1 /*
2  * Copyright (c) 2015 - 2025, Nordic Semiconductor ASA
3  * All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice, this
11  *    list of conditions and the following disclaimer.
12  *
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * 3. Neither the name of the copyright holder nor the names of its
18  *    contributors may be used to endorse or promote products derived from this
19  *    software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifndef NRF_PWM_H__
35 #define NRF_PWM_H__
36 
37 #include <nrfx.h>
38 
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42 
43 /**
44  * @defgroup nrf_pwm_hal PWM HAL
45  * @{
46  * @ingroup nrf_pwm
47  * @brief   Hardware access layer for managing the Pulse Width Modulation (PWM) peripheral.
48  */
49 
50 #if defined(PWM_DMA_SEQ_PTR_PTR_Msk) || defined(__NRFX_DOXYGEN__)
51 /** @brief Symbol indicating whether dedicated DMA register is present. */
52 #define NRF_PWM_HAS_DMA_REG 1
53 #else
54 #define NRF_PWM_HAS_DMA_REG 0
55 #endif
56 
57 #if defined(PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk) || \
58     defined(PWM_SHORTS_LOOPSDONE_DMA_SEQ0_START_Msk) || defined(__NRFX_DOXYGEN__)
59 /** @brief Symbol indicating whether shorting SEQSTART task with LOOPSDONE event is available. */
60 #define NRF_PWM_HAS_SHORT_LOOPSDONE_SEQSTART 1
61 #else
62 #define NRF_PWM_HAS_SHORT_LOOPSDONE_SEQSTART 0
63 #endif
64 
65 #if (defined(PWM_TASKS_DMA_SEQ_START_START_Msk) && defined(PWM_EVENTS_DMA_SEQ_END_END_Msk)) || \
66     defined(__NRFX_DOXYGEN__)
67 /** @brief Symbol indicating whether PWM DMA tasks and events are present. */
68 #define NRF_PWM_HAS_DMA_TASKS_EVENTS 1
69 #else
70 #define NRF_PWM_HAS_DMA_TASKS_EVENTS 0
71 #endif
72 
73 #if defined(PWM_SEQ_CNT_CNT_Msk) || defined(__NRFX_DOXYGEN__)
74 /** @brief Symbol indicating whether setting the number of duty cycle values for a sequence is available. */
75 #define NRF_PWM_HAS_SEQ_CNT 1
76 #else
77 #define NRF_PWM_HAS_SEQ_CNT 0
78 #endif
79 
80 #if defined(PWM_IDLEOUT_ResetValue) || defined(__NRFX_DOXYGEN__)
81 /** @brief Symbol indicating whether PWM has IDLEOUT register. */
82 #define NRF_PWM_HAS_IDLEOUT 1
83 #else
84 #define NRF_PWM_HAS_IDLEOUT 0
85 #endif
86 
87 /**
88  * @brief Macro getting pointer to the structure of registers of the PWM peripheral.
89  *
90  * @param[in] idx PWM instance index.
91  *
92  * @return Pointer to the structure of registers of the PWM peripheral.
93  */
94  #define NRF_PWM_INST_GET(idx) NRFX_CONCAT(NRF_, PWM, idx)
95 
96 /**
97  * @brief This value can be provided as a parameter for the @ref nrf_pwm_pins_set
98  *        function call to specify that a given output channel shall not be
99  *        connected to a physical pin.
100  */
101 #define NRF_PWM_PIN_NOT_CONNECTED  0xFFFFFFFF
102 
103 /** @brief Number of channels in each PWM instance. */
104 #define NRF_PWM_CHANNEL_COUNT  4
105 
106 /**
107  * @brief Helper macro for calculating the number of 16-bit values in the specified
108  *        array of duty cycle values.
109  */
110 #define NRF_PWM_VALUES_LENGTH(array)  (sizeof(array) / 2UL)
111 
112 
113 /** @brief PWM tasks. */
114 typedef enum
115 {
116     NRF_PWM_TASK_STOP      = offsetof(NRF_PWM_Type, TASKS_STOP),             ///< Stops PWM pulse generation on all channels at the end of the current PWM period, and stops the sequence playback.
117 #if NRF_PWM_HAS_DMA_TASKS_EVENTS
118     NRF_PWM_TASK_SEQSTART0 = offsetof(NRF_PWM_Type, TASKS_DMA.SEQ[0].START), ///< Starts playback of sequence 0.
119     NRF_PWM_TASK_SEQSTART1 = offsetof(NRF_PWM_Type, TASKS_DMA.SEQ[1].START), ///< Starts playback of sequence 1.
120 #else
121     NRF_PWM_TASK_SEQSTART0 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[0]),      ///< Starts playback of sequence 0.
122     NRF_PWM_TASK_SEQSTART1 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[1]),      ///< Starts playback of sequence 1.
123 #endif
124     NRF_PWM_TASK_NEXTSTEP  = offsetof(NRF_PWM_Type, TASKS_NEXTSTEP)          ///< Steps by one value in the current sequence if the decoder is set to @ref NRF_PWM_STEP_TRIGGERED mode.
125 } nrf_pwm_task_t;
126 
127 /** @brief PWM events. */
128 typedef enum
129 {
130     NRF_PWM_EVENT_STOPPED      = offsetof(NRF_PWM_Type, EVENTS_STOPPED),       ///< Response to STOP task, emitted when PWM pulses are no longer generated.
