1 /*
2  * Copyright (c) 2020 Intel Corporation
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #ifndef ZEPHYR_INCLUDE_SYS_MEM_MANAGE_H
8 #define ZEPHYR_INCLUDE_SYS_MEM_MANAGE_H
9 
10 #include <sys/util.h>
11 #include <toolchain.h>
12 
13 /*
14  * Caching mode definitions. These are mutually exclusive.
15  */
16 
17 /** No caching. Most drivers want this. */
18 #define K_MEM_CACHE_NONE	2
19 
20 /** Write-through caching. Used by certain drivers. */
21 #define K_MEM_CACHE_WT		1
22 
23 /** Full write-back caching. Any RAM mapped wants this. */
24 #define K_MEM_CACHE_WB		0
25 
26 /** Reserved bits for cache modes in k_map() flags argument */
27 #define K_MEM_CACHE_MASK	(BIT(3) - 1)
28 
29 /*
30  * Region permission attributes. Default is read-only, no user, no exec
31  */
32 
33 /** Region will have read/write access (and not read-only) */
34 #define K_MEM_PERM_RW		BIT(3)
35 
36 /** Region will be executable (normally forbidden) */
37 #define K_MEM_PERM_EXEC		BIT(4)
38 
39 /** Region will be accessible to user mode (normally supervisor-only) */
40 #define K_MEM_PERM_USER		BIT(5)
41 
42 /*
43  * This is the offset to subtract from a virtual address mapped in the
44  * kernel's permanent mapping of RAM, to obtain its physical address.
45  *
46  *     virt_addr = phys_addr + Z_MEM_VM_OFFSET
47  *
48  * This only works for virtual addresses within the interval
49  * [CONFIG_KERNEL_VM_BASE, CONFIG_KERNEL_VM_BASE + (CONFIG_SRAM_SIZE * 1024)).
50  *
51  * These macros are intended for assembly, linker code, and static initializers.
52  * Use with care.
53  *
54  * Note that when demand paging is active, these will only work with page
55  * frames that are pinned to their virtual mapping at boot.
56  *
57  * TODO: This will likely need to move to an arch API or need additional
58  * constraints defined.
59  */
60 #ifdef CONFIG_MMU
61 #define Z_MEM_VM_OFFSET	((CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_OFFSET) - \
62 			 (CONFIG_SRAM_BASE_ADDRESS + CONFIG_SRAM_OFFSET))
63 #else
64 #define Z_MEM_VM_OFFSET	0
65 #endif
66 
67 #define Z_MEM_PHYS_ADDR(virt)	((virt) - Z_MEM_VM_OFFSET)
68 #define Z_MEM_VIRT_ADDR(phys)	((phys) + Z_MEM_VM_OFFSET)
69 
70 #if Z_MEM_VM_OFFSET != 0
71 #define Z_VM_KERNEL 1
72 #ifdef CONFIG_XIP
73 #error "XIP and a virtual memory kernel are not allowed"
74 #endif
75 #endif
76 
77 #ifndef _ASMLANGUAGE
78 #include <stdint.h>
79 #include <stddef.h>
80 #include <inttypes.h>
81 #include <sys/__assert.h>
82 
83 struct k_mem_paging_stats_t {
84 #ifdef CONFIG_DEMAND_PAGING_STATS
85 	struct {
86 		/** Number of page faults */
87 		unsigned long			cnt;
88 
89 		/** Number of page faults with IRQ locked */
90 		unsigned long			irq_locked;
91 
92 		/** Number of page faults with IRQ unlocked */
93 		unsigned long			irq_unlocked;
94 
95 #ifndef CONFIG_DEMAND_PAGING_ALLOW_IRQ
96 		/** Number of page faults while in ISR */
97 		unsigned long			in_isr;
98 #endif
99 	} pagefaults;
100 
101 	struct {
102 		/** Number of clean pages selected for eviction */
103 		unsigned long			clean;
104 
105 		/** Number of dirty pages selected for eviction */
106 		unsigned long			dirty;
107 	} eviction;
108 #endif /* CONFIG_DEMAND_PAGING_STATS */
109 };
110 
111 struct k_mem_paging_histogram_t {
112 #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
113 	/* Counts for each bin in timing histogram */
114 	unsigned long	counts[CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS];
115 
116 	/* Bounds for the bins in timing histogram,
117 	 * excluding the first and last (hence, NUM_SLOTS - 1).
