1 /* 2 * Copyright (c) 2011-2014, Wind River Systems, Inc. 3 * 4 * SPDX-License-Identifier: Apache-2.0 5 */ 6 7 /** 8 * @file 9 * @brief Macro utilities 10 * 11 * Macro utilities are the public interface for C/C++ code and device tree 12 * related implementation. In general, C/C++ will include <sys/util.h> 13 * instead this file directly. For device tree implementation, this file 14 * should be include instead <sys/util_internal.h> 15 */ 16 17 #ifndef ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ 18 #define ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ 19 20 #ifdef __cplusplus 21 extern "C" { 22 #endif 23 24 /** 25 * @addtogroup sys-util 26 * @{ 27 */ 28 29 /* 30 * Most of the eldritch implementation details for all the macrobatics 31 * below (APIs like IS_ENABLED(), COND_CODE_1(), etc.) are hidden away 32 * in this file. 33 */ 34 #include <zephyr/sys/util_internal.h> 35 36 #ifndef BIT 37 #if defined(_ASMLANGUAGE) 38 #define BIT(n) (1 << (n)) 39 #else 40 /** 41 * @brief Unsigned integer with bit position @p n set (signed in 42 * assembly language). 43 */ 44 #define BIT(n) (1UL << (n)) 45 #endif 46 #endif 47 48 /** @brief 64-bit unsigned integer with bit position @p _n set. */ 49 #define BIT64(_n) (1ULL << (_n)) 50 51 /** 52 * @brief Set or clear a bit depending on a boolean value 53 * 54 * The argument @p var is a variable whose value is written to as a 55 * side effect. 56 * 57 * @param var Variable to be altered 58 * @param bit Bit number 59 * @param set if 0, clears @p bit in @p var; any other value sets @p bit 60 */ 61 #define WRITE_BIT(var, bit, set) \ 62 ((var) = (set) ? ((var) | BIT(bit)) : ((var) & ~BIT(bit))) 63 64 /** 65 * @brief Bit mask with bits 0 through <tt>n-1</tt> (inclusive) set, 66 * or 0 if @p n is 0. 67 */ 68 #define BIT_MASK(n) (BIT(n) - 1UL) 69 70 /** 71 * @brief 64-bit bit mask with bits 0 through <tt>n-1</tt> (inclusive) set, 72 * or 0 if @p n is 0. 73 */ 74 #define BIT64_MASK(n) (BIT64(n) - 1ULL) 75 76 /** @brief Check if a @p x is a power of two */ 77 #define IS_POWER_OF_TWO(x) (((x) != 0U) && (((x) & ((x) - 1U)) == 0U)) 78 79 /** 80 * @brief Check if bits are set continuously from the specified bit 81 * 82 * The macro is not dependent on the bit-width. 83 * 84 * @param m Check whether the bits are set continuously or not. 85 * @param s Specify the lowest bit for that is continuously set bits. 86 */ 87 #define IS_SHIFTED_BIT_MASK(m, s) (!(((m) >> (s)) & (((m) >> (s)) + 1U))) 88 89 /** 90 * @brief Check if bits are set continuously from the LSB. 91 * 92 * @param m Check whether the bits are set continuously from LSB. 93 */ 94 #define IS_BIT_MASK(m) IS_SHIFTED_BIT_MASK(m, 0) 95 96 /** @brief Extract the Least Significant Bit from @p value. */ 97 #define LSB_GET(value) ((value) & -(value)) 98 99 /** 100 * @brief Extract a bitfield element from @p value corresponding to 101 * the field mask @p mask. 102 */ 103 #define FIELD_GET(mask, value) (((value) & (mask)) / LSB_GET(mask)) 104 105 /** 106 * @brief Prepare a bitfield element using @p value with @p mask representing 107 * its field position and width. The result should be combined 108 * with other fields using a logical OR. 109 */ 110 #define FIELD_PREP(mask, value) (((value) * LSB_GET(mask)) & (mask)) 111 112 /** 113 * @brief Check for macro definition in compiler-visible expressions 114 * 115 * This trick was pioneered in Linux as the config_enabled() macro. It 116 * has the effect of taking a macro value that may be defined to "1" 117 * or may not be defined at all and turning it into a literal 118 * expression that can be handled by the C compiler instead of just 119 * the preprocessor. It is often used with a @p CONFIG_FOO macro which 120 * may be defined to 1 via Kconfig, or left undefined. 