass curves over prime fields (curve types
2203  *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2204  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205  *   in big-endian byte order.
2206  *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2207  * - For Weierstrass curves over binary fields (curve types
2208  *   `PSA_ECC_FAMILY_SECTXXX`),
2209  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2210  *   in big-endian byte order.
2211  *   The bit size is `m` for the field `F_{2^m}`.
2212  */
2213 #define PSA_ALG_ECDH                            ((psa_algorithm_t) 0x09020000)
2214 
2215 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2216  * algorithm.
2217  *
2218  * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2219  * elliptic curve Diffie-Hellman followed by any supporter key derivation
2220  * algorithm.
2221  *
2222  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2223  *
2224  * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2225  *         0 otherwise.
2226  *         This macro may return either 0 or 1 if \c alg is not a supported
2227  *         key agreement algorithm identifier.
2228  */
2229 #define PSA_ALG_IS_ECDH(alg) \
2230     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2231 
2232 /** Whether the specified algorithm encoding is a wildcard.
2233  *
2234  * Wildcard values may only be used to set the usage algorithm field in
2235  * a policy, not to perform an operation.
2236  *
2237  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2238  *
2239  * \return 1 if \c alg is a wildcard algorithm encoding.
2240  * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2241  *         an operation).
2242  * \return This macro may return either 0 or 1 if \c alg is not a supported
2243  *         algorithm identifier.
2244  */
2245 #define PSA_ALG_IS_WILDCARD(alg)                            \
2246     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                        \
2247      PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :       \
2248      PSA_ALG_IS_MAC(alg) ?                                  \
2249      (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 :   \
2250      PSA_ALG_IS_AEAD(alg) ?                                 \
2251      (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 :  \
2252      (alg) == PSA_ALG_ANY_HASH)
2253 
2254 /** Get the hash used by a composite algorithm.
2255  *
2256  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2257  *
2258  * \return The underlying hash algorithm if alg is a composite algorithm that
2259  * uses a hash algorithm.
2260  *
2261  * \return \c 0 if alg is not a composite algorithm that uses a hash.
2262  */
2263 #define PSA_ALG_GET_HASH(alg) \
2264     (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
2265 
2266 /**@}*/
2267 
2268 /** \defgroup key_lifetimes Key lifetimes
2269  * @{
2270  */
2271 
2272 /* Note that location and persistence level values are embedded in the
2273  * persistent key store, as part of key metadata. As a consequence, they
2274  * must not be changed (unless the storage format version changes).
2275  */
2276 
2277 /** The default lifetime for volatile keys.
2278  *
2279  * A volatile key only exists as long as the identifier to it is not destroyed.
2280  * The key material is guaranteed to be erased on a power reset.
2281  *
2282  * A key with this lifetime is typically stored in the RAM area of the
2283  * PSA Crypto subsystem. However this is an implementation choice.
2284  * If an implementation stores data about the key in a non-volatile memory,
2285  * it must release all the resources associated with the key and erase the
2286  * key material if the calling application terminates.
2287  */
2288 #define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t) 0x00000000)
2289 
2290 /** The default lifetime for persistent keys.
2291  *
2292  * A persistent key remains in storage until it is explicitly destroyed or
2293  * until the corresponding storage area is wiped. This specification does
2294  * not define any mechanism to wipe a storage area, but integrations may
2295  * provide their own mechanism (for example to perform a factory reset,
2296  * to prepare for device refurbishment, or to uninstall an application).
2297  *
2298  * This lifetime value is the default storage area for the calling
2299  * application. Integrations of Mbed TLS may support other persistent lifetimes.
2300  * See ::psa_key_lifetime_t for more information.
2301  */
2302 #define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t) 0x00000001)
2303 
2304 /** The persistence level of volatile keys.
2305  *
2306  * See ::psa_key_persistence_t for more information.
2307  */
2308 #define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t) 0x00)
2309 
2310 /** The default persistence level for persistent keys.
2311  *
2312  * See ::psa_key_persistence_t for more information.
2313  */
2314 #define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t) 0x01)
2315 
2316 /** A persistence level indicating that a key is never destroyed.
2317  *
2318  * See ::psa_key_persistence_t for more information.
2319  */
2320 #define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t) 0xff)
2321 
2322 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
2323     ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
2324 
2325 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
2326     ((psa_key_location_t) ((lifetime) >> 8))
2327 
2328 /** Whether a key lifetime indicates that the key is volatile.
2329  *
2330  * A volatile key is automatically destroyed by the implementation when
2331  * the application instance terminates. In particular, a volatile key
2332  * is automatically destroyed on a power reset of the device.
2333  *
2334  * A key that is not volatile is persistent. Persistent keys are
2335  * preserved until the application explicitly destroys them or until an
2336  * implementation-specific device management event occurs (for example,
2337  * a factory reset).