118 	 */
119 	unsigned long	bounds[CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS];
120 #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
121 };
122 
123 /* Just like Z_MEM_PHYS_ADDR() but with type safety and assertions */
z_mem_phys_addr(void * virt)124 static inline uintptr_t z_mem_phys_addr(void *virt)
125 {
126 	uintptr_t addr = (uintptr_t)virt;
127 
128 #ifdef CONFIG_MMU
129 	__ASSERT((addr >= CONFIG_KERNEL_VM_BASE) &&
130 		 (addr < (CONFIG_KERNEL_VM_BASE +
131 			  (CONFIG_KERNEL_VM_SIZE))),
132 		 "address %p not in permanent mappings", virt);
133 #else
134 	/* Should be identity-mapped */
135 	__ASSERT((addr >= CONFIG_SRAM_BASE_ADDRESS) &&
136 		 (addr < (CONFIG_SRAM_BASE_ADDRESS +
137 			  (CONFIG_SRAM_SIZE * 1024UL))),
138 		 "physical address 0x%lx not in RAM",
139 		 (unsigned long)addr);
140 #endif /* CONFIG_MMU */
141 
142 	/* TODO add assertion that this page is pinned to boot mapping,
143 	 * the above checks won't be sufficient with demand paging
144 	 */
145 
146 	return Z_MEM_PHYS_ADDR(addr);
147 }
148 
149 /* Just like Z_MEM_VIRT_ADDR() but with type safety and assertions */
z_mem_virt_addr(uintptr_t phys)150 static inline void *z_mem_virt_addr(uintptr_t phys)
151 {
152 	__ASSERT((phys >= CONFIG_SRAM_BASE_ADDRESS) &&
153 		 (phys < (CONFIG_SRAM_BASE_ADDRESS +
154 			  (CONFIG_SRAM_SIZE * 1024UL))),
155 		 "physical address 0x%lx not in RAM", (unsigned long)phys);
156 
157 	/* TODO add assertion that this page frame is pinned to boot mapping,
158 	 * the above check won't be sufficient with demand paging
159 	 */
160 
161 	return (void *)Z_MEM_VIRT_ADDR(phys);
162 }
163 
164 #ifdef __cplusplus
165 extern "C" {
166 #endif
167 
168 /**
169  * Map a physical memory region into the kernel's virtual address space
170  *
171  * This function is intended for mapping memory-mapped I/O regions into
172  * the virtual address space. Given a physical address and a size, return a
173  * linear address representing the base of where the physical region is mapped
174  * in the virtual address space for the Zephyr kernel.
175  *
176  * This function alters the active page tables in the area reserved
177  * for the kernel. This function will choose the virtual address
178  * and return it to the caller.
179  *
180  * Portable code should never assume that phys_addr and linear_addr will
181  * be equal.
182  *
183  * Caching and access properties are controlled by the 'flags' parameter.
184  * Unused bits in 'flags' are reserved for future expansion.
185  * A caching mode must be selected. By default, the region is read-only
186  * with user access and code execution forbidden. This policy is changed
187  * by passing K_MEM_CACHE_* and K_MEM_PERM_* macros into the 'flags' parameter.
188  *
189  * If there is insufficient virtual address space for the mapping this will
190  * generate a kernel panic.
191  *
192  * This API is only available if CONFIG_MMU is enabled.
193  *
194  * It is highly discouraged to use this function to map system RAM page
195  * frames. It may conflict with anonymous memory mappings and demand paging
196  * and produce undefined behavior.  Do not use this for RAM unless you know
197  * exactly what you are doing. If you need a chunk of memory, use k_mem_map().
198  * If you need a contiguous buffer of physical memory, statically declare it
199  * and pin it at build time, it will be mapped when the system boots.
200  *
201  * This API is part of infrastructure still under development and may
202  * change.