131     NRF_PWM_EVENT_SEQSTARTED0  = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[0]), ///< First PWM period started on sequence 0.
132     NRF_PWM_EVENT_SEQSTARTED1  = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[1]), ///< First PWM period started on sequence 1.
133     NRF_PWM_EVENT_SEQEND0      = offsetof(NRF_PWM_Type, EVENTS_SEQEND[0]),     ///< Emitted at the end of every sequence 0 when its last value has been read from RAM.
134     NRF_PWM_EVENT_SEQEND1      = offsetof(NRF_PWM_Type, EVENTS_SEQEND[1]),     ///< Emitted at the end of every sequence 1 when its last value has been read from RAM.
135     NRF_PWM_EVENT_PWMPERIODEND = offsetof(NRF_PWM_Type, EVENTS_PWMPERIODEND),  ///< Emitted at the end of each PWM period.
136     NRF_PWM_EVENT_LOOPSDONE    = offsetof(NRF_PWM_Type, EVENTS_LOOPSDONE)      ///< Concatenated sequences have been played the specified number of times.
137 } nrf_pwm_event_t;
138 
139 /** @brief PWM interrupts. */
140 typedef enum
141 {
142     NRF_PWM_INT_STOPPED_MASK      = PWM_INTENSET_STOPPED_Msk,      ///< Interrupt on STOPPED event.
143     NRF_PWM_INT_SEQSTARTED0_MASK  = PWM_INTENSET_SEQSTARTED0_Msk,  ///< Interrupt on SEQSTARTED[0] event.
144     NRF_PWM_INT_SEQSTARTED1_MASK  = PWM_INTENSET_SEQSTARTED1_Msk,  ///< Interrupt on SEQSTARTED[1] event.
145     NRF_PWM_INT_SEQEND0_MASK      = PWM_INTENSET_SEQEND0_Msk,      ///< Interrupt on SEQEND[0] event.
146     NRF_PWM_INT_SEQEND1_MASK      = PWM_INTENSET_SEQEND1_Msk,      ///< Interrupt on SEQEND[1] event.
147     NRF_PWM_INT_PWMPERIODEND_MASK = PWM_INTENSET_PWMPERIODEND_Msk, ///< Interrupt on PWMPERIODEND event.
148     NRF_PWM_INT_LOOPSDONE_MASK    = PWM_INTENSET_LOOPSDONE_Msk     ///< Interrupt on LOOPSDONE event.
149 } nrf_pwm_int_mask_t;
150 
151 /** @brief PWM shortcuts. */
152 typedef enum
153 {
154     NRF_PWM_SHORT_SEQEND0_STOP_MASK        = PWM_SHORTS_SEQEND0_STOP_Msk,             ///< Shortcut between SEQEND[0] event and STOP task.
155     NRF_PWM_SHORT_SEQEND1_STOP_MASK        = PWM_SHORTS_SEQEND1_STOP_Msk,             ///< Shortcut between SEQEND[1] event and STOP task.
156 #if defined(PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk) || defined(__NRFX_DOXYGEN__)
157     NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk,      ///< Shortcut between LOOPSDONE event and SEQSTART[0] task.
158     NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART1_Msk,      ///< Shortcut between LOOPSDONE event and SEQSTART[1] task.
159 #else
160     NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_DMA_SEQ0_START_Msk, ///< Shortcut between LOOPSDONE event and DMA.SEQ[0].START task.
161     NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_DMA_SEQ1_START_Msk, ///< Shortcut between LOOPSDONE event and DMA.SEQ[1].START task.
162 #endif
163     NRF_PWM_SHORT_LOOPSDONE_STOP_MASK      = PWM_SHORTS_LOOPSDONE_STOP_Msk            ///< Shortcut between LOOPSDONE event and STOP task.
164 } nrf_pwm_short_mask_t;
165 
166 /** @brief PWM modes of operation. */
167 typedef enum
168 {
169     NRF_PWM_MODE_UP          = PWM_MODE_UPDOWN_Up,        ///< Up counter (edge-aligned PWM duty cycle).
170     NRF_PWM_MODE_UP_AND_DOWN = PWM_MODE_UPDOWN_UpAndDown, ///< Up and down counter (center-aligned PWM duty cycle).
171 } nrf_pwm_mode_t;
172 
173 /** @brief PWM base clock frequencies. */
174 typedef enum
175 {
176     NRF_PWM_CLK_16MHz  = PWM_PRESCALER_PRESCALER_DIV_1,  ///< 16 MHz / 1 = 16 MHz.
177     NRF_PWM_CLK_8MHz   = PWM_PRESCALER_PRESCALER_DIV_2,  ///< 16 MHz / 2 = 8 MHz.
178     NRF_PWM_CLK_4MHz   = PWM_PRESCALER_PRESCALER_DIV_4,  ///< 16 MHz / 4 = 4 MHz.
179     NRF_PWM_CLK_2MHz   = PWM_PRESCALER_PRESCALER_DIV_8,  ///< 16 MHz / 8 = 2 MHz.
180     NRF_PWM_CLK_1MHz   = PWM_PRESCALER_PRESCALER_DIV_16, ///< 16 MHz / 16 = 1 MHz.
181     NRF_PWM_CLK_500kHz = PWM_PRESCALER_PRESCALER_DIV_32, ///< 16 MHz / 32 = 500 kHz.
182     NRF_PWM_CLK_250kHz = PWM_PRESCALER_PRESCALER_DIV_64, ///< 16 MHz / 64 = 250 kHz.
183     NRF_PWM_CLK_125kHz = PWM_PRESCALER_PRESCALER_DIV_128 ///< 16 MHz / 128 = 125 kHz.
184 } nrf_pwm_clk_t;
185 
186 /**
187  * @brief PWM decoder load modes.