2338  *
2339  * \param lifetime      The lifetime value to query (value of type
2340  *                      ::psa_key_lifetime_t).
2341  *
2342  * \return \c 1 if the key is volatile, otherwise \c 0.
2343  */
2344 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
2345     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2346      PSA_KEY_PERSISTENCE_VOLATILE)
2347 
2348 /** Whether a key lifetime indicates that the key is read-only.
2349  *
2350  * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2351  * They must be created through platform-specific means that bypass the API.
2352  *
2353  * Some platforms may offer ways to destroy read-only keys. For example,
2354  * consider a platform with multiple levels of privilege, where a
2355  * low-privilege application can use a key but is not allowed to destroy
2356  * it, and the platform exposes the key to the application with a read-only
2357  * lifetime. High-privilege code can destroy the key even though the
2358  * application sees the key as read-only.
2359  *
2360  * \param lifetime      The lifetime value to query (value of type
2361  *                      ::psa_key_lifetime_t).
2362  *
2363  * \return \c 1 if the key is read-only, otherwise \c 0.
2364  */
2365 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)  \
2366     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2367      PSA_KEY_PERSISTENCE_READ_ONLY)
2368 
2369 /** Construct a lifetime from a persistence level and a location.
2370  *
2371  * \param persistence   The persistence level
2372  *                      (value of type ::psa_key_persistence_t).
2373  * \param location      The location indicator
2374  *                      (value of type ::psa_key_location_t).
2375  *
2376  * \return The constructed lifetime value.
2377  */
2378 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2379     ((location) << 8 | (persistence))
2380 
2381 /** The local storage area for persistent keys.
2382  *
2383  * This storage area is available on all systems that can store persistent
2384  * keys without delegating the storage to a third-party cryptoprocessor.
2385  *
2386  * See ::psa_key_location_t for more information.
2387  */
2388 #define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t) 0x000000)
2389 
2390 #define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t) 0x800000)
2391 
2392 /* Note that key identifier values are embedded in the
2393  * persistent key store, as part of key metadata. As a consequence, they
2394  * must not be changed (unless the storage format version changes).
2395  */
2396 
2397 /** The null key identifier.
2398  */
2399 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
2400 #define PSA_KEY_ID_NULL                         ((psa_key_id_t)0)
2401 /* *INDENT-ON* */
2402 /** The minimum value for a key identifier chosen by the application.
2403  */
2404 #define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t) 0x00000001)
2405 /** The maximum value for a key identifier chosen by the application.
2406  */
2407 #define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t) 0x3fffffff)
2408 /** The minimum value for a key identifier chosen by the implementation.
2409  */
2410 #define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t) 0x40000000)
2411 /** The maximum value for a key identifier chosen by the implementation.
2412  */
2413 #define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t) 0x7fffffff)
2414 
2415 
2416 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2417 
2418 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2419 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2420 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2421 
2422 /** Utility to initialize a key identifier at runtime.
2423  *
2424  * \param unused  Unused parameter.
2425  * \param key_id  Identifier of the key.
2426  */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2427 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2428     unsigned int unused, psa_key_id_t key_id)
2429 {
2430     (void) unused;
2431 
2432     return key_id;
2433 }
2434 
2435 /** Compare two key identifiers.
2436  *
2437  * \param id1 First key identifier.
2438  * \param id2 Second key identifier.
2439  *
2440  * \return Non-zero if the two key identifier are equal, zero otherwise.
2441  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2442 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2443                                            mbedtls_svc_key_id_t id2)
2444 {
2445     return id1 == id2;
2446 }
2447 
2448 /** Check whether a key identifier is null.
2449  *
2450  * \param key Key identifier.
2451  *
2452  * \return Non-zero if the key identifier is null, zero otherwise.
2453  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2454 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2455 {
2456     return key == 0;
2457 }
2458 
2459 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2460 
2461 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2462 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2463 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2464 
2465 /** Utility to initialize a key identifier at runtime.
2466  *
2467  * \param owner_id Identifier of the key owner.
2468  * \param key_id   Identifier of the key.
2469  */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2470 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2471     mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2472 {
2473     return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2474                                    .MBEDTLS_PRIVATE(owner) = owner_id };
2475 }
2476 
2477 /** Compare two key identifiers.
2478  *
2479  * \param id1 First key identifier.
2480  * \param id2 Second key identifier.
2481  *
2482  * \return Non-zero if the two key identifier are equal, zero otherwise.
2483  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2484 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2485                                            mbedtls_svc_key_id_t id2)
2486 {
2487     return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2488            mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2489 }
2490 
2491 /** Check whether a key identifier is null.
2492  *
2493  * \param key Key identifier.
