1"""Common features for bignum in test generation framework.""" 2# Copyright The Mbed TLS Contributors 3# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 4# 5 6from abc import abstractmethod 7import enum 8from typing import Iterator, List, Tuple, TypeVar, Any 9from copy import deepcopy 10from itertools import chain 11from math import ceil 12 13from . import test_case 14from . import test_data_generation 15from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT 16 17T = TypeVar('T') #pylint: disable=invalid-name 18 19def invmod(a: int, n: int) -> int: 20 """Return inverse of a to modulo n. 21 22 Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent 23 to long_invmod() in CPython. 24 """ 25 b, c = 1, 0 26 while n: 27 q, r = divmod(a, n) 28 a, b, c, n = n, c, b - q*c, r 29 # at this point a is the gcd of the original inputs 30 if a == 1: 31 return b 32 raise ValueError("Not invertible") 33 34def invmod_positive(a: int, n: int) -> int: 35 """Return a non-negative inverse of a to modulo n.""" 36 inv = invmod(a, n) 37 return inv if inv >= 0 else inv + n 38 39def hex_to_int(val: str) -> int: 40 """Implement the syntax accepted by mbedtls_test_read_mpi(). 41 42 This is a superset of what is accepted by mbedtls_test_read_mpi_core(). 43 """ 44 if val in ['', '-']: 45 return 0 46 return int(val, 16) 47 48def quote_str(val: str) -> str: 49 return "\"{}\"".format(val) 50 51def bound_mpi(val: int, bits_in_limb: int) -> int: 52 """First number exceeding number of limbs needed for given input value.""" 53 return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb) 54 55def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int: 56 """First number exceeding maximum of given number of limbs.""" 57 bits = bits_in_limb * limbs 58 return 1 << bits 59 60def limbs_mpi(val: int, bits_in_limb: int) -> int: 61 """Return the number of limbs required to store value.""" 62 bit_length = max(val.bit_length(), 1) 63 return (bit_length + bits_in_limb - 1) // bits_in_limb 64 65def combination_pairs(values: List[T]) -> List[Tuple[T, T]]: 66 """Return all pair combinations from input values.""" 67 return [(x, y) for x in values for y in values] 68 69def bits_to_limbs(bits: int, bits_in_limb: int) -> int: 70 """ Return the appropriate ammount of limbs needed to store 71 a number contained in input bits""" 72 return ceil(bits / bits_in_limb) 73 74def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int: 75 """ Return the hex digits need for a number of limbs. """ 76 return 2 * ((limbs * bits_in_limb) // 8) 77 78def hex_digits_max_int(val: str, bits_in_limb: int) -> int: 79 """ Return the first number exceeding maximum the limb space 80 required to store the input hex-string value. This method 81 weights on the input str_len rather than numerical value 82 and works with zero-padded inputs""" 83 n = ((1 << (len(val) * 4)) - 1) 84 l = limbs_mpi(n, bits_in_limb) 85 return bound_mpi_limbs(l, bits_in_limb) 86 87def zfill_match(reference: str, target: str) -> str: 88 """ Zero pad target hex-string to match the limb size of 89 the reference input """ 90 lt = len(target) 91 lr = len(reference) 92 target_len = lr if lt < lr else lt 93 return "{:x}".format(int(target, 16)).zfill(target_len) 94 95class OperationCommon(test_data_generation.BaseTest): 96 """Common features for bignum binary operations. 97 98 This adds functionality common in binary operation tests. 99 100 Attributes: 101 symbol: Symbol to use for the operation in case description. 102 input_values: List of values to use as test case inputs. These are 103 combined to produce pairs of values. 104 input_cases: List of tuples containing pairs of test case inputs. This 105 can be used to implement specific pairs of inputs. 106 unique_combinations_only: Boolean to select if test case combinations 107 must be unique. If True, only A,B or B,A would be included as a test 108 case. If False, both A,B and B,A would be included. 109 input_style: Controls the way how test data is passed to the functions 110 in the generated test cases. "variable" passes them as they are 111 defined in the python source. "arch_split" pads the values with 112 zeroes depending on the architecture/limb size. If this is set, 113 test cases are generated for all architectures. 114 arity: the number of operands for the operation. Currently supported 115 values are 1 and 2. 