121 * 122 * That is, it works similarly to <tt>\#if defined(CONFIG_FOO)</tt> 123 * except that its expansion is a C expression. Thus, much <tt>\#ifdef</tt> 124 * usage can be replaced with equivalents like: 125 * 126 * if (IS_ENABLED(CONFIG_FOO)) { 127 * do_something_with_foo 128 * } 129 * 130 * This is cleaner since the compiler can generate errors and warnings 131 * for @p do_something_with_foo even when @p CONFIG_FOO is undefined. 132 * 133 * Note: Use of IS_ENABLED in a <tt>\#if</tt> statement is discouraged 134 * as it doesn't provide any benefit vs plain <tt>\#if defined()</tt> 135 * 136 * @param config_macro Macro to check 137 * @return 1 if @p config_macro is defined to 1, 0 otherwise (including 138 * if @p config_macro is not defined) 139 */ 140 #define IS_ENABLED(config_macro) Z_IS_ENABLED1(config_macro) 141 /* INTERNAL: the first pass above is just to expand any existing 142 * macros, we need the macro value to be e.g. a literal "1" at 143 * expansion time in the next macro, not "(1)", etc... Standard 144 * recursive expansion does not work. 145 */ 146 147 /** 148 * @brief Insert code depending on whether @p _flag expands to 1 or not. 149 * 150 * This relies on similar tricks as IS_ENABLED(), but as the result of 151 * @p _flag expansion, results in either @p _if_1_code or @p 152 * _else_code is expanded. 153 * 154 * To prevent the preprocessor from treating commas as argument 155 * separators, the @p _if_1_code and @p _else_code expressions must be 156 * inside brackets/parentheses: <tt>()</tt>. These are stripped away 157 * during macro expansion. 158 * 159 * Example: 160 * 161 * COND_CODE_1(CONFIG_FLAG, (uint32_t x;), (there_is_no_flag();)) 162 * 163 * If @p CONFIG_FLAG is defined to 1, this expands to: 164 * 165 * uint32_t x; 166 * 167 * It expands to <tt>there_is_no_flag();</tt> otherwise. 168 * 169 * This could be used as an alternative to: 170 * 171 * #if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1) 172 * #define MAYBE_DECLARE(x) uint32_t x 173 * #else 174 * #define MAYBE_DECLARE(x) there_is_no_flag() 175 * #endif 176 * 177 * MAYBE_DECLARE(x); 178 * 179 * However, the advantage of COND_CODE_1() is that code is resolved in 180 * place where it is used, while the @p \#if method defines @p 181 * MAYBE_DECLARE on two lines and requires it to be invoked again on a 182 * separate line. This makes COND_CODE_1() more concise and also 183 * sometimes more useful when used within another macro's expansion. 184 * 185 * @note @p _flag can be the result of preprocessor expansion, e.g. 186 * an expression involving <tt>NUM_VA_ARGS_LESS_1(...)</tt>. 187 * However, @p _if_1_code is only expanded if @p _flag expands 188 * to the integer literal 1. Integer expressions that evaluate 189 * to 1, e.g. after doing some arithmetic, will not work. 190 * 191 * @param _flag evaluated flag 192 * @param _if_1_code result if @p _flag expands to 1; must be in parentheses 193 * @param _else_code result otherwise; must be in parentheses 194 */ 195 #define COND_CODE_1(_flag, _if_1_code, _else_code) \ 196 Z_COND_CODE_1(_flag, _if_1_code, _else_code) 197 198 /** 199 * @brief Like COND_CODE_1() except tests if @p _flag is 0. 