2494  *
2495  * \return Non-zero if the key identifier is null, zero otherwise.
2496  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2497 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2498 {
2499     return key.MBEDTLS_PRIVATE(key_id) == 0;
2500 }
2501 
2502 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2503 
2504 /**@}*/
2505 
2506 /** \defgroup policy Key policies
2507  * @{
2508  */
2509 
2510 /* Note that key usage flags are embedded in the
2511  * persistent key store, as part of key metadata. As a consequence, they
2512  * must not be changed (unless the storage format version changes).
2513  */
2514 
2515 /** Whether the key may be exported.
2516  *
2517  * A public key or the public part of a key pair may always be exported
2518  * regardless of the value of this permission flag.
2519  *
2520  * If a key does not have export permission, implementations shall not
2521  * allow the key to be exported in plain form from the cryptoprocessor,
2522  * whether through psa_export_key() or through a proprietary interface.
2523  * The key may however be exportable in a wrapped form, i.e. in a form
2524  * where it is encrypted by another key.
2525  */
2526 #define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t) 0x00000001)
2527 
2528 /** Whether the key may be copied.
2529  *
2530  * This flag allows the use of psa_copy_key() to make a copy of the key
2531  * with the same policy or a more restrictive policy.
2532  *
2533  * For lifetimes for which the key is located in a secure element which
2534  * enforce the non-exportability of keys, copying a key outside the secure
2535  * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2536  * Copying the key inside the secure element is permitted with just
2537  * #PSA_KEY_USAGE_COPY if the secure element supports it.
2538  * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2539  * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2540  * is sufficient to permit the copy.
2541  */
2542 #define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t) 0x00000002)
2543 
2544 /** Whether the key may be used to encrypt a message.
2545  *
2546  * This flag allows the key to be used for a symmetric encryption operation,
2547  * for an AEAD encryption-and-authentication operation,
2548  * or for an asymmetric encryption operation,
2549  * if otherwise permitted by the key's type and policy.
2550  *
2551  * For a key pair, this concerns the public key.
2552  */
2553 #define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t) 0x00000100)
2554 
2555 /** Whether the key may be used to decrypt a message.
2556  *
2557  * This flag allows the key to be used for a symmetric decryption operation,
2558  * for an AEAD decryption-and-verification operation,
2559  * or for an asymmetric decryption operation,
2560  * if otherwise permitted by the key's type and policy.
2561  *
2562  * For a key pair, this concerns the private key.
2563  */
2564 #define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t) 0x00000200)
2565 
2566 /** Whether the key may be used to sign a message.
2567  *
2568  * This flag allows the key to be used for a MAC calculation operation or for
2569  * an asymmetric message signature operation, if otherwise permitted by the
2570  * key’s type and policy.
2571  *
2572  * For a key pair, this concerns the private key.
2573  */
2574 #define PSA_KEY_USAGE_SIGN_MESSAGE              ((psa_key_usage_t) 0x00000400)
2575 
2576 /** Whether the key may be used to verify a message.
2577  *
2578  * This flag allows the key to be used for a MAC verification operation or for
2579  * an asymmetric message signature verification operation, if otherwise
2580  * permitted by the key’s type and policy.
2581  *
2582  * For a key pair, this concerns the public key.
2583  */
2584 #define PSA_KEY_USAGE_VERIFY_MESSAGE            ((psa_key_usage_t) 0x00000800)
2585 
2586 /** Whether the key may be used to sign a message.
2587  *
2588  * This flag allows the key to be used for a MAC calculation operation
2589  * or for an asymmetric signature operation,
2590  * if otherwise permitted by the key's type and policy.
2591  *
2592  * For a key pair, this concerns the private key.
2593  */
2594 #define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t) 0x00001000)
2595 
2596 /** Whether the key may be used to verify a message signature.
2597  *
2598  * This flag allows the key to be used for a MAC verification operation
2599  * or for an asymmetric signature verification operation,
2600  * if otherwise permitted by the key's type and policy.
2601  *
2602  * For a key pair, this concerns the public key.
2603  */
2604 #define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t) 0x00002000)
2605 
2606 /** Whether the key may be used to derive other keys or produce a password
2607  * hash.
2608  *
2609  * This flag allows the key to be used for a key derivation operation or for
2610  * a key agreement operation, if otherwise permitted by the key's type and
2611  * policy.
2612  *
2613  * If this flag is present on all keys used in calls to
2614  * psa_key_derivation_input_key() for a key derivation operation, then it
2615  * permits calling psa_key_derivation_output_bytes() or
2616  * psa_key_derivation_output_key() at the end of the operation.
2617  */
2618 #define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t) 0x00004000)
2619 
2620 /** Whether the key may be used to verify the result of a key derivation,
2621  * including password hashing.