116 """ 117 symbol = "" 118 input_values = INPUTS_DEFAULT # type: List[str] 119 input_cases = [] # type: List[Any] 120 dependencies = [] # type: List[Any] 121 unique_combinations_only = False 122 input_styles = ["variable", "fixed", "arch_split"] # type: List[str] 123 input_style = "variable" # type: str 124 limb_sizes = [32, 64] # type: List[int] 125 arities = [1, 2] 126 arity = 2 127 suffix = False # for arity = 1, symbol can be prefix (default) or suffix 128 129 def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None: 130 self.val_a = val_a 131 self.val_b = val_b 132 # Setting the int versions here as opposed to making them @properties 133 # provides earlier/more robust input validation. 134 self.int_a = hex_to_int(val_a) 135 self.int_b = hex_to_int(val_b) 136 self.dependencies = deepcopy(self.dependencies) 137 if bits_in_limb not in self.limb_sizes: 138 raise ValueError("Invalid number of bits in limb!") 139 if self.input_style == "arch_split": 140 self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)) 141 self.bits_in_limb = bits_in_limb 142 143 @property 144 def boundary(self) -> int: 145 if self.arity == 1: 146 return self.int_a 147 elif self.arity == 2: 148 return max(self.int_a, self.int_b) 149 raise ValueError("Unsupported number of operands!") 150 151 @property 152 def limb_boundary(self) -> int: 153 return bound_mpi(self.boundary, self.bits_in_limb) 154 155 @property 156 def limbs(self) -> int: 157 return limbs_mpi(self.boundary, self.bits_in_limb) 158 159 @property 160 def hex_digits(self) -> int: 161 return hex_digits_for_limb(self.limbs, self.bits_in_limb) 162 163 def format_arg(self, val: str) -> str: 164 if self.input_style not in self.input_styles: 165 raise ValueError("Unknown input style!") 166 if self.input_style == "variable": 167 return val 168 else: 169 return val.zfill(self.hex_digits) 170 171 def format_result(self, res: int) -> str: 172 res_str = '{:x}'.format(res) 173 return quote_str(self.format_arg(res_str)) 174 175 @property 176 def arg_a(self) -> str: 177 return self.format_arg(self.val_a) 178 179 @property 180 def arg_b(self) -> str: 181 if self.arity == 1: 182 raise AttributeError("Operation is unary and doesn't have arg_b!") 183 return self.format_arg(self.val_b) 184 185 def arguments(self) -> List[str]: 186 args = [quote_str(self.arg_a)] 187 if self.arity == 2: 188 args.append(quote_str(self.arg_b)) 189 return args + self.result() 190 191 def description(self) -> str: 192 """Generate a description for the test case. 193 194 If not set, case_description uses the form A `symbol` B, where symbol 195 is used to represent the operation. Descriptions of each value are 196 generated to provide some context to the test case. 197 """ 198 if not self.case_description: 199 if self.arity == 1: 200 format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}" 201 self.case_description = format_string.format( 202 self.symbol, self.int_a 203 ) 204 elif self.arity == 2: 205 self.case_description = "{:x} {} {:x}".format( 206 self.int_a, self.symbol, self.int_b 207 ) 208 return super().description() 209 210 @property 211 def is_valid(self) -> bool: 212 return True 213 214 @abstractmethod 215 def result(self) -> List[str]: 216 """Get the result of the operation. 217 218 This could be calculated during initialization and stored as `_result` 219 and then returned, or calculated when the method is called. 220 """ 221 raise NotImplementedError 222 223 @classmethod 224 def get_value_pairs(cls) -> Iterator[Tuple[str, str]]: 225 """Generator to yield pairs of inputs. 226 227 Combinations are first generated from all input values, and then 228 specific cases provided. 229 """ 230 if cls.arity == 1: 231 yield from ((a, "0") for a in cls.input_values) 232 elif cls.arity == 2: 233 if cls.unique_combinations_only: 234 yield from combination_pairs(cls.input_values) 235 else: 236 yield from ( 237 (a, b) 238 for a in cls.input_values 239 for b in cls.input_values 240 ) 241 else: 242 raise ValueError("Unsupported number of operands!") 243 244 @classmethod 245 def generate_function_tests(cls) -> Iterator[test_case.TestCase]: 246 if cls.input_style not in cls.input_styles: 247 raise ValueError("Unknown input style!") 248 if cls.arity not in cls.arities: 249 raise ValueError("Unsupported number of operands!") 250 if cls.input_style == "arch_split": 251 test_objects = (cls(a, b, bits_in_limb=bil) 252 for a, b in cls.get_value_pairs() 253 for bil in cls.limb_sizes) 254 special_cases = (cls(*args, bits_in_limb=bil) # type: ignore 255 for args in cls.input_cases 256 for bil in cls.limb_sizes) 257 else: 258 test_objects = (cls(a, b) 259 for a, b in cls.get_value_pairs()) 260 special_cases = (cls(*args) for args in cls.input_cases) 261 yield from (valid_test_object.create_test_case() 262 for valid_test_object in filter( 263 lambda test_object: test_object.is_valid, 264 chain(test_objects, special_cases) 265 ) 266 ) 267 268 269class ModulusRepresentation(enum.Enum): 270 """Representation selector of a modulus.""" 