1"""Common features for bignum in test generation framework."""
2# Copyright The Mbed TLS Contributors
3# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
4#
5
6from abc import abstractmethod
7import enum
8from typing import Iterator, List, Tuple, TypeVar, Any
9from copy import deepcopy
10from itertools import chain
11from math import ceil
12
13from . import test_case
14from . import test_data_generation
15from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT
16
17T = TypeVar('T') #pylint: disable=invalid-name
18
19def invmod(a: int, n: int) -> int:
20    """Return inverse of a to modulo n.
21
22    Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent
23    to long_invmod() in CPython.
24    """
25    b, c = 1, 0
26    while n:
27        q, r = divmod(a, n)
28        a, b, c, n = n, c, b - q*c, r
29    # at this point a is the gcd of the original inputs
30    if a == 1:
31        return b
32    raise ValueError("Not invertible")
33
34def invmod_positive(a: int, n: int) -> int:
35    """Return a non-negative inverse of a to modulo n."""
36    inv = invmod(a, n)
37    return inv if inv >= 0 else inv + n
38
39def hex_to_int(val: str) -> int:
40    """Implement the syntax accepted by mbedtls_test_read_mpi().
41
42    This is a superset of what is accepted by mbedtls_test_read_mpi_core().
43    """
44    if val in ['', '-']:
45        return 0
46    return int(val, 16)
47
48def quote_str(val: str) -> str:
49    return "\"{}\"".format(val)
50
51def bound_mpi(val: int, bits_in_limb: int) -> int:
52    """First number exceeding number of limbs needed for given input value."""
53    return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb)
54
55def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int:
56    """First number exceeding maximum of given number of limbs."""
57    bits = bits_in_limb * limbs
58    return 1 << bits
59
60def limbs_mpi(val: int, bits_in_limb: int) -> int:
61    """Return the number of limbs required to store value."""
62    bit_length = max(val.bit_length(), 1)
63    return (bit_length + bits_in_limb - 1) // bits_in_limb
64
65def combination_pairs(values: List[T]) -> List[Tuple[T, T]]:
66    """Return all pair combinations from input values."""
67    return [(x, y) for x in values for y in values]
68
69def bits_to_limbs(bits: int, bits_in_limb: int) -> int:
70    """ Return the appropriate ammount of limbs needed to store
71        a number contained in input bits"""
72    return ceil(bits / bits_in_limb)
73
74def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int:
75    """ Return the hex digits need for a number of limbs. """
76    return 2 * ((limbs * bits_in_limb) // 8)
77
78def hex_digits_max_int(val: str, bits_in_limb: int) -> int:
79    """ Return the first number exceeding maximum  the limb space
80    required to store the input hex-string value. This method
81    weights on the input str_len rather than numerical value
82    and works with zero-padded inputs"""
83    n = ((1 << (len(val) * 4)) - 1)
84    l = limbs_mpi(n, bits_in_limb)
85    return bound_mpi_limbs(l, bits_in_limb)
86
87def zfill_match(reference: str, target: str) -> str:
88    """ Zero pad target hex-string to match the limb size of
89    the reference input """
90    lt = len(target)
91    lr = len(reference)
92    target_len = lr if lt < lr else lt
93    return "{:x}".format(int(target, 16)).zfill(target_len)
94
95class OperationCommon(test_data_generation.BaseTest):
96    """Common features for bignum binary operations.
97
98    This adds functionality common in binary operation tests.
99
100    Attributes:
101        symbol: Symbol to use for the operation in case description.
102        input_values: List of values to use as test case inputs. These are
103            combined to produce pairs of values.
104        input_cases: List of tuples containing pairs of test case inputs. This
105            can be used to implement specific pairs of inputs.
106        unique_combinations_only: Boolean to select if test case combinations
107            must be unique. If True, only A,B or B,A would be included as a test
108            case. If False, both A,B and B,A would be included.
109        input_style: Controls the way how test data is passed to the functions
110            in the generated test cases. "variable" passes them as they are
111            defined in the python source. "arch_split" pads the values with
112            zeroes depending on the architecture/limb size. If this is set,
113            test cases are generated for all architectures.
114        arity: the number of operands for the operation. Currently supported
115            values are 1 and 2.
116    """
117    symbol = ""
118    input_values = INPUTS_DEFAULT # type: List[str]
119    input_cases = [] # type: List[Any]
120    dependencies = [] # type: List[Any]
121    unique_combinations_only = False
122    input_styles = ["variable", "fixed", "arch_split"] # type: List[str]
123    input_style = "variable" # type: str
124    limb_sizes = [32, 64] # type: List[int]
125    arities = [1, 2]
126    arity = 2
127    suffix = False   # for arity = 1, symbol can be prefix (default) or suffix
128
129    def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None:
130        self.val_a = val_a
131        self.val_b = val_b
132        # Setting the int versions here as opposed to making them @properties
133        # provides earlier/more robust input validation.
