1 /*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 /** \file platform.h
8 * \defgroup pico_platform pico_platform
9 *
10 * \brief Macros and definitions (and functions when included by non assembly code) for the RP2 family device / architecture
11 * to provide a common abstraction over low level compiler / platform specifics
12 *
13 * This header may be included by assembly code
14 */
15
16 #ifndef _PICO_PLATFORM_H
17 #define _PICO_PLATFORM_H
18
19 #ifndef _PICO_H
20 #error pico/platform.h should not be included directly; include pico.h instead
21 #endif
22
23 #include "pico/platform/compiler.h"
24 #include "pico/platform/sections.h"
25 #include "pico/platform/panic.h"
26 #include "hardware/regs/addressmap.h"
27 #include "hardware/regs/sio.h"
28 #ifdef __riscv
29 #include "hardware/regs/rvcsr.h"
30 #endif
31
32 // PICO_CONFIG: PICO_RP2350A, Whether the current board has an RP2350 in an A (30 GPIO) package, type=bool, default=Usually provided via board header, group=pico_platform
33 #if 0 // make tooling checks happy
34 #define PICO_RP2350A 0
35 #endif
36
37 // PICO_CONFIG: PICO_RP2350_A2_SUPPORTED, Whether to include any specific software support for RP2350 A2 revision, type=bool, default=1, advanced=true, group=pico_platform
38 #ifndef PICO_RP2350_A2_SUPPORTED
39 #define PICO_RP2350_A2_SUPPORTED 1
40 #endif
41
42 // PICO_CONFIG: PICO_STACK_SIZE, Minimum amount of stack space reserved in the linker script for each core. See also PICO_CORE1_STACK_SIZE, min=0x100, default=0x800, advanced=true, group=pico_platform
43 #ifndef PICO_STACK_SIZE
44 #define PICO_STACK_SIZE _u(0x800)
45 #endif
46
47 // PICO_CONFIG: PICO_HEAP_SIZE, Minimum amount of heap space reserved by the linker script, min=0x100, default=0x800, advanced=true, group=pico_platform
48 #ifndef PICO_HEAP_SIZE
49 #define PICO_HEAP_SIZE _u(0x800)
50 #endif
51
52 // PICO_CONFIG: PICO_NO_RAM_VECTOR_TABLE, Enable/disable the RAM vector table, type=bool, default=0, advanced=true, group=pico_platform
53 #ifndef PICO_NO_RAM_VECTOR_TABLE
54 #define PICO_NO_RAM_VECTOR_TABLE 0
55 #endif
56
57 #ifndef PICO_RAM_VECTOR_TABLE_SIZE
58 #define PICO_RAM_VECTOR_TABLE_SIZE (VTABLE_FIRST_IRQ + NUM_IRQS)
59 #endif
60
61 // PICO_CONFIG: PICO_USE_STACK_GUARDS, Enable/disable stack guards, type=bool, default=0, advanced=true, group=pico_platform
62 #ifndef PICO_USE_STACK_GUARDS
63 #define PICO_USE_STACK_GUARDS 0
64 #endif
65
66 // PICO_CONFIG: PICO_CLKDIV_ROUND_NEAREST, True if floating point clock divisors should be rounded to the nearest possible clock divisor by default rather than rounding down, type=bool, default=1, group=pico_platform
67 #ifndef PICO_CLKDIV_ROUND_NEAREST
68 #define PICO_CLKDIV_ROUND_NEAREST 1
69 #endif
70
71 #ifndef __ASSEMBLER__
72
73 /*! \brief No-op function for the body of tight loops
74 * \ingroup pico_platform
75 *
76 * No-op function intended to be called by any tight hardware polling loop. Using this ubiquitously
77 * makes it much easier to find tight loops, but also in the future \#ifdef-ed support for lockup
78 * debugging might be added
79 */
tight_loop_contents(void)80 static __force_inline void tight_loop_contents(void) {}
81
82 /*! \brief Helper method to busy-wait for at least the given number of cycles
83 * \ingroup pico_platform
84 *
85 * This method is useful for introducing very short delays.
86 *
87 * This method busy-waits in a tight loop for the given number of system clock cycles. The total wait time is only accurate to within 2 cycles,
88 * and this method uses a loop counter rather than a hardware timer, so the method will always take longer than expected if an
89 * interrupt is handled on the calling core during the busy-wait; you can of course disable interrupts to prevent this.