200 * 201 * This is like COND_CODE_1(), except that it tests whether @p _flag 202 * expands to the integer literal 0. It expands to @p _if_0_code if 203 * so, and @p _else_code otherwise; both of these must be enclosed in 204 * parentheses. 205 * 206 * @param _flag evaluated flag 207 * @param _if_0_code result if @p _flag expands to 0; must be in parentheses 208 * @param _else_code result otherwise; must be in parentheses 209 * @see COND_CODE_1() 210 */ 211 #define COND_CODE_0(_flag, _if_0_code, _else_code) \ 212 Z_COND_CODE_0(_flag, _if_0_code, _else_code) 213 214 /** 215 * @brief Insert code if @p _flag is defined and equals 1. 216 * 217 * Like COND_CODE_1(), this expands to @p _code if @p _flag is defined to 1; 218 * it expands to nothing otherwise. 219 * 220 * Example: 221 * 222 * IF_ENABLED(CONFIG_FLAG, (uint32_t foo;)) 223 * 224 * If @p CONFIG_FLAG is defined to 1, this expands to: 225 * 226 * uint32_t foo; 227 * 228 * and to nothing otherwise. 229 * 230 * It can be considered as a more compact alternative to: 231 * 232 * #if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1) 233 * uint32_t foo; 234 * #endif 235 * 236 * @param _flag evaluated flag 237 * @param _code result if @p _flag expands to 1; must be in parentheses 238 */ 239 #define IF_ENABLED(_flag, _code) \ 240 COND_CODE_1(_flag, _code, ()) 241 242 /** 243 * @brief Insert code if @p _flag is not defined as 1. 244 * 245 * This expands to nothing if @p _flag is defined and equal to 1; 246 * it expands to @p _code otherwise. 247 * 248 * Example: 249 * 250 * IF_DISABLED(CONFIG_FLAG, (uint32_t foo;)) 251 * 252 * If @p CONFIG_FLAG isn't defined or different than 1, this expands to: 253 * 254 * uint32_t foo; 255 * 256 * and to nothing otherwise. 257 * 258 * IF_DISABLED does the opposite of IF_ENABLED. 259 * 260 * @param _flag evaluated flag 261 * @param _code result if @p _flag does not expand to 1; must be in parentheses 262 */ 263 #define IF_DISABLED(_flag, _code) \ 264 COND_CODE_1(_flag, (), _code) 265 266 /** 267 * @brief Check if a macro has a replacement expression 268 * 269 * If @p a is a macro defined to a nonempty value, this will return 270 * true, otherwise it will return false. It only works with defined 271 * macros, so an additional @p \#ifdef test may be needed in some cases. 272 * 273 * This macro may be used with COND_CODE_1() and COND_CODE_0() while 274 * processing `__VA_ARGS__` to avoid processing empty arguments. 275 * 276 * Example: 277 * 278 * #define EMPTY 279 * #define NON_EMPTY 1 280 * #undef UNDEFINED 281 * IS_EMPTY(EMPTY) 282 * IS_EMPTY(NON_EMPTY) 283 * IS_EMPTY(UNDEFINED) 284 * #if defined(EMPTY) && IS_EMPTY(EMPTY) == true 285 * some_conditional_code 286 * #endif 287 * 288 * In above examples, the invocations of IS_EMPTY(...) return @p true, 289 * @p false, and @p true; @p some_conditional_code is included. 290 * 291 * @param ... macro to check for emptiness (may be `__VA_ARGS__`) 292 */ 293 #define IS_EMPTY(...) Z_IS_EMPTY_(__VA_ARGS__) 294 295 /** 296 * @brief Like <tt>a == b</tt>, but does evaluation and 297 * short-circuiting at C preprocessor time. 298 * 299 * This however only works for integer literal from 0 to 4096 (literals with U suffix, 300 * e.g. 0U are also included). 