1 /**
2   ******************************************************************************
3   * @file    stm32h7xx_hal.c
4   * @author  MCD Application Team
5   * @brief   HAL module driver.
6   *          This is the common part of the HAL initialization
7   *
8   ******************************************************************************
9   * @attention
10   *
11   * Copyright (c) 2017 STMicroelectronics.
12   * All rights reserved.
13   *
14   * This software is licensed under terms that can be found in the LICENSE file
15   * in the root directory of this software component.
16   * If no LICENSE file comes with this software, it is provided AS-IS.
17   *
18   ******************************************************************************
19   @verbatim
20   ==============================================================================
21                      ##### How to use this driver #####
22   ==============================================================================
23     [..]
24     The common HAL driver contains a set of generic and common APIs that can be
25     used by the PPP peripheral drivers and the user to start using the HAL.
26     [..]
27     The HAL contains two APIs' categories:
28          (+) Common HAL APIs
29          (+) Services HAL APIs
30 
31   @endverbatim
32   ******************************************************************************
33   */
34 
35 /* Includes ------------------------------------------------------------------*/
36 #include "stm32h7xx_hal.h"
37 
38 /** @addtogroup STM32H7xx_HAL_Driver
39   * @{
40   */
41 
42 /** @defgroup HAL  HAL
43   * @brief HAL module driver.
44   * @{
45   */
46 
47 /* Private typedef -----------------------------------------------------------*/
48 /* Private define ------------------------------------------------------------*/
49 /**
50  * @brief STM32H7xx HAL Driver version number V1.11.1
51    */
52 #define __STM32H7xx_HAL_VERSION_MAIN   (0x01UL) /*!< [31:24] main version */
53 #define __STM32H7xx_HAL_VERSION_SUB1   (0x0BUL) /*!< [23:16] sub1 version */
54 #define __STM32H7xx_HAL_VERSION_SUB2   (0x01UL) /*!< [15:8]  sub2 version */
55 #define __STM32H7xx_HAL_VERSION_RC     (0x00UL) /*!< [7:0]  release candidate */
56 #define __STM32H7xx_HAL_VERSION         ((__STM32H7xx_HAL_VERSION_MAIN << 24)\
57                                         |(__STM32H7xx_HAL_VERSION_SUB1 << 16)\
58                                         |(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\
59                                         |(__STM32H7xx_HAL_VERSION_RC))
60 
61 #define IDCODE_DEVID_MASK    ((uint32_t)0x00000FFF)
62 #define VREFBUF_TIMEOUT_VALUE     (uint32_t)10   /* 10 ms  */
63 
64 /* Private macro -------------------------------------------------------------*/
65 /* Private variables ---------------------------------------------------------*/
66 /* Exported variables --------------------------------------------------------*/
67 
68 /** @defgroup HAL_Exported_Variables HAL Exported Variables
69   * @{
70   */
71 __IO uint32_t uwTick;
72 uint32_t uwTickPrio   = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
73 HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT;  /* 1KHz */
74 /**
75   * @}
76   */
77 
78 /* Private function prototypes -----------------------------------------------*/
79 /* Private functions ---------------------------------------------------------*/
80 
81 /** @addtogroup HAL_Exported_Functions
82   * @{
83   */
84 
85 /** @addtogroup HAL_Group1
86  *  @brief    Initialization and de-initialization functions
87  *
88 @verbatim
89  ===============================================================================
90               ##### Initialization and de-initialization functions #####
91  ===============================================================================
92     [..]  This section provides functions allowing to:
93       (+) Initializes the Flash interface the NVIC allocation and initial clock
94           configuration. It initializes the systick also when timeout is needed
95           and the backup domain when enabled.
96       (+) De-Initializes common part of the HAL.
97       (+) Configure The time base source to have 1ms time base with a dedicated
98           Tick interrupt priority.
99         (++) SysTick timer is used by default as source of time base, but user
100              can eventually implement his proper time base source (a general purpose
101              timer for example or other time source), keeping in mind that Time base
102              duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
103              handled in milliseconds basis.
104         (++) Time base configuration function (HAL_InitTick ()) is called automatically
105              at the beginning of the program after reset by HAL_Init() or at any time
106              when clock is configured, by HAL_RCC_ClockConfig().