90 *
91 * You can use \ref clock_get_hz(clk_sys) to determine the number of clock cycles per second if you want to convert an actual
92 * time duration to a number of cycles.
93 *
94 * \param minimum_cycles the minimum number of system clock cycles to delay for
95 */
busy_wait_at_least_cycles(uint32_t minimum_cycles)96 static inline void busy_wait_at_least_cycles(uint32_t minimum_cycles) {
97 pico_default_asm_volatile (
98 #ifdef __riscv
99 // Note the range is halved on RISC-V due to signed comparison (no carry flag)
100 ".option push\n"
101 ".option norvc\n" // force 32 bit addi, so branch prediction guaranteed
102 ".p2align 2\n"
103 "1: \n"
104 "addi %0, %0, -2 \n"
105 "bgez %0, 1b\n"
106 ".option pop"
107 #else
108 "1: subs %0, #3\n"
109 "bcs 1b\n"
110 #endif
111 : "+r" (minimum_cycles) : : "cc", "memory"
112 );
113 }
114
115 // PICO_CONFIG: PICO_NO_FPGA_CHECK, Remove the FPGA platform check for small code size reduction, type=bool, default=1, advanced=true, group=pico_runtime
116 #ifndef PICO_NO_FPGA_CHECK
117 #define PICO_NO_FPGA_CHECK 1
118 #endif
119
120 // PICO_CONFIG: PICO_NO_SIM_CHECK, Remove the SIM platform check for small code size reduction, type=bool, default=1, advanced=true, group=pico_runtime
121 #ifndef PICO_NO_SIM_CHECK
122 #define PICO_NO_SIM_CHECK 1
123 #endif
124
125 #if PICO_NO_FPGA_CHECK
running_on_fpga(void)126 static inline bool running_on_fpga(void) {return false;}
127 #else
128 bool running_on_fpga(void);
129 #endif
130 #if PICO_NO_SIM_CHECK
running_in_sim(void)131 static inline bool running_in_sim(void) {return false;}
132 #else
133 bool running_in_sim(void);
134 #endif
135
136 /*! \brief Execute a breakpoint instruction
137 * \ingroup pico_platform
138 */
__breakpoint(void)139 static __force_inline void __breakpoint(void) {
140 #ifdef __riscv
141 __asm ("ebreak");
142 #else
143 pico_default_asm_volatile ("bkpt #0" : : : "memory");
144 #endif
145 }
146
147 /*! \brief Get the current core number
148 * \ingroup pico_platform
149 *
150 * \return The core number the call was made from
151 */
get_core_num(void)152 __force_inline static uint get_core_num(void) {
153 return (*(uint32_t *) (SIO_BASE + SIO_CPUID_OFFSET));
154 }
155
156 /*! \brief Get the current exception level on this core
157 * \ingroup pico_platform
158 *
159 * On Cortex-M this is the exception number defined in the architecture
160 * reference, which is equal to VTABLE_FIRST_IRQ + irq num if inside an
161 * interrupt handler. (VTABLE_FIRST_IRQ is defined in platform_defs.h).
162 *
163 * On Hazard3, this function returns VTABLE_FIRST_IRQ + irq num if inside of
164 * an external IRQ handler (or a fault from such a handler), and 0 otherwise,
165 * generally aligning with the Cortex-M values.
166 *
167 * \return the exception number if the CPU is handling an exception, or 0 otherwise
168 */
__get_current_exception(void)169 static __force_inline uint __get_current_exception(void) {
170 #ifdef __riscv
171 uint32_t meicontext;
172 pico_default_asm_volatile (
173 "csrr %0, %1\n"
174 : "=r" (meicontext) : "i" (RVCSR_MEICONTEXT_OFFSET)
175 );
176 if (meicontext & RVCSR_MEICONTEXT_NOIRQ_BITS) {
177 return 0;
178 } else {
179 return VTABLE_FIRST_IRQ + (
180 (meicontext & RVCSR_MEICONTEXT_IRQ_BITS) >> RVCSR_MEICONTEXT_IRQ_LSB
181 );
182 }
183 #else
184 uint exception;
185 pico_default_asm_volatile (
186 "mrs %0, ipsr\n"
187 "uxtb %0, %0\n"
188 : "=l" (exception)
189 );
190 return exception;
191 #endif
192 }
193
194 /*! \brief Return true if executing in the NonSecure state (Arm-only)
195 * \ingroup pico_platform
196 *
197 * \return True if currently executing in the NonSecure state on an Arm processor
198 */
pico_processor_state_is_nonsecure(void)199 __force_inline static bool pico_processor_state_is_nonsecure(void) {
200 #ifndef __riscv
201 // todo add a define to disable NS checking at all?