271 # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector 272 INVALID = 0 273 MONTGOMERY = 2 274 OPT_RED = 3 275 276 def symbol(self) -> str: 277 """The C symbol for this representation selector.""" 278 return 'MBEDTLS_MPI_MOD_REP_' + self.name 279 280 @classmethod 281 def supported_representations(cls) -> List['ModulusRepresentation']: 282 """Return all representations that are supported in positive test cases.""" 283 return [cls.MONTGOMERY, cls.OPT_RED] 284 285 286class ModOperationCommon(OperationCommon): 287 #pylint: disable=abstract-method 288 """Target for bignum mod_raw test case generation.""" 289 moduli = MODULI_DEFAULT # type: List[str] 290 montgomery_form_a = False 291 disallow_zero_a = False 292 293 def __init__(self, val_n: str, val_a: str, val_b: str = "0", 294 bits_in_limb: int = 64) -> None: 295 super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb) 296 self.val_n = val_n 297 # Setting the int versions here as opposed to making them @properties 298 # provides earlier/more robust input validation. 299 self.int_n = hex_to_int(val_n) 300 301 def to_montgomery(self, val: int) -> int: 302 return (val * self.r) % self.int_n 303 304 def from_montgomery(self, val: int) -> int: 305 return (val * self.r_inv) % self.int_n 306 307 def convert_from_canonical(self, canonical: int, 308 rep: ModulusRepresentation) -> int: 309 """Convert values from canonical representation to the given representation.""" 310 if rep is ModulusRepresentation.MONTGOMERY: 311 return self.to_montgomery(canonical) 312 elif rep is ModulusRepresentation.OPT_RED: 313 return canonical 314 else: 315 raise ValueError('Modulus representation not supported: {}' 316 .format(rep.name)) 317 318 @property 319 def boundary(self) -> int: 320 return self.int_n 321 322 @property 323 def arg_a(self) -> str: 324 if self.montgomery_form_a: 325 value_a = self.to_montgomery(self.int_a) 326 else: 327 value_a = self.int_a 328 return self.format_arg('{:x}'.format(value_a)) 329 330 @property 331 def arg_n(self) -> str: 332 return self.format_arg(self.val_n) 333 334 def format_arg(self, val: str) -> str: 335 return super().format_arg(val).zfill(self.hex_digits) 336 337 def arguments(self) -> List[str]: 338 return [quote_str(self.arg_n)] + super().arguments() 339 340 @property 341 def r(self) -> int: # pylint: disable=invalid-name 342 l = limbs_mpi(self.int_n, self.bits_in_limb) 343 return bound_mpi_limbs(l, self.bits_in_limb) 344 345 @property 346 def r_inv(self) -> int: 347 return invmod(self.r, self.int_n) 348 349 @property 350 def r2(self) -> int: # pylint: disable=invalid-name 351 return pow(self.r, 2) 352 353 @property 354 def is_valid(self) -> bool: 355 if self.int_a >= self.int_n: 356 return False 357 if self.disallow_zero_a and self.int_a == 0: 358 return False 359 if self.arity == 2 and self.int_b >= self.int_n: 360 return False 361 return True 362 363 def description(self) -> str: 364 """Generate a description for the test case. 365 366 It uses the form A `symbol` B mod N, where symbol is used to represent 367 the operation. 368 """ 369 370 if not self.case_description: 371 return super().description() + " mod {:x}".format(self.int_n) 372 return super().description() 373 374 @classmethod 375 def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]: 376 if cls.arity == 1: 377 yield from ((n, a, "0") for a, n in cls.input_cases) 378 elif cls.arity == 2: 379 yield from ((n, a, b) for a, b, n in cls.input_cases) 380 else: 381 raise ValueError("Unsupported number of operands!") 382 383 @classmethod 384 def generate_function_tests(cls) -> Iterator[test_case.TestCase]: 385 if cls.input_style not in cls.input_styles: 386 raise ValueError("Unknown input style!") 387 if cls.arity not in cls.arities: 388 raise ValueError("Unsupported number of operands!") 389 if cls.input_style == "arch_split": 390 test_objects = (cls(n, a, b, bits_in_limb=bil) 391 for n in cls.moduli 392 for a, b in cls.get_value_pairs() 393 for bil in cls.limb_sizes) 394 special_cases = (cls(*args, bits_in_limb=bil) 395 for args in cls.input_cases_args() 396 for bil in cls.limb_sizes) 397 else: 398 test_objects = (cls(n, a, b) 399 for n in cls.moduli 400 for a, b in cls.get_value_pairs()) 401 special_cases = (cls(*args) for args in cls.input_cases_args()) 402 yield from (valid_test_object.create_test_case() 403 for valid_test_object in filter( 404 lambda test_object: test_object.is_valid, 405 chain(test_objects, special_cases) 406 )) 407