188  *
189  * The selected mode determines how the sequence data is read from RAM and
190  * spread to the compare registers.
191  */
192 typedef enum
193 {
194     NRF_PWM_LOAD_COMMON     = PWM_DECODER_LOAD_Common,     ///< 1st half word (16-bit) used in all PWM channels (0-3).
195     NRF_PWM_LOAD_GROUPED    = PWM_DECODER_LOAD_Grouped,    ///< 1st half word (16-bit) used in channels 0 and 1; 2nd word in channels 2 and 3.
196     NRF_PWM_LOAD_INDIVIDUAL = PWM_DECODER_LOAD_Individual, ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; 3rd in channel 2; 4th in channel 3.
197     NRF_PWM_LOAD_WAVE_FORM  = PWM_DECODER_LOAD_WaveForm    ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; ... ; 4th as the top value for the pulse generator counter.
198 } nrf_pwm_dec_load_t;
199 
200 /**
201  * @brief PWM decoder next step modes.
202  *
203  * The selected mode determines when the next value from the active sequence
204  * is loaded.
205  */
206 typedef enum
207 {
208     NRF_PWM_STEP_AUTO      = PWM_DECODER_MODE_RefreshCount, ///< Automatically after the current value is played and repeated the requested number of times.
209     NRF_PWM_STEP_TRIGGERED = PWM_DECODER_MODE_NextStep      ///< When the @ref NRF_PWM_TASK_NEXTSTEP task is triggered.
210 } nrf_pwm_dec_step_t;
211 
212 /**
213  * @brief Type used for defining duty cycle values for a sequence
214  *        loaded in @ref NRF_PWM_LOAD_COMMON mode.
215  */
216 typedef uint16_t nrf_pwm_values_common_t;
217 
218 /**
219  * @brief Structure for defining duty cycle values for a sequence
220  *        loaded in @ref NRF_PWM_LOAD_GROUPED mode.
221  */
222 typedef struct {
223     uint16_t group_0; ///< Duty cycle value for group 0 (channels 0 and 1).
224     uint16_t group_1; ///< Duty cycle value for group 1 (channels 2 and 3).
225 } nrf_pwm_values_grouped_t;
226 
227 /**
228  * @brief Structure for defining duty cycle values for a sequence
229  *        loaded in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
230  */
231 typedef struct
232 {
233     uint16_t channel_0; ///< Duty cycle value for channel 0.
234     uint16_t channel_1; ///< Duty cycle value for channel 1.
235     uint16_t channel_2; ///< Duty cycle value for channel 2.
236     uint16_t channel_3; ///< Duty cycle value for channel 3.
237 } nrf_pwm_values_individual_t;
238 
239 /**
240  * @brief Structure for defining duty cycle values for a sequence
241  *        loaded in @ref NRF_PWM_LOAD_WAVE_FORM mode.
242  */
243 typedef struct {
244     uint16_t channel_0;   ///< Duty cycle value for channel 0.
245     uint16_t channel_1;   ///< Duty cycle value for channel 1.
246     uint16_t channel_2;   ///< Duty cycle value for channel 2.
247     uint16_t counter_top; ///< Top value for the pulse generator counter.
248 } nrf_pwm_values_wave_form_t;
249 
250 /**
251  * @brief Union grouping pointers to arrays of duty cycle values applicable to
252  *        various loading modes.
253  */
254 typedef union {
255     nrf_pwm_values_common_t     const * p_common;     ///< Pointer to be used in @ref NRF_PWM_LOAD_COMMON mode.
256     nrf_pwm_values_grouped_t    const * p_grouped;    ///< Pointer to be used in @ref NRF_PWM_LOAD_GROUPED mode.
257     nrf_pwm_values_individual_t const * p_individual; ///< Pointer to be used in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
258     nrf_pwm_values_wave_form_t  const * p_wave_form;  ///< Pointer to be used in @ref NRF_PWM_LOAD_WAVE_FORM mode.
259     uint16_t                    const * p_raw;        ///< Pointer providing raw access to the values.
260 } nrf_pwm_values_t;
261 
262 /**
263  * @brief Structure for defining a sequence of PWM duty cycles.
264  *
265  * When the sequence is set (by a call to @ref nrf_pwm_sequence_set), the
266  * provided duty cycle values are not copied. The @p values pointer is stored
267  * in the internal register of the peripheral, and the values are loaded from RAM
268  * during the sequence playback. Therefore, you must ensure that the values
269  * do not change before and during the sequence playback (for example,
270  * the values cannot be placed in a local variable that is allocated on stack).
271  * If the sequence is played in a loop and the values are to be updated
272  * before the next iteration, it is safe to modify them when the corresponding
273  * event signaling the end of sequence occurs (@ref NRF_PWM_EVENT_SEQEND0
274  * or @ref NRF_PWM_EVENT_SEQEND1, respectively).