203  *
204  * @param virt [out] Output virtual address storage location
205  * @param phys Physical address base of the memory region
206  * @param size Size of the memory region
207  * @param flags Caching mode and access flags, see K_MAP_* macros
208  */
209 void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size,
210 		uint32_t flags);
211 
212 /**
213  * Unmap a virtual memory region from kernel's virtual address space.
214  *
215  * This function is intended to be used by drivers and early boot routines
216  * where temporary memory mappings need to be made. This allows these
217  * memory mappings to be discarded once they are no longer needed.
218  *
219  * This function alters the active page tables in the area reserved
220  * for the kernel.
221  *
222  * This will align the input parameters to page boundaries so that
223  * this can be used with the virtual address as returned by
224  * z_phys_map().
225  *
226  * This API is only available if CONFIG_MMU is enabled.
227  *
228  * It is highly discouraged to use this function to unmap memory mappings.
229  * It may conflict with anonymous memory mappings and demand paging and
230  * produce undefined behavior. Do not use this unless you know exactly
231  * what you are doing.
232  *
233  * This API is part of infrastructure still under development and may
234  * change.
235  *
236  * @param virt Starting address of the virtual address region to be unmapped.
237  * @param size Size of the virtual address region
238  */
239 void z_phys_unmap(uint8_t *virt, size_t size);
240 
241 /*
242  * k_mem_map() control flags
243  */
244 
245 /**
246  * @def K_MEM_MAP_UNINIT
247  *
248  * @brief The mapped region is not guaranteed to be zeroed.
249  *
250  * This may improve performance. The associated page frames may contain
251  * indeterminate data, zeroes, or even sensitive information.
252  *
253  * This may not be used with K_MEM_PERM_USER as there are no circumstances
254  * where this is safe.
255  */
256 #define K_MEM_MAP_UNINIT	BIT(16)
257 
258 /**
259  * @def K_MEM_MAP_LOCK
260  *
261  * Region will be pinned in memory and never paged
262  *
263  * Such memory is guaranteed to never produce a page fault due to page-outs
264  * or copy-on-write once the mapping call has returned. Physical page frames
265  * will be pre-fetched as necessary and pinned.
266  */
267 #define K_MEM_MAP_LOCK		BIT(17)
268 
269 /**
270  * @def K_MEM_MAP_GUARD
271  *
272  * A un-mapped virtual guard page will be placed in memory immediately preceding
273  * the mapped region. This page will still be noted as being used by the
274  * virtual memory manager. The total size of the allocation will be the
275  * requested size plus the size of this guard page. The returned address
276  * pointer will not include the guard page immediately below it. The typical
277  * use-case is downward-growing thread stacks.
278  *
279  * Zephyr treats page faults on this guard page as a fatal K_ERR_STACK_CHK_FAIL
280  * if it determines it immediately precedes a stack buffer, this is
281  * implemented in the architecture layer.
282  *
283  * DEPRECATED: k_mem_map() will always allocate guard pages, so this bit
284  * no longer has any effect.
285  */
286 #define K_MEM_MAP_GUARD		__DEPRECATED_MACRO BIT(18)
287 
288 /**
289  * Return the amount of free memory available
290  *
291  * The returned value will reflect how many free RAM page frames are available.
292  * If demand paging is enabled, it may still be possible to allocate more.
293  *
294  * The information reported by this function may go stale immediately if
295  * concurrent memory mappings or page-ins take place.
296  *
297  * @return Free physical RAM, in bytes
298  */
299 size_t k_mem_free_get(void);
300 
301 /**
302  * Map anonymous memory into Zephyr's address space
303  *
304  * This function effectively increases the data space available to Zephyr.
305  * The kernel will choose a base virtual address and return it to the caller.
306  * The memory will have access permissions for all contexts set per the
307  * provided flags argument.
308  *
309  * If user thread access control needs to be managed in any way, do not enable
310  * K_MEM_PERM_USER flags here; instead manage the region's permissions
311  * with memory domain APIs after the mapping has been established. Setting
312  * K_MEM_PERM_USER here will allow all user threads to access this memory
313  * which is usually undesirable.
314  *
315  * Unless K_MEM_MAP_UNINIT is used, the returned memory will be zeroed.
316  *
317  * The mapped region is not guaranteed to be physically contiguous in memory.