107         (++) Source of time base is configured  to generate interrupts at regular
108              time intervals. Care must be taken if HAL_Delay() is called from a
109              peripheral ISR process, the Tick interrupt line must have higher priority
110             (numerically lower) than the peripheral interrupt. Otherwise the caller
111             ISR process will be blocked.
112        (++) functions affecting time base configurations are declared as __weak
113              to make  override possible  in case of other  implementations in user file.
114 @endverbatim
115   * @{
116   */
117 
118 /**
119   * @brief  This function is used to initialize the HAL Library; it must be the first
120   *         instruction to be executed in the main program (before to call any other
121   *         HAL function), it performs the following:
122   *           Configures the SysTick to generate an interrupt each 1 millisecond,
123   *           which is clocked by the HSI (at this stage, the clock is not yet
124   *           configured and thus the system is running from the internal HSI at 16 MHz).
125   *           Set NVIC Group Priority to 4.
126   *           Calls the HAL_MspInit() callback function defined in user file
127   *           "stm32h7xx_hal_msp.c" to do the global low level hardware initialization
128   *
129   * @note   SysTick is used as time base for the HAL_Delay() function, the application
130   *         need to ensure that the SysTick time base is always set to 1 millisecond
131   *         to have correct HAL operation.
132   * @retval HAL status
133   */
HAL_Init(void)134 HAL_StatusTypeDef HAL_Init(void)
135 {
136 
137 uint32_t common_system_clock;
138 
139 #if defined(DUAL_CORE) && defined(CORE_CM4)
140    /* Configure Cortex-M4 Instruction cache through ART accelerator */
141    __HAL_RCC_ART_CLK_ENABLE();                   /* Enable the Cortex-M4 ART Clock */
142    __HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL);  /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */
143    __HAL_ART_ENABLE();                           /* Enable the Cortex-M4 ART */
144 #endif /* DUAL_CORE &&  CORE_CM4 */
145 
146   /* Set Interrupt Group Priority */
147   HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
148 
149   /* Update the SystemCoreClock global variable */
150 #if defined(RCC_D1CFGR_D1CPRE)
151   common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
152 #else
153   common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
154 #endif
155 
156   /* Update the SystemD2Clock global variable */
157 #if defined(RCC_D1CFGR_HPRE)
158   SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
159 #else
160   SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
161 #endif
162 
163 #if defined(DUAL_CORE) && defined(CORE_CM4)
164   SystemCoreClock = SystemD2Clock;
165 #else
166   SystemCoreClock = common_system_clock;
167 #endif /* DUAL_CORE && CORE_CM4 */
168 
169   /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
170   if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
171   {
172     return HAL_ERROR;
173   }
174 
175   /* Init the low level hardware */
176   HAL_MspInit();
177 
178   /* Return function status */
179   return HAL_OK;
180 }
181 
182 /**
183   * @brief  This function de-Initializes common part of the HAL and stops the systick.
184   *         This function is optional.
185   * @retval HAL status
186   */
HAL_DeInit(void)187 HAL_StatusTypeDef HAL_DeInit(void)
188 {
189   /* Reset of all peripherals */
190   __HAL_RCC_AHB3_FORCE_RESET();
191   __HAL_RCC_AHB3_RELEASE_RESET();
192 
193   __HAL_RCC_AHB1_FORCE_RESET();
194   __HAL_RCC_AHB1_RELEASE_RESET();
195 
196   __HAL_RCC_AHB2_FORCE_RESET();
197   __HAL_RCC_AHB2_RELEASE_RESET();
198 
199   __HAL_RCC_AHB4_FORCE_RESET();
200  __HAL_RCC_AHB4_RELEASE_RESET();
201 
202   __HAL_RCC_APB3_FORCE_RESET();
203   __HAL_RCC_APB3_RELEASE_RESET();
204 
205   __HAL_RCC_APB1L_FORCE_RESET();
206   __HAL_RCC_APB1L_RELEASE_RESET();
207 
208   __HAL_RCC_APB1H_FORCE_RESET();
209   __HAL_RCC_APB1H_RELEASE_RESET();
210 
211    