275  *
276  * @note The @p repeats and @p end_delay values (which are written to the
277  *       SEQ[n].REFRESH and SEQ[n].ENDDELAY registers in the peripheral,
278  *       respectively) are ignored at the end of a complex sequence
279  *       playback, indicated by the LOOPSDONE event.
280  *       See the Product Specification for more information.
281  */
282 typedef struct
283 {
284     nrf_pwm_values_t values; ///< Pointer to an array with duty cycle values. This array must be in Data RAM.
285                              /**< This field is defined as an union of pointers
286                               *   to provide a convenient way to define duty
287                               *   cycle values in various loading modes
288                               *   (see @ref nrf_pwm_dec_load_t).
289                               *   In each value, the most significant bit (15)
290                               *   determines the polarity of the output and the
291                               *   others (14-0) compose the 15-bit value to be
292                               *   compared with the pulse generator counter. */
293     uint16_t length;    ///< Number of 16-bit values in the array pointed by @p values.
294     uint32_t repeats;   ///< Number of times that each duty cycle is to be repeated (after being played once). Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
295     uint32_t end_delay; ///< Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
296 } nrf_pwm_sequence_t;
297 
298 
299 /**
300  * @brief Function for activating the specified PWM task.
301  *
302  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
303  * @param[in] task  Task to be activated.
304  */
305 NRF_STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg,
306                                             nrf_pwm_task_t task);
307 
308 /**
309  * @brief Function for getting the address of the specified PWM task register.
310  *
311  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
312  * @param[in] task  PWM task.
313  *
314  * @return Address of the specified task register.
315  */
316 NRF_STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg,
317                                                     nrf_pwm_task_t       task);
318 
319 /**
320  * @brief Function for clearing the specified PWM event.
321  *
322  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
323  * @param[in] event Event to clear.
324  */
325 NRF_STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type *  p_reg,
326                                            nrf_pwm_event_t event);
327 
328 /**
329  * @brief Function for retrieving the state of the PWM event.
330  *
331  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
332  * @param[in] event Event to be checked.
333  *
334  * @retval true  The event has been generated.
335  * @retval false The event has not been generated.
336  */
337 NRF_STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg,
338                                            nrf_pwm_event_t      event);
339 
340 /**
341  * @brief Function for getting the address of the specified PWM event register.
342  *
343  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
344  * @param[in] event PWM event.
345  *
346  * @return Address of the specified event register.
347  */
348 NRF_STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg,
349                                                      nrf_pwm_event_t      event);
350 
351 /**
352  * @brief Function for enabling the specified shortcuts.
353  *
354  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
355  * @param[in] mask  Mask of shortcuts to be enabled.
356  */
357 NRF_STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg,
358                                              uint32_t       mask);
359 
360 /**
361  * @brief Function for disabling the specified shortcuts.
362  *
363  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
364  * @param[in] mask  Mask of shortcuts to be disabled.
365  */
366 NRF_STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg,
367                                               uint32_t       mask);
368 
369 /**
370  * @brief Function for setting the configuration of PWM shortcuts.
371  *
372  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
373  * @param[in] mask  Shortcuts configuration to be set.
374  */
375 NRF_STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg,
376                                           uint32_t       mask);
377 
378 /**
379  * @brief Function for enabling specified interrupts.
380  *
381  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
382  * @param[in] mask  Mask of interrupts to be enabled.
383  *                  Use @ref nrf_pwm_int_mask_t values for bit masking.
384  */
385 NRF_STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg,
386                                           uint32_t       mask);
387 
388 /**
389  * @brief Function for disabling specified interrupts.
390  *
391  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
392  * @param[in] mask  Mask of interrupts to be disabled.
393  *                  Use @ref nrf_pwm_int_mask_t values for bit masking.
394  */
395 NRF_STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg,
396                                            uint32_t       mask);
397 
398 /**
399  * @brief Function for setting the configuration of PWM interrupts.
400  *
401  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
402  * @param[in] mask  Mask of interrupts to be set.
403  *                  Use @ref nrf_pwm_int_mask_t values for bit masking.
404  */
405 NRF_STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg,
406                                        uint32_t       mask);
407 
408 /**
409  * @brief Function for checking if the specified interrupts are enabled.
410  *
411  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
412  * @param[in] mask  Mask of interrupts to be checked.
413  *                  Use @ref nrf_pwm_int_mask_t values for bit masking.
414  *
415  * @return Mask of enabled interrupts.
416  */
417 NRF_STATIC_INLINE uint32_t nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, uint32_t mask);
418 
419 #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
420 /**
421  * @brief Function for setting the subscribe configuration for a given
422  *        PWM task.
423  *
424  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
425  * @param[in] task    Task for which to set the configuration.
426  * @param[in] channel Channel through which to subscribe events.
427  */
428 NRF_STATIC_INLINE void nrf_pwm_subscribe_set(NRF_PWM_Type * p_reg,
429                                              nrf_pwm_task_t task,
430                                              uint8_t        channel);
431 
432 /**
433  * @brief Function for clearing the subscribe configuration for a given
434  *        PWM task.
435  *
436  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
437  * @param[in] task  Task for which to clear the configuration.
438  */
439 NRF_STATIC_INLINE void nrf_pwm_subscribe_clear(NRF_PWM_Type * p_reg,
440                                                nrf_pwm_task_t task);
441 
442 /**
443  * @brief Function for setting the publish configuration for a given
444  *        PWM event.