318  * Physically contiguous buffers should be allocated statically and pinned
319  * at build time.
320  *
321  * Pages mapped in this way have write-back cache settings.
322  *
323  * The returned virtual memory pointer will be page-aligned. The size
324  * parameter, and any base address for re-mapping purposes must be page-
325  * aligned.
326  *
327  * Note that the allocation includes two guard pages immediately before
328  * and after the requested region. The total size of the allocation will be
329  * the requested size plus the size of these two guard pages.
330  *
331  * Many K_MEM_MAP_* flags have been implemented to alter the behavior of this
332  * function, with details in the documentation for these flags.
333  *
334  * @param size Size of the memory mapping. This must be page-aligned.
335  * @param flags K_MEM_PERM_*, K_MEM_MAP_* control flags.
336  * @return The mapped memory location, or NULL if insufficient virtual address
337  *         space, insufficient physical memory to establish the mapping,
338  *         or insufficient memory for paging structures.
339  */
340 void *k_mem_map(size_t size, uint32_t flags);
341 
342 /**
343  * Un-map mapped memory
344  *
345  * This removes a memory mapping for the provided page-aligned region.
346  * Associated page frames will be free and the kernel may re-use the associated
347  * virtual address region. Any paged out data pages may be discarded.
348  *
349  * Calling this function on a region which was not mapped to begin with is
350  * undefined behavior.
351  *
352  * @param addr Page-aligned memory region base virtual address
353  * @param size Page-aligned memory region size
354  */
355 void k_mem_unmap(void *addr, size_t size);
356 
357 /**
358  * Given an arbitrary region, provide a aligned region that covers it
359  *
360  * The returned region will have both its base address and size aligned
361  * to the provided alignment value.
362  *
363  * @param aligned_addr [out] Aligned address
364  * @param aligned_size [out] Aligned region size
365  * @param addr Region base address
366  * @param size Region size
367  * @param align What to align the address and size to
368  * @retval offset between aligned_addr and addr
369  */
370 size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
371 			  uintptr_t addr, size_t size, size_t align);
372 
373 /**
374  * @defgroup mem-demand-paging Demand Paging APIs
375  * @{
376  */
377 
378 /**
379  * Evict a page-aligned virtual memory region to the backing store
380  *
381  * Useful if it is known that a memory region will not be used for some time.
382  * All the data pages within the specified region will be evicted to the
383  * backing store if they weren't already, with their associated page frames
384  * marked as available for mappings or page-ins.
385  *
386  * None of the associated page frames mapped to the provided region should
387  * be pinned.
388  *
389  * Note that there are no guarantees how long these pages will be evicted,
390  * they could take page faults immediately.
391  *
392  * If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be
393  * called by ISRs as the backing store may be in-use.
394  *
395  * @param addr Base page-aligned virtual address
396  * @param size Page-aligned data region size
397  * @retval 0 Success
398  * @retval -ENOMEM Insufficient space in backing store to satisfy request.
399  *         The region may be partially paged out.
400  */
401 int k_mem_page_out(void *addr, size_t size);
402 
403 /**
404  * Load a virtual data region into memory
405  *
406  * After the function completes, all the page frames associated with this
407  * function will be paged in. However, they are not guaranteed to stay there.
408  * This is useful if the region is known to be used soon.
409  *
410  * If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be
411  * called by ISRs as the backing store may be in-use.
412  *
413  * @param addr Base page-aligned virtual address
414  * @param size Page-aligned data region size
415  */
416 void k_mem_page_in(void *addr, size_t size);
417 
418 /**
419  * Pin an aligned virtual data region, paging in as necessary
420  *
421  * After the function completes, all the page frames associated with this
422  * region will be resident in memory and pinned such that they stay that way.
423  * This is a stronger version of z_mem_page_in().
424  *
425  * If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be
426  * called by ISRs as the backing store may be in-use.
427  *
428  * @param addr Base page-aligned virtual address
429  * @param size Page-aligned data region size
430  */
431 void k_mem_pin(void *addr, size_t size);
432 
433 /**
434  * Un-pin an aligned virtual data region
435  *
436  * After the function completes, all the page frames associated with this
437  * region will be no longer marked as pinned. This does not evict the region,
438  * follow this with z_mem_page_out() if you need that.