2622  *
2623  * This flag allows the key to be used:
2624  *
2625  * This flag allows the key to be used in a key derivation operation, if
2626  * otherwise permitted by the key's type and policy.
2627  *
2628  * If this flag is present on all keys used in calls to
2629  * psa_key_derivation_input_key() for a key derivation operation, then it
2630  * permits calling psa_key_derivation_verify_bytes() or
2631  * psa_key_derivation_verify_key() at the end of the operation.
2632  */
2633 #define PSA_KEY_USAGE_VERIFY_DERIVATION         ((psa_key_usage_t) 0x00008000)
2634 
2635 /**@}*/
2636 
2637 /** \defgroup derivation Key derivation
2638  * @{
2639  */
2640 
2641 /* Key input steps are not embedded in the persistent storage, so you can
2642  * change them if needed: it's only an ABI change. */
2643 
2644 /** A secret input for key derivation.
2645  *
2646  * This should be a key of type #PSA_KEY_TYPE_DERIVE
2647  * (passed to psa_key_derivation_input_key())
2648  * or the shared secret resulting from a key agreement
2649  * (obtained via psa_key_derivation_key_agreement()).
2650  *
2651  * The secret can also be a direct input (passed to
2652  * key_derivation_input_bytes()). In this case, the derivation operation
2653  * may not be used to derive keys: the operation will only allow
2654  * psa_key_derivation_output_bytes(),
2655  * psa_key_derivation_verify_bytes(), or
2656  * psa_key_derivation_verify_key(), but not
2657  * psa_key_derivation_output_key().
2658  */
2659 #define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t) 0x0101)
2660 
2661 /** A low-entropy secret input for password hashing / key stretching.
2662  *
2663  * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2664  * psa_key_derivation_input_key()) or a direct input (passed to
2665  * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2666  * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2667  * the shared secret resulting from a key agreement.
2668  *
2669  * The secret can also be a direct input (passed to
2670  * key_derivation_input_bytes()). In this case, the derivation operation
2671  * may not be used to derive keys: the operation will only allow
2672  * psa_key_derivation_output_bytes(),
2673  * psa_key_derivation_verify_bytes(), or
2674  * psa_key_derivation_verify_key(), but not
2675  * psa_key_derivation_output_key().
2676  */
2677 #define PSA_KEY_DERIVATION_INPUT_PASSWORD   ((psa_key_derivation_step_t) 0x0102)
2678 
2679 /** A high-entropy additional secret input for key derivation.
2680  *
2681  * This is typically the shared secret resulting from a key agreement obtained
2682  * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2683  * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2684  * a direct input passed to `psa_key_derivation_input_bytes()`.
2685  */
2686 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2687     ((psa_key_derivation_step_t) 0x0103)
2688 
2689 /** A label for key derivation.
2690  *
2691  * This should be a direct input.
2692  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2693  */
2694 #define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t) 0x0201)
2695 
2696 /** A salt for key derivation.
2697  *
2698  * This should be a direct input.
2699  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2700  * #PSA_KEY_TYPE_PEPPER.
2701  */
2702 #define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t) 0x0202)
2703 
2704 /** An information string for key derivation.
2705  *
2706  * This should be a direct input.
2707  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2708  */
2709 #define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t) 0x0203)
2710 
2711 /** A seed for key derivation.
2712  *
2713  * This should be a direct input.
2714  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2715  */
2716 #define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t) 0x0204)
2717 
2718 /** A cost parameter for password hashing / key stretching.
2719  *
2720  * This must be a direct input, passed to psa_key_derivation_input_integer().
2721  */
2722 #define PSA_KEY_DERIVATION_INPUT_COST       ((psa_key_derivation_step_t) 0x0205)
2723 
2724 /**@}*/
2725 
2726 /** \defgroup helper_macros Helper macros
2727  * @{
2728  */
2729 
2730 /* Helper macros */
2731 
2732 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2733  *  regardless of the tag length they encode.
2734  *
2735  * \param aead_alg_1 An AEAD algorithm identifier.
2736  * \param aead_alg_2 An AEAD algorithm identifier.
2737  *
2738  * \return           1 if both identifiers refer to the same AEAD algorithm,
2739  *                   0 otherwise.
2740  *                   Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2741  *                   a supported AEAD algorithm.
2742  */
2743 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2744     (!(((aead_alg_1) ^ (aead_alg_2)) & \
2745        ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2746 
2747 /**@}*/
2748 
2749 /**@}*/
2750 
2751 /** \defgroup interruptible Interruptible operations
2752  * @{
2753  */
2754 
2755 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2756  *  the maximum number of ops allowed to be executed by an interruptible
2757  *  function in a single call.
2758  */
2759 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
2760 
2761 /**@}*/
2762 
2763 #endif /* PSA_CRYPTO_VALUES_H */
2764