445  *
446  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
447  * @param[in] event   Event for which to set the configuration.
448  * @param[in] channel Channel through which to publish the event.
449  */
450 NRF_STATIC_INLINE void nrf_pwm_publish_set(NRF_PWM_Type *  p_reg,
451                                            nrf_pwm_event_t event,
452                                            uint8_t         channel);
453 
454 /**
455  * @brief Function for clearing the publish configuration for a given
456  *        PWM event.
457  *
458  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
459  * @param[in] event Event for which to clear the configuration.
460  */
461 NRF_STATIC_INLINE void nrf_pwm_publish_clear(NRF_PWM_Type *  p_reg,
462                                              nrf_pwm_event_t event);
463 #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
464 
465 /**
466  * @brief Function for enabling the PWM peripheral.
467  *
468  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
469  */
470 NRF_STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg);
471 
472 /**
473  * @brief Function for disabling the PWM peripheral.
474  *
475  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
476  */
477 NRF_STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg);
478 
479 /**
480  * @brief Function for checking if the PWM peripheral is enabled.
481  *
482  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
483  *
484  * @retval true  The PWM is enabled.
485  * @retval false The PWM is not enabled.
486  */
487 NRF_STATIC_INLINE bool nrf_pwm_enable_check(NRF_PWM_Type const * p_reg);
488 
489 /**
490  * @brief Function for assigning pins to PWM output channels.
491  *
492  * Usage of all PWM output channels is optional. If a given channel is not
493  * needed, pass the @ref NRF_PWM_PIN_NOT_CONNECTED value instead of its pin
494  * number.
495  *
496  * @param[in] p_reg    Pointer to the structure of registers of the peripheral.
497  * @param[in] out_pins Array with pin numbers for individual PWM output channels.
498  */
499 NRF_STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg,
500                                         uint32_t const out_pins[NRF_PWM_CHANNEL_COUNT]);
501 
502 /**
503  * @brief Function for setting pin associated with specified PWM output channel.
504  *
505  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
506  * @param[in] channel PWM output channel.
507  * @param[in] pin     PWM output pin associated with specified PWM output channel.
508  */
509 NRF_STATIC_INLINE void nrf_pwm_pin_set(NRF_PWM_Type * p_reg, uint8_t channel, uint32_t pin);
510 
511 /**
512  * @brief Function for getting pin selection associated with specified PWM output channel.
513  *
514  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
515  * @param[in] channel PWM output channel.
516  *
517  * @return Pin selection associated with specified PWM output channel.
518  */
519 NRF_STATIC_INLINE uint32_t nrf_pwm_pin_get(NRF_PWM_Type const * p_reg, uint8_t channel);
520 
521 /**
522  * @brief Function for configuring the PWM peripheral.
523  *
524  * @param[in] p_reg      Pointer to the structure of registers of the peripheral.
525  * @param[in] base_clock Base clock frequency.
526  * @param[in] mode       Operating mode of the pulse generator counter.
527  * @param[in] top_value  Value up to which the pulse generator counter counts.
528  */
529 NRF_STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg,
530                                          nrf_pwm_clk_t  base_clock,
531                                          nrf_pwm_mode_t mode,
532                                          uint16_t       top_value);
533 
534 /**
535  * @brief Function for defining a sequence of PWM duty cycles.
536  *
537  * @param[in] p_reg  Pointer to the structure of registers of the peripheral.
538  * @param[in] seq_id Identifier of the sequence (0 or 1).
539  * @param[in] p_seq  Pointer to the sequence definition.
540  */
541 NRF_STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type *             p_reg,
542                                             uint8_t                    seq_id,
543                                             nrf_pwm_sequence_t const * p_seq);
544 
545 /**
546  * @brief Function for modifying the pointer to the duty cycle values
547  *        in the specified sequence.
548  *
549  * @param[in] p_reg    Pointer to the structure of registers of the peripheral.
550  * @param[in] seq_id   Identifier of the sequence (0 or 1).
551  * @param[in] p_values Pointer to an array with duty cycle values.
552  */
553 NRF_STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type *   p_reg,
554                                            uint8_t          seq_id,
555                                            uint16_t const * p_values);
556 
557 /**
558  * @brief Function for modifying the total number of duty cycle values
559  *        in the specified sequence.
560  *
561  * @param[in] p_reg  Pointer to the structure of registers of the peripheral.
562  * @param[in] seq_id Identifier of the sequence (0 or 1).
563  * @param[in] length Number of duty cycle values (in 16-bit half words).
564  */
565 NRF_STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg,
566                                            uint8_t        seq_id,
567                                            uint16_t       length);
568 
569 /**
570  * @brief Function for modifying the additional number of PWM periods spent
571  *        on each duty cycle value in the specified sequence.
572  *
573  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
574  * @param[in] seq_id  Identifier of the sequence (0 or 1).
575  * @param[in] refresh Number of additional PWM periods for each duty cycle value.
576  */
577 NRF_STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg,
578                                                uint8_t        seq_id,
579                                                uint32_t       refresh);
580 
581 /**
582  * @brief Function for modifying the additional time added after the sequence
583  *        is played.
584  *
585  * @param[in] p_reg     Pointer to the structure of registers of the peripheral.
586  * @param[in] seq_id    Identifier of the sequence (0 or 1).
587  * @param[in] end_delay Number of PWM periods added at the end of the sequence.