439  *
440  * @param addr Base page-aligned virtual address
441  * @param size Page-aligned data region size
442  */
443 void k_mem_unpin(void *addr, size_t size);
444 
445 /**
446  * Get the paging statistics since system startup
447  *
448  * This populates the paging statistics struct being passed in
449  * as argument.
450  *
451  * @param[in,out] stats Paging statistics struct to be filled.
452  */
453 __syscall void k_mem_paging_stats_get(struct k_mem_paging_stats_t *stats);
454 
455 struct k_thread;
456 /**
457  * Get the paging statistics since system startup for a thread
458  *
459  * This populates the paging statistics struct being passed in
460  * as argument for a particular thread.
461  *
462  * @param[in] thread Thread
463  * @param[in,out] stats Paging statistics struct to be filled.
464  */
465 __syscall
466 void k_mem_paging_thread_stats_get(struct k_thread *thread,
467 				   struct k_mem_paging_stats_t *stats);
468 
469 /**
470  * Get the eviction timing histogram
471  *
472  * This populates the timing histogram struct being passed in
473  * as argument.
474  *
475  * @param[in,out] hist Timing histogram struct to be filled.
476  */
477 __syscall void k_mem_paging_histogram_eviction_get(
478 	struct k_mem_paging_histogram_t *hist);
479 
480 /**
481  * Get the backing store page-in timing histogram
482  *
483  * This populates the timing histogram struct being passed in
484  * as argument.
485  *
486  * @param[in,out] hist Timing histogram struct to be filled.
487  */
488 __syscall void k_mem_paging_histogram_backing_store_page_in_get(
489 	struct k_mem_paging_histogram_t *hist);
490 
491 /**
492  * Get the backing store page-out timing histogram
493  *
494  * This populates the timing histogram struct being passed in
495  * as argument.
496  *
497  * @param[in,out] hist Timing histogram struct to be filled.
498  */
499 __syscall void k_mem_paging_histogram_backing_store_page_out_get(
500 	struct k_mem_paging_histogram_t *hist);
501 
502 #include <syscalls/mem_manage.h>
503 
504 /** @} */
505 
506 /**
507  * Eviction algorithm APIs
508  *
509  * @defgroup mem-demand-paging-eviction Eviction Algorithm APIs
510  * @{
511  */
512 
513 /**
514  * Select a page frame for eviction
515  *
516  * The kernel will invoke this to choose a page frame to evict if there
517  * are no free page frames.
518  *
519  * This function will never be called before the initial
520  * k_mem_paging_eviction_init().
521  *
522  * This function is invoked with interrupts locked.
523  *
524  * @param [out] dirty Whether the page to evict is dirty
525  * @return The page frame to evict
526  */
527 struct z_page_frame *k_mem_paging_eviction_select(bool *dirty);
528 
529 /**
530  * Initialization function
531  *
532  * Called at POST_KERNEL to perform any necessary initialization tasks for the
533  * eviction algorithm. k_mem_paging_eviction_select() is guaranteed to never be
534  * called until this has returned, and this will only be called once.
535  */
536 void k_mem_paging_eviction_init(void);
537 
538 /** @} */
539 
540 /**
541  * Backing store APIs
542  *
543  * @defgroup mem-demand-paging-backing-store Backing Store APIs
544  * @{
545  */
546 
547 /**
548  * Reserve or fetch a storage location for a data page loaded into a page frame
549  *
550  * The returned location token must be unique to the mapped virtual address.
551  * This location will be used in the backing store to page out data page
552  * contents for later retrieval. The location value must be page-aligned.
553  *
554  * This function may be called multiple times on the same data page. If its
555  * page frame has its Z_PAGE_FRAME_BACKED bit set, it is expected to return
556  * the previous backing store location for the data page containing a cached
557  * clean copy. This clean copy may be updated on page-out, or used to
558  * discard clean pages without needing to write out their contents.
559  *
560  * If the backing store is full, some other backing store location which caches
561  * a loaded data page may be selected, in which case its associated page frame
562  * will have the Z_PAGE_FRAME_BACKED bit cleared (as it is no longer cached).