301 * 302 * Examples: 303 * 304 * IS_EQ(1, 1) -> 1 305 * IS_EQ(1U, 1U) -> 1 306 * IS_EQ(1U, 1) -> 1 307 * IS_EQ(1, 1U) -> 1 308 * IS_EQ(1, 0) -> 0 309 * 310 * @param a Integer literal (can be with U suffix) 311 * @param b Integer literal 312 * 313 */ 314 #define IS_EQ(a, b) Z_IS_EQ(a, b) 315 316 /** 317 * @brief Remove empty arguments from list. 318 * 319 * During macro expansion, `__VA_ARGS__` and other preprocessor 320 * generated lists may contain empty elements, e.g.: 321 * 322 * #define LIST ,a,b,,d, 323 * 324 * Using EMPTY to show each empty element, LIST contains: 325 * 326 * EMPTY, a, b, EMPTY, d 327 * 328 * When processing such lists, e.g. using FOR_EACH(), all empty elements 329 * will be processed, and may require filtering out. 330 * To make that process easier, it is enough to invoke LIST_DROP_EMPTY 331 * which will remove all empty elements. 332 * 333 * Example: 334 * 335 * LIST_DROP_EMPTY(LIST) 336 * 337 * expands to: 338 * 339 * a, b, d 340 * 341 * @param ... list to be processed 342 */ 343 #define LIST_DROP_EMPTY(...) \ 344 Z_LIST_DROP_FIRST(FOR_EACH(Z_LIST_NO_EMPTIES, (), __VA_ARGS__)) 345 346 /** 347 * @brief Macro with an empty expansion 348 * 349 * This trivial definition is provided for readability when a macro 350 * should expand to an empty result, which e.g. is sometimes needed to 351 * silence checkpatch. 352 * 353 * Example: 354 * 355 * #define LIST_ITEM(n) , item##n 356 * 357 * The above would cause checkpatch to complain, but: 358 * 359 * #define LIST_ITEM(n) EMPTY, item##n 360 * 361 * would not. 362 */ 363 #define EMPTY 364 365 /** 366 * @brief Macro that expands to its argument 367 * 368 * This is useful in macros like @c FOR_EACH() when there is no 369 * transformation required on the list elements. 370 * 371 * @param V any value 372 */ 373 #define IDENTITY(V) V 374 375 /** 376 * @brief Get nth argument from argument list. 377 * 378 * @param N Argument index to fetch. Counter from 1. 379 * @param ... Variable list of arguments from which one argument is returned. 380 * 381 * @return Nth argument. 382 */ 383 #define GET_ARG_N(N, ...) Z_GET_ARG_##N(__VA_ARGS__) 384 385 /** 386 * @brief Strips n first arguments from the argument list. 387 * 388 * @param N Number of arguments to discard. 389 * @param ... Variable list of arguments. 390 * 391 * @return argument list without N first arguments. 392 */ 393 #define GET_ARGS_LESS_N(N, ...) Z_GET_ARGS_LESS_##N(__VA_ARGS__) 394 395 /** 396 * @brief Like <tt>a || b</tt>, but does evaluation and 397 * short-circuiting at C preprocessor time. 398 * 399 * This is not the same as the binary @p || operator; in particular, 400 * @p a should expand to an integer literal 0 or 1. However, @p b 401 * can be any value. 402 * 403 * This can be useful when @p b is an expression that would cause a 404 * build error when @p a is 1. 405 */ 406 #define UTIL_OR(a, b) COND_CODE_1(UTIL_BOOL(a), (a), (b)) 407 408 /** 409 * @brief Like <tt>a && b</tt>, but does evaluation and 410 * short-circuiting at C preprocessor time. 411 * 412 * This is not the same as the binary @p &&, however; in particular, 413 * @p a should expand to an integer literal 0 or 1. However, @p b 414 * can be any value. 415 * 416 * This can be useful when @p b is an expression that would cause a 417 * build error when @p a is 0. 418 */ 419 #define UTIL_AND(a, b) COND_CODE_1(UTIL_BOOL(a), (b), (0)) 420 421 /** 422 * @brief UTIL_INC(x) for an integer literal x from 0 to 4095 expands to an 423 * integer literal whose value is x+1. 424 * 425 * @see UTIL_DEC(x) 426 */ 427 #define UTIL_INC(x) UTIL_PRIMITIVE_CAT(Z_UTIL_INC_, x) 428 429 /** 430 * @brief UTIL_DEC(x) for an integer literal x from 0 to 4095 expands to an 431 * integer literal whose value is x-1. 