588  */
589 NRF_STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg,
590                                                  uint8_t        seq_id,
591                                                  uint32_t       end_delay);
592 
593 /**
594  * @brief Function for setting the mode of loading sequence data from RAM
595  *        and advancing the sequence.
596  *
597  * @param[in] p_reg    Pointer to the structure of registers of the peripheral.
598  * @param[in] dec_load Mode of loading sequence data from RAM.
599  * @param[in] dec_step Mode of advancing the active sequence.
600  */
601 NRF_STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type *     p_reg,
602                                            nrf_pwm_dec_load_t dec_load,
603                                            nrf_pwm_dec_step_t dec_step);
604 
605 /**
606  * @brief Function for setting the number of times the sequence playback
607  *        should be performed.
608  *
609  * This function applies to two-sequence playback (concatenated sequence 0 and 1).
610  * A single sequence can be played back only once.
611  *
612  * @param[in] p_reg      Pointer to the structure of registers of the peripheral.
613  * @param[in] loop_count Number of times to perform the sequence playback.
614  */
615 NRF_STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg, uint16_t loop_count);
616 
617 /**
618  * @brief Function for getting the specified PWM SEQSTART task.
619  *
620  * @param[in] seq_id Sequence index.
621  *
622  * @return The specified PWM SEQSTART task.
623  */
624 NRF_STATIC_INLINE nrf_pwm_task_t nrf_pwm_seqstart_task_get(uint8_t seq_id);
625 
626 /**
627  * @brief Function for getting the specified PWM SEQEND event.
628  *
629  * @param[in] seq_id Sequence index.
630  *
631  * @return The specified PWM SEQEND event.
632  */
633 NRF_STATIC_INLINE nrf_pwm_event_t nrf_pwm_seqend_event_get(uint8_t seq_id);
634 
635 #if NRF_PWM_HAS_IDLEOUT
636 /**
637  * @brief Function for setting the output value of specified channel while
638  *        PDM is idle.
639  *
640  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
641  * @param[in] channel PWM output channel.
642  * @param[in] value   If true, idle output will be high. If false, it will be low.
643  */
644 NRF_STATIC_INLINE void nrf_pwm_channel_idle_set(NRF_PWM_Type * p_reg,
645                                                 uint8_t        channel,
646                                                 bool           value);
647 
648 /**
649  * @brief Function for getting the output value of specified channel while
650  *        PDM is idle.
651  *
652  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
653  * @param[in] channel PWM output channel.
654  *
655  * @retval true  Idle output value is high.
656  * @retval false Idle output value is low.
657  */
658 NRF_STATIC_INLINE bool nrf_pwm_channel_idle_get(NRF_PWM_Type const * p_reg,
659                                                 uint8_t              channel);
660 #endif // NRF_PWM_HAS_IDLEOUT
661 
662 #ifndef NRF_DECLARE_ONLY
663 
nrf_pwm_task_trigger(NRF_PWM_Type * p_reg,nrf_pwm_task_t task)664 NRF_STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg,
665                                             nrf_pwm_task_t task)
666 {
667     *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
668 }
669 
nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg,nrf_pwm_task_t task)670 NRF_STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg,
671                                                     nrf_pwm_task_t       task)
672 {
673     return ((uint32_t)p_reg + (uint32_t)task);
674 }
675 
nrf_pwm_event_clear(NRF_PWM_Type * p_reg,nrf_pwm_event_t event)676 NRF_STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type *  p_reg,
677                                            nrf_pwm_event_t event)
678 {
679     *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
680     nrf_event_readback((uint8_t *)p_reg + (uint32_t)event);
681 }
682 
nrf_pwm_event_check(NRF_PWM_Type const * p_reg,nrf_pwm_event_t event)683 NRF_STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg,
684                                            nrf_pwm_event_t      event)
685 {
686     return nrf_event_check(p_reg, event);
687 }
688 
nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg,nrf_pwm_event_t event)689 NRF_STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg,
690                                                      nrf_pwm_event_t      event)
691 {
692     return ((uint32_t)p_reg + (uint32_t)event);
693 }
694 
nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg,uint32_t mask)695 NRF_STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg, uint32_t mask)
696 {
697     p_reg->SHORTS |= mask;
698 }
699 
nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg,uint32_t mask)700 NRF_STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg, uint32_t mask)
701 {
702     p_reg->SHORTS &= ~(mask);
703 }
704 