563  *
564  * pf->addr will indicate the virtual address the page is currently mapped to.
565  * Large, sparse backing stores which can contain the entire address space
566  * may simply generate location tokens purely as a function of pf->addr with no
567  * other management necessary.
568  *
569  * This function distinguishes whether it was called on behalf of a page
570  * fault. A free backing store location must always be reserved in order for
571  * page faults to succeed. If the page_fault parameter is not set, this
572  * function should return -ENOMEM even if one location is available.
573  *
574  * This function is invoked with interrupts locked.
575  *
576  * @param pf Virtual address to obtain a storage location
577  * @param [out] location storage location token
578  * @param page_fault Whether this request was for a page fault
579  * @return 0 Success
580  * @return -ENOMEM Backing store is full
581  */
582 int k_mem_paging_backing_store_location_get(struct z_page_frame *pf,
583 					    uintptr_t *location,
584 					    bool page_fault);
585 
586 /**
587  * Free a backing store location
588  *
589  * Any stored data may be discarded, and the location token associated with
590  * this address may be re-used for some other data page.
591  *
592  * This function is invoked with interrupts locked.
593  *
594  * @param location Location token to free
595  */
596 void k_mem_paging_backing_store_location_free(uintptr_t location);
597 
598 /**
599  * Copy a data page from Z_SCRATCH_PAGE to the specified location
600  *
601  * Immediately before this is called, Z_SCRATCH_PAGE will be mapped read-write
602  * to the intended source page frame for the calling context.
603  *
604  * Calls to this and k_mem_paging_backing_store_page_in() will always be
605  * serialized, but interrupts may be enabled.
606  *
607  * @param location Location token for the data page, for later retrieval
608  */
609 void k_mem_paging_backing_store_page_out(uintptr_t location);
610 
611 /**
612  * Copy a data page from the provided location to Z_SCRATCH_PAGE.
613  *
614  * Immediately before this is called, Z_SCRATCH_PAGE will be mapped read-write
615  * to the intended destination page frame for the calling context.
616  *
617  * Calls to this and k_mem_paging_backing_store_page_out() will always be
618  * serialized, but interrupts may be enabled.
619  *
620  * @param location Location token for the data page
621  */
622 void k_mem_paging_backing_store_page_in(uintptr_t location);
623 
624 /**
625  * Update internal accounting after a page-in
626  *
627  * This is invoked after k_mem_paging_backing_store_page_in() and interrupts
628  * have been* re-locked, making it safe to access the z_page_frame data.
629  * The location value will be the same passed to
630  * k_mem_paging_backing_store_page_in().
631  *
632  * The primary use-case for this is to update custom fields for the backing
633  * store in the page frame, to reflect where the data should be evicted to
634  * if it is paged out again. This may be a no-op in some implementations.
635  *
636  * If the backing store caches paged-in data pages, this is the appropriate
637  * time to set the Z_PAGE_FRAME_BACKED bit. The kernel only skips paging
638  * out clean data pages if they are noted as clean in the page tables and the
639  * Z_PAGE_FRAME_BACKED bit is set in their associated page frame.
640  *
641  * @param pf Page frame that was loaded in
642  * @param location Location of where the loaded data page was retrieved
643  */
644 void k_mem_paging_backing_store_page_finalize(struct z_page_frame *pf,
645 					      uintptr_t location);
646 
647 /**
648  * Backing store initialization function.
649  *
650  * The implementation may expect to receive page in/out calls as soon as this
651  * returns, but not before that. Called at POST_KERNEL.
652  *
653  * This function is expected to do two things:
654  * - Initialize any internal data structures and accounting for the backing
655  *   store.
656  * - If the backing store already contains all or some loaded kernel data pages
657  *   at boot time, Z_PAGE_FRAME_BACKED should be appropriately set for their
658  *   associated page frames, and any internal accounting set up appropriately.
659  */
660 void k_mem_paging_backing_store_init(void);
661 
662 /** @} */
663 
664 #ifdef __cplusplus
665 }
666 #endif
667 
668 #endif /* !_ASMLANGUAGE */
669 #endif /* ZEPHYR_INCLUDE_SYS_MEM_MANAGE_H */
670