432 * 433 * @see UTIL_INC(x) 434 */ 435 #define UTIL_DEC(x) UTIL_PRIMITIVE_CAT(Z_UTIL_DEC_, x) 436 437 /** 438 * @brief UTIL_X2(y) for an integer literal y from 0 to 4095 expands to an 439 * integer literal whose value is 2y. 440 */ 441 #define UTIL_X2(y) UTIL_PRIMITIVE_CAT(Z_UTIL_X2_, y) 442 443 444 /** 445 * @brief Generates a sequence of code with configurable separator. 446 * 447 * Example: 448 * 449 * #define FOO(i, _) MY_PWM ## i 450 * { LISTIFY(PWM_COUNT, FOO, (,)) } 451 * 452 * The above two lines expand to: 453 * 454 * { MY_PWM0 , MY_PWM1 } 455 * 456 * @param LEN The length of the sequence. Must be an integer literal less 457 * than 4095. 458 * @param F A macro function that accepts at least two arguments: 459 * <tt>F(i, ...)</tt>. @p F is called repeatedly in the expansion. 460 * Its first argument @p i is the index in the sequence, and 461 * the variable list of arguments passed to LISTIFY are passed 462 * through to @p F. 463 * 464 * @param sep Separator (e.g. comma or semicolon). Must be in parentheses; 465 * this is required to enable providing a comma as separator. 466 * 467 * @note Calling LISTIFY with undefined arguments has undefined 468 * behavior. 469 */ 470 #define LISTIFY(LEN, F, sep, ...) UTIL_CAT(Z_UTIL_LISTIFY_, LEN)(F, sep, __VA_ARGS__) 471 472 /** 473 * @brief Call a macro @p F on each provided argument with a given 474 * separator between each call. 475 * 476 * Example: 477 * 478 * #define F(x) int a##x 479 * FOR_EACH(F, (;), 4, 5, 6); 480 * 481 * This expands to: 482 * 483 * int a4; 484 * int a5; 485 * int a6; 486 * 487 * @param F Macro to invoke 488 * @param sep Separator (e.g. comma or semicolon). Must be in parentheses; 489 * this is required to enable providing a comma as separator. 490 * @param ... Variable argument list. The macro @p F is invoked as 491 * <tt>F(element)</tt> for each element in the list. 492 */ 493 #define FOR_EACH(F, sep, ...) \ 494 Z_FOR_EACH(F, sep, REVERSE_ARGS(__VA_ARGS__)) 495 496 /** 497 * @brief Like FOR_EACH(), but with a terminator instead of a separator, 498 * and drops empty elements from the argument list 499 * 500 * The @p sep argument to <tt>FOR_EACH(F, (sep), a, b)</tt> is a 501 * separator which is placed between calls to @p F, like this: 502 * 503 * FOR_EACH(F, (sep), a, b) // F(a) sep F(b) 504 * // ^^^ no sep here! 505 * 506 * By contrast, the @p term argument to <tt>FOR_EACH_NONEMPTY_TERM(F, (term), 507 * a, b)</tt> is added after each time @p F appears in the expansion: 508 * 509 * FOR_EACH_NONEMPTY_TERM(F, (term), a, b) // F(a) term F(b) term 510 * // ^^^^ 511 * 512 * Further, any empty elements are dropped: 513 * 514 * FOR_EACH_NONEMPTY_TERM(F, (term), a, EMPTY, b) // F(a) term F(b) term 515 * 516 * This is more convenient in some cases, because FOR_EACH_NONEMPTY_TERM() 517 * expands to nothing when given an empty argument list, and it's 518 * often cumbersome to write a macro @p F that does the right thing 519 * even when given an empty argument. 520 * 521 * One example is when `__VA_ARGS__` may or may not be empty, 522 * and the results are embedded in a larger initializer: 523 * 524 * #define SQUARE(x) ((x)*(x)) 525 * 526 * int my_array[] = { 527 * FOR_EACH_NONEMPTY_TERM(SQUARE, (,), FOO(...)) 528 * FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAR(...)) 529 * FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAZ(...)) 