nrf_pwm_shorts_set(NRF_PWM_Type * p_reg,uint32_t mask)705 NRF_STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg, uint32_t mask)
706 {
707     p_reg->SHORTS = mask;
708 }
709 
nrf_pwm_int_enable(NRF_PWM_Type * p_reg,uint32_t mask)710 NRF_STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg, uint32_t mask)
711 {
712     p_reg->INTENSET = mask;
713 }
714 
nrf_pwm_int_disable(NRF_PWM_Type * p_reg,uint32_t mask)715 NRF_STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg, uint32_t mask)
716 {
717     p_reg->INTENCLR = mask;
718 }
719 
nrf_pwm_int_set(NRF_PWM_Type * p_reg,uint32_t mask)720 NRF_STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg, uint32_t mask)
721 {
722     p_reg->INTEN = mask;
723 }
724 
nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg,uint32_t mask)725 NRF_STATIC_INLINE uint32_t nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, uint32_t mask)
726 {
727     return p_reg->INTENSET & mask;
728 }
729 
730 #if defined(DPPI_PRESENT)
nrf_pwm_subscribe_set(NRF_PWM_Type * p_reg,nrf_pwm_task_t task,uint8_t channel)731 NRF_STATIC_INLINE void nrf_pwm_subscribe_set(NRF_PWM_Type * p_reg,
732                                              nrf_pwm_task_t task,
733                                              uint8_t        channel)
734 {
735     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
736             ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE);
737 }
738 
nrf_pwm_subscribe_clear(NRF_PWM_Type * p_reg,nrf_pwm_task_t task)739 NRF_STATIC_INLINE void nrf_pwm_subscribe_clear(NRF_PWM_Type * p_reg,
740                                                nrf_pwm_task_t task)
741 {
742     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
743 }
744 
nrf_pwm_publish_set(NRF_PWM_Type * p_reg,nrf_pwm_event_t event,uint8_t channel)745 NRF_STATIC_INLINE void nrf_pwm_publish_set(NRF_PWM_Type *  p_reg,
746                                            nrf_pwm_event_t event,
747                                            uint8_t         channel)
748 {
749     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
750             ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE);
751 }
752 
nrf_pwm_publish_clear(NRF_PWM_Type * p_reg,nrf_pwm_event_t event)753 NRF_STATIC_INLINE void nrf_pwm_publish_clear(NRF_PWM_Type *  p_reg,
754                                              nrf_pwm_event_t event)
755 {
756     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
757 }
758 #endif // defined(DPPI_PRESENT)
759 
nrf_pwm_enable(NRF_PWM_Type * p_reg)760 NRF_STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg)
761 {
762     p_reg->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
763 }
764 
nrf_pwm_disable(NRF_PWM_Type * p_reg)765 NRF_STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg)
766 {
767     p_reg->ENABLE = (PWM_ENABLE_ENABLE_Disabled << PWM_ENABLE_ENABLE_Pos);
768 }
769 
nrf_pwm_enable_check(NRF_PWM_Type const * p_reg)770 NRF_STATIC_INLINE bool nrf_pwm_enable_check(NRF_PWM_Type const * p_reg)
771 {
772     return p_reg->ENABLE == PWM_ENABLE_ENABLE_Enabled;
773 }
774 
nrf_pwm_pins_set(NRF_PWM_Type * p_reg,uint32_t const out_pins[NRF_PWM_CHANNEL_COUNT])775 NRF_STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg,
776                                         uint32_t const out_pins[NRF_PWM_CHANNEL_COUNT])
777 {
778     uint8_t i;
779     for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i)
780     {
781         p_reg->PSEL.OUT[i] = out_pins[i];
782     }
783 }
784 
nrf_pwm_pin_set(NRF_PWM_Type * p_reg,uint8_t channel,uint32_t pin)785 NRF_STATIC_INLINE void nrf_pwm_pin_set(NRF_PWM_Type * p_reg, uint8_t channel, uint32_t pin)
786 {
787     NRFX_ASSERT(channel < NRF_PWM_CHANNEL_COUNT);
788     p_reg->PSEL.OUT[channel] = pin;
789 }
790 
nrf_pwm_pin_get(NRF_PWM_Type const * p_reg,uint8_t channel)791 NRF_STATIC_INLINE uint32_t nrf_pwm_pin_get(NRF_PWM_Type const * p_reg, uint8_t channel)
792 {
793     NRFX_ASSERT(channel < NRF_PWM_CHANNEL_COUNT);
794     return p_reg->PSEL.OUT[channel];
795 }
796 
nrf_pwm_configure(NRF_PWM_Type * p_reg,nrf_pwm_clk_t base_clock,nrf_pwm_mode_t mode,uint16_t top_value)797 NRF_STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg,
798                                          nrf_pwm_clk_t  base_clock,
799                                          nrf_pwm_mode_t mode,
800                                          uint16_t       top_value)
801 {
802     NRFX_ASSERT(top_value <= PWM_COUNTERTOP_COUNTERTOP_Msk);
803 
804     p_reg->PRESCALER  = base_clock;
805     p_reg->MODE       = mode;
806     p_reg->COUNTERTOP = top_value;
807 }
808 
nrf_pwm_sequence_set(NRF_PWM_Type * p_reg,uint8_t seq_id,nrf_pwm_sequence_t const * p_seq)809 NRF_STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type *             p_reg,
810                                             uint8_t                    seq_id,
811                                             nrf_pwm_sequence_t const * p_seq)
812 {
813     NRFX_ASSERT(p_seq != NULL);