202 // IDAU-Exempt addresses return S=1 when tested in the Secure state,
203 // whereas executing a tt in the NonSecure state will always return S=0.
204 uint32_t tt;
205 pico_default_asm_volatile (
206 "movs %0, #0\n"
207 "tt %0, %0\n"
208 : "=r" (tt) : : "cc"
209 );
210 return !(tt & (1u << 22));
211 #else
212 // NonSecure is an Arm concept, there is nothing meaningful to return
213 // here. Note it's not possible in general to detect whether you are
214 // executing in U-mode as, for example, M-mode is classically
215 // virtualisable in U-mode.
216 return false;
217 #endif
218 }
219
220 #define host_safe_hw_ptr(x) ((uintptr_t)(x))
221 #define native_safe_hw_ptr(x) host_safe_hw_ptr(x)
222
223 /*! \brief Returns the RP2350 chip revision number
224 * \ingroup pico_platform
225 * @return the RP2350 chip revision number (1 for B0/B1, 2 for B2)
226 */
227 uint8_t rp2350_chip_version(void);
228
229 /*! \brief Returns the RP2040 chip revision number for compatibility
230 * \ingroup pico_platform
231 * @return 2 RP2040 errata fixed in B2 are fixed in RP2350
232 */
rp2040_chip_version(void)233 static inline uint8_t rp2040_chip_version(void) {
234 return 2;
235 }
236
237 /*! \brief Returns the RP2040 rom version number
238 * \ingroup pico_platform
239 * @return the RP2040 rom version number (1 for RP2040-B0, 2 for RP2040-B1, 3 for RP2040-B2)
240 */
rp2040_rom_version(void)241 static inline uint8_t rp2040_rom_version(void) {
242 GCC_Pragma("GCC diagnostic push")
243 GCC_Pragma("GCC diagnostic ignored \"-Warray-bounds\"")
244 return *(uint8_t*)0x13;
245 GCC_Pragma("GCC diagnostic pop")
246 }
247
248 /*! \brief Multiply two integers using an assembly `MUL` instruction
249 * \ingroup pico_platform
250 *
251 * This multiplies a by b using multiply instruction using the ARM mul instruction regardless of values (the compiler
252 * might otherwise choose to perform shifts/adds), i.e. this is a 1 cycle operation.
253 *
254 * \param a the first operand
255 * \param b the second operand
256 * \return a * b
257 */
__mul_instruction(int32_t a,int32_t b)258 __force_inline static int32_t __mul_instruction(int32_t a, int32_t b) {
259 #ifdef __riscv
260 __asm ("mul %0, %0, %1" : "+r" (a) : "r" (b) : );
261 #else
262 pico_default_asm ("muls %0, %1" : "+l" (a) : "l" (b) : "cc");
263 #endif
264 return a;
265 }
266
267 /*! \brief multiply two integer values using the fastest method possible
268 * \ingroup pico_platform
269 *
270 * Efficiently multiplies value a by possibly constant value b.
271 *
272 * If b is known to be constant and not zero or a power of 2, then a mul instruction is used rather than gcc's default
273 * which is often a slow combination of shifts and adds. If b is a power of 2 then a single shift is of course preferable
274 * and will be used
275 *
276 * \param a the first operand
277 * \param b the second operand
278 * \return a * b
279 */
280 #define __fast_mul(a, b) __builtin_choose_expr(__builtin_constant_p(b) && !__builtin_constant_p(a), \
281 (__builtin_popcount(b) >= 2 ? __mul_instruction(a,b) : (a)*(b)), \
282 (a)*(b))
283
284 #endif // __ASSEMBLER__
285
286 #endif
287
288