530 * }; 531 * 532 * This is more convenient than: 533 * 534 * 1. figuring out whether the @p FOO, @p BAR, and @p BAZ expansions 535 * are empty and adding a comma manually (or not) between FOR_EACH() 536 * calls 537 * 2. rewriting SQUARE so it reacts appropriately when "x" is empty 538 * (which would be necessary if e.g. @p FOO expands to nothing) 539 * 540 * @param F Macro to invoke on each nonempty element of the variable 541 * arguments 542 * @param term Terminator (e.g. comma or semicolon) placed after each 543 * invocation of F. Must be in parentheses; this is required 544 * to enable providing a comma as separator. 545 * @param ... Variable argument list. The macro @p F is invoked as 546 * <tt>F(element)</tt> for each nonempty element in the list. 547 */ 548 #define FOR_EACH_NONEMPTY_TERM(F, term, ...) \ 549 COND_CODE_0( \ 550 /* are there zero non-empty arguments ? */ \ 551 NUM_VA_ARGS_LESS_1(LIST_DROP_EMPTY(__VA_ARGS__, _)), \ 552 /* if so, expand to nothing */ \ 553 (), \ 554 /* otherwise, expand to: */ \ 555 (/* FOR_EACH() on nonempty elements, */ \ 556 FOR_EACH(F, term, LIST_DROP_EMPTY(__VA_ARGS__)) \ 557 /* plus a final terminator */ \ 558 __DEBRACKET term \ 559 )) 560 561 /** 562 * @brief Call macro @p F on each provided argument, with the argument's index 563 * as an additional parameter. 564 * 565 * This is like FOR_EACH(), except @p F should be a macro which takes two 566 * arguments: <tt>F(index, variable_arg)</tt>. 567 * 568 * Example: 569 * 570 * #define F(idx, x) int a##idx = x 571 * FOR_EACH_IDX(F, (;), 4, 5, 6); 572 * 573 * This expands to: 574 * 575 * int a0 = 4; 576 * int a1 = 5; 577 * int a2 = 6; 578 * 579 * @param F Macro to invoke 580 * @param sep Separator (e.g. comma or semicolon). Must be in parentheses; 581 * this is required to enable providing a comma as separator. 582 * @param ... Variable argument list. The macro @p F is invoked as 583 * <tt>F(index, element)</tt> for each element in the list. 584 */ 585 #define FOR_EACH_IDX(F, sep, ...) \ 586 Z_FOR_EACH_IDX(F, sep, REVERSE_ARGS(__VA_ARGS__)) 587 588 /** 589 * @brief Call macro @p F on each provided argument, with an additional fixed 590 * argument as a parameter. 591 * 592 * This is like FOR_EACH(), except @p F should be a macro which takes two 593 * arguments: <tt>F(variable_arg, fixed_arg)</tt>. 594 * 595 * Example: 596 * 597 * static void func(int val, void *dev); 598 * FOR_EACH_FIXED_ARG(func, (;), dev, 4, 5, 6); 599 * 600 * This expands to: 601 * 602 * func(4, dev); 603 * func(5, dev); 604 * func(6, dev); 605 * 606 * @param F Macro to invoke 607 * @param sep Separator (e.g. comma or semicolon). Must be in parentheses; 608 * this is required to enable providing a comma as separator. 609 * @param fixed_arg Fixed argument passed to @p F as the second macro parameter. 610 * @param ... Variable argument list. The macro @p F is invoked as 611 * <tt>F(element, fixed_arg)</tt> for each element in the list. 612 */ 613 #define FOR_EACH_FIXED_ARG(F, sep, fixed_arg, ...) \ 614 Z_FOR_EACH_FIXED_ARG(F, sep, fixed_arg, REVERSE_ARGS(__VA_ARGS__)) 615 616 /** 617 * @brief Calls macro @p F for each variable argument with an index and fixed 618 * argument 619 * 620 * This is like the combination of FOR_EACH_IDX() with FOR_EACH_FIXED_ARG(). 