814 
815     nrf_pwm_seq_ptr_set(      p_reg, seq_id, p_seq->values.p_raw);
816     nrf_pwm_seq_cnt_set(      p_reg, seq_id, p_seq->length);
817     nrf_pwm_seq_refresh_set(  p_reg, seq_id, p_seq->repeats);
818     nrf_pwm_seq_end_delay_set(p_reg, seq_id, p_seq->end_delay);
819 }
820 
nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_reg,uint8_t seq_id,uint16_t const * p_values)821 NRF_STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type *   p_reg,
822                                            uint8_t          seq_id,
823                                            uint16_t const * p_values)
824 {
825     NRFX_ASSERT(seq_id <= 1);
826     NRFX_ASSERT(p_values != NULL);
827 #if NRF_PWM_HAS_DMA_REG
828     p_reg->DMA.SEQ[seq_id].PTR = (uint32_t)p_values;
829 #else
830     p_reg->SEQ[seq_id].PTR = (uint32_t)p_values;
831 #endif
832 }
833 
nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg,uint8_t seq_id,uint16_t length)834 NRF_STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg,
835                                            uint8_t        seq_id,
836                                            uint16_t       length)
837 {
838     NRFX_ASSERT(seq_id <= 1);
839     NRFX_ASSERT(length != 0);
840 #if NRF_PWM_HAS_DMA_REG
841     NRFX_ASSERT(length * sizeof(uint16_t) <= PWM_DMA_SEQ_MAXCNT_MAXCNT_Msk);
842     p_reg->DMA.SEQ[seq_id].MAXCNT = length * sizeof(uint16_t);
843 #else
844     NRFX_ASSERT(length <= PWM_SEQ_CNT_CNT_Msk);
845     p_reg->SEQ[seq_id].CNT = length;
846 #endif
847 }
848 
nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg,uint8_t seq_id,uint32_t refresh)849 NRF_STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg,
850                                                uint8_t        seq_id,
851                                                uint32_t       refresh)
852 {
853     NRFX_ASSERT(seq_id <= 1);
854     NRFX_ASSERT(refresh <= PWM_SEQ_REFRESH_CNT_Msk);
855     p_reg->SEQ[seq_id].REFRESH  = refresh;
856 }
857 
nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg,uint8_t seq_id,uint32_t end_delay)858 NRF_STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg,
859                                                  uint8_t        seq_id,
860                                                  uint32_t       end_delay)
861 {
862     NRFX_ASSERT(seq_id <= 1);
863     NRFX_ASSERT(end_delay <= PWM_SEQ_ENDDELAY_CNT_Msk);
864     p_reg->SEQ[seq_id].ENDDELAY = end_delay;
865 }
866 
nrf_pwm_decoder_set(NRF_PWM_Type * p_reg,nrf_pwm_dec_load_t dec_load,nrf_pwm_dec_step_t dec_step)867 NRF_STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type *     p_reg,
868                                            nrf_pwm_dec_load_t dec_load,
869                                            nrf_pwm_dec_step_t dec_step)
870 {
871     p_reg->DECODER = ((uint32_t)dec_load << PWM_DECODER_LOAD_Pos) |
872                      ((uint32_t)dec_step << PWM_DECODER_MODE_Pos);
873 }
874 
nrf_pwm_loop_set(NRF_PWM_Type * p_reg,uint16_t loop_count)875 NRF_STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg,
876                                         uint16_t       loop_count)
877 {
878     p_reg->LOOP = loop_count;
879 }
880 
nrf_pwm_seqstart_task_get(uint8_t seq_id)881 NRF_STATIC_INLINE nrf_pwm_task_t nrf_pwm_seqstart_task_get(uint8_t seq_id)
882 {
883     NRFX_ASSERT(seq_id <= 1);
884 #if NRF_PWM_HAS_DMA_TASKS_EVENTS
885     return (nrf_pwm_task_t)NRFX_OFFSETOF(NRF_PWM_Type, TASKS_DMA.SEQ[seq_id].START);
886 #else
887     return (nrf_pwm_task_t)NRFX_OFFSETOF(NRF_PWM_Type, TASKS_SEQSTART[seq_id]);
888 #endif
889 }
890 
nrf_pwm_seqend_event_get(uint8_t seq_id)891 NRF_STATIC_INLINE nrf_pwm_event_t nrf_pwm_seqend_event_get(uint8_t seq_id)
892 {
893     NRFX_ASSERT(seq_id <= 1);
894 #if NRF_PWM_HAS_DMA_TASKS_EVENTS
895     return (nrf_pwm_event_t)NRFX_OFFSETOF(NRF_PWM_Type, EVENTS_DMA.SEQ[seq_id].END);
896 #else
897     return (nrf_pwm_event_t)NRFX_OFFSETOF(NRF_PWM_Type, EVENTS_SEQEND[seq_id]);
898 #endif
899 }
900 
901 #if NRF_PWM_HAS_IDLEOUT
nrf_pwm_channel_idle_set(NRF_PWM_Type * p_reg,uint8_t channel,bool value)902 NRF_STATIC_INLINE void nrf_pwm_channel_idle_set(NRF_PWM_Type * p_reg,
903                                                 uint8_t        channel,
904                                                 bool           value)
905 {
906     if (value)
907     {
908         p_reg->IDLEOUT |= (1UL << channel);
909     }
910     else
911     {
912         p_reg->IDLEOUT &= ~(1UL << channel);
913     }
914 }
915 
nrf_pwm_channel_idle_get(NRF_PWM_Type const * p_reg,uint8_t channel)916 NRF_STATIC_INLINE bool nrf_pwm_channel_idle_get(NRF_PWM_Type const * p_reg,
917                                                 uint8_t              channel)
918 {
919     return ((p_reg->IDLEOUT >> channel) & 1UL);
920 }
921 #endif // NRF_PWM_HAS_IDLEOUT
922 
923 #endif // NRF_DECLARE_ONLY
924 
925 /** @} */
926 
927 #ifdef __cplusplus
928 }
929 #endif
930 
931 #endif // NRF_PWM_H__
932 
933