134        self.int_a = hex_to_int(val_a)
135        self.int_b = hex_to_int(val_b)
136        self.dependencies = deepcopy(self.dependencies)
137        if bits_in_limb not in self.limb_sizes:
138            raise ValueError("Invalid number of bits in limb!")
139        if self.input_style == "arch_split":
140            self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb))
141        self.bits_in_limb = bits_in_limb
142
143    @property
144    def boundary(self) -> int:
145        if self.arity == 1:
146            return self.int_a
147        elif self.arity == 2:
148            return max(self.int_a, self.int_b)
149        raise ValueError("Unsupported number of operands!")
150
151    @property
152    def limb_boundary(self) -> int:
153        return bound_mpi(self.boundary, self.bits_in_limb)
154
155    @property
156    def limbs(self) -> int:
157        return limbs_mpi(self.boundary, self.bits_in_limb)
158
159    @property
160    def hex_digits(self) -> int:
161        return hex_digits_for_limb(self.limbs, self.bits_in_limb)
162
163    def format_arg(self, val: str) -> str:
164        if self.input_style not in self.input_styles:
165            raise ValueError("Unknown input style!")
166        if self.input_style == "variable":
167            return val
168        else:
169            return val.zfill(self.hex_digits)
170
171    def format_result(self, res: int) -> str:
172        res_str = '{:x}'.format(res)
173        return quote_str(self.format_arg(res_str))
174
175    @property
176    def arg_a(self) -> str:
177        return self.format_arg(self.val_a)
178
179    @property
180    def arg_b(self) -> str:
181        if self.arity == 1:
182            raise AttributeError("Operation is unary and doesn't have arg_b!")
183        return self.format_arg(self.val_b)
184
185    def arguments(self) -> List[str]:
186        args = [quote_str(self.arg_a)]
187        if self.arity == 2:
188            args.append(quote_str(self.arg_b))
189        return args + self.result()
190
191    def description(self) -> str:
192        """Generate a description for the test case.
193
194        If not set, case_description uses the form A `symbol` B, where symbol
195        is used to represent the operation. Descriptions of each value are
196        generated to provide some context to the test case.
197        """
198        if not self.case_description:
199            if self.arity == 1:
200                format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}"
201                self.case_description = format_string.format(
202                    self.symbol, self.int_a
203                )
204            elif self.arity == 2:
205                self.case_description = "{:x} {} {:x}".format(
206                    self.int_a, self.symbol, self.int_b
207                )
208        return super().description()
209
210    @property
211    def is_valid(self) -> bool:
212        return True
213
214    @abstractmethod
215    def result(self) -> List[str]:
216        """Get the result of the operation.
217
218        This could be calculated during initialization and stored as `_result`
219        and then returned, or calculated when the method is called.
220        """
221        raise NotImplementedError
222
223    @classmethod
224    def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
225        """Generator to yield pairs of inputs.
226
227        Combinations are first generated from all input values, and then
228        specific cases provided.
229        """
230        if cls.arity == 1:
231            yield from ((a, "0") for a in cls.input_values)
232        elif cls.arity == 2:
233            if cls.unique_combinations_only:
234                yield from combination_pairs(cls.input_values)
235            else:
236                yield from (
237                    (a, b)
238                    for a in cls.input_values
239                    for b in cls.input_values
240                )
241        else:
242            raise ValueError("Unsupported number of operands!")
243
244    @classmethod
245    def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
246        if cls.input_style not in cls.input_styles:
247            raise ValueError("Unknown input style!")
248        if cls.arity not in cls.arities:
249            raise ValueError("Unsupported number of operands!")
250        if cls.input_style == "arch_split":
251            test_objects = (cls(a, b, bits_in_limb=bil)
252                            for a, b in cls.get_value_pairs()
253                            for bil in cls.limb_sizes)
254            special_cases = (cls(*args, bits_in_limb=bil) # type: ignore
255                             for args in cls.input_cases
256                             for bil in cls.limb_sizes)
257        else:
258            test_objects = (cls(a, b)
259                            for a, b in cls.get_value_pairs())
260            special_cases = (cls(*args) for args in cls.input_cases)
261        yield from (valid_test_object.create_test_case()
262                    for valid_test_object in filter(
263                        lambda test_object: test_object.is_valid,
264                        chain(test_objects, special_cases)
265                        )
266                    )
267
268
269class ModulusRepresentation(enum.Enum):
270    """Representation selector of a modulus."""
271    # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector
272    INVALID = 0
273    MONTGOMERY = 2
274    OPT_RED = 3
275
276    def symbol(self) -> str:
277        """The C symbol for this representation selector."""
278        return 'MBEDTLS_MPI_MOD_REP_' + self.name
279
280    @classmethod
281    def supported_representations(cls) -> List['ModulusRepresentation']:
282        """Return all representations that are supported in positive test cases."""
283        return [cls.MONTGOMERY, cls.OPT_RED]
284
285
286class ModOperationCommon(OperationCommon):
287    #pylint: disable=abstract-method
288    """Target for bignum mod_raw test case generation."""
289    moduli = MODULI_DEFAULT # type: List[str]
290    montgomery_form_a = False
291    disallow_zero_a = False
292
293    def __init__(self, val_n: str, val_a: str, val_b: str = "0",
294                 bits_in_limb: int = 64) -> None:
295        super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb)
296        self.val_n = val_n
297        # Setting the int versions here as opposed to making them @properties
298        # provides earlier/more robust input validation.
299        self.int_n = hex_to_int(val_n)
300
301    def to_montgomery(self, val: int) -> int:
302        return (val * self.r) % self.int_n
303
304    def from_montgomery(self, val: int) -> int:
305        return (val * self.r_inv) % self.int_n
306
307    def convert_from_canonical(self, canonical: int,
308                               rep: ModulusRepresentation) -> int:
309        """Convert values from canonical representation to the given representation."""
310        if rep is ModulusRepresentation.MONTGOMERY:
311            return self.to_montgomery(canonical)
312        elif rep is ModulusRepresentation.OPT_RED:
313            return canonical
314        else:
315            raise ValueError('Modulus representation not supported: {}'
316                             .format(rep.name))
317
318    @property
319    def boundary(self) -> int:
320        return self.int_n
321
322    @property
323    def arg_a(self) -> str:
324        if self.montgomery_form_a:
325            value_a = self.to_montgomery(self.int_a)
326        else:
327            value_a = self.int_a
328        return self.format_arg('{:x}'.format(value_a))
329
330    @property
331    def arg_n(self) -> str:
332        return self.format_arg(self.val_n)
333
334    def format_arg(self, val: str) -> str:
335        return super().format_arg(val).zfill(self.hex_digits)
336
337    def arguments(self) -> List[str]:
338        return [quote_str(self.arg_n)] + super().arguments()
339
340    @property
341    def r(self) -> int: # pylint: disable=invalid-name
342        l = limbs_mpi(self.int_n, self.bits_in_limb)
343        return bound_mpi_limbs(l, self.bits_in_limb)
344
345    @property
346    def r_inv(self) -> int:
347        return invmod(self.r, self.int_n)
348
349    @property
350    def r2(self) -> int: # pylint: disable=invalid-name
351        return pow(self.r, 2)
352
353    @property
354    def is_valid(self) -> bool:
355        if self.int_a >= self.int_n:
356            return False
357        if self.disallow_zero_a and self.int_a == 0:
358            return False
359        if self.arity == 2 and self.int_b >= self.int_n:
360            return False
361        return True
362
363    def description(self) -> str:
364        """Generate a description for the test case.
365
366        It uses the form A `symbol` B mod N, where symbol is used to represent
367        the operation.
368        """
369
370        if not self.case_description:
371            return super().description() + " mod {:x}".format(self.int_n)
372        return super().description()
373
374    @classmethod
375    def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]:
376        if cls.arity == 1:
377            yield from ((n, a, "0") for a, n in cls.input_cases)
378        elif cls.arity == 2:
379            yield from ((n, a, b) for a, b, n in cls.input_cases)
380        else:
381            raise ValueError("Unsupported number of operands!")
382
383    @classmethod
384    def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
385        if cls.input_style not in cls.input_styles:
386            raise ValueError("Unknown input style!")
387        if cls.arity not in cls.arities:
388            raise ValueError("Unsupported number of operands!")
389        if cls.input_style == "arch_split":
390            test_objects = (cls(n, a, b, bits_in_limb=bil)
391                            for n in cls.moduli
392                            for a, b in cls.get_value_pairs()
393                            for bil in cls.limb_sizes)
394            special_cases = (cls(*args, bits_in_limb=bil)
395                             for args in cls.input_cases_args()
396                             for bil in cls.limb_sizes)
397        else:
398            test_objects = (cls(n, a, b)
399                            for n in cls.moduli
400                            for a, b in cls.get_value_pairs())
401            special_cases = (cls(*args) for args in cls.input_cases_args())
402        yield from (valid_test_object.create_test_case()
403                    for valid_test_object in filter(
404                        lambda test_object: test_object.is_valid,
405                        chain(test_objects, special_cases)
406                        ))
407