621 * 622 * Example: 623 * 624 * #define F(idx, x, fixed_arg) int fixed_arg##idx = x 625 * FOR_EACH_IDX_FIXED_ARG(F, (;), a, 4, 5, 6); 626 * 627 * This expands to: 628 * 629 * int a0 = 4; 630 * int a1 = 5; 631 * int a2 = 6; 632 * 633 * @param F Macro to invoke 634 * @param sep Separator (e.g. comma or semicolon). Must be in parentheses; 635 * This is required to enable providing a comma as separator. 636 * @param fixed_arg Fixed argument passed to @p F as the third macro parameter. 637 * @param ... Variable list of arguments. The macro @p F is invoked as 638 * <tt>F(index, element, fixed_arg)</tt> for each element in 639 * the list. 640 */ 641 #define FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, ...) \ 642 Z_FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, REVERSE_ARGS(__VA_ARGS__)) 643 644 /** @brief Reverse arguments order. 645 * 646 * @param ... Variable argument list. 647 */ 648 #define REVERSE_ARGS(...) \ 649 Z_FOR_EACH_ENGINE(Z_FOR_EACH_EXEC, (,), Z_BYPASS, _, __VA_ARGS__) 650 651 /** 652 * @brief Number of arguments in the variable arguments list minus one. 653 * 654 * @note Supports up to 64 arguments. 655 * 656 * @param ... List of arguments 657 * @return Number of variadic arguments in the argument list, minus one 658 */ 659 #define NUM_VA_ARGS_LESS_1(...) \ 660 NUM_VA_ARGS_LESS_1_IMPL(__VA_ARGS__, 63, 62, 61, \ 661 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 662 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ 663 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ 664 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ 665 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 666 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ~) 667 668 /** 669 * @brief Number of arguments in the variable arguments list. 670 * 671 * @note Supports up to 63 arguments. 672 * 673 * @param ... List of arguments 674 * @return Number of variadic arguments in the argument list 675 */ 676 #define NUM_VA_ARGS(...) \ 677 COND_CODE_1(IS_EMPTY(__VA_ARGS__), (0), (UTIL_INC(NUM_VA_ARGS_LESS_1(__VA_ARGS__)))) 678 679 /** 680 * @brief Mapping macro that pastes results together 681 * 682 * This is similar to FOR_EACH() in that it invokes a macro repeatedly 683 * on each element of `__VA_ARGS__`. However, unlike FOR_EACH(), 684 * MACRO_MAP_CAT() pastes the results together into a single token. 685 * 686 * For example, with this macro FOO: 687 * 688 * #define FOO(x) item_##x##_ 689 * 690 * <tt>MACRO_MAP_CAT(FOO, a, b, c),</tt> expands to the token: 691 * 692 * item_a_item_b_item_c_ 693 * 694 * @param ... Macro to expand on each argument, followed by its 695 * arguments. (The macro should take exactly one argument.) 696 * @return The results of expanding the macro on each argument, all pasted 697 * together 698 */ 699 #define MACRO_MAP_CAT(...) MACRO_MAP_CAT_(__VA_ARGS__) 700 701 /** 702 * @brief Mapping macro that pastes a fixed number of results together 703 * 704 * Similar to @ref MACRO_MAP_CAT(), but expects a fixed number of 705 * arguments. If more arguments are given than are expected, the rest 706 * are ignored. 707 * 708 * @param N Number of arguments to map 709 * @param ... Macro to expand on each argument, followed by its 710 * arguments. (The macro should take exactly one argument.) 711 * @return The results of expanding the macro on each argument, all pasted 712 * together 713 */ 714 #define MACRO_MAP_CAT_N(N, ...) MACRO_MAP_CAT_N_(N, __VA_ARGS__) 715 716 /** 717 * @} 718 */ 719 720 #ifdef __cplusplus 721 } 722 #endif 723 724 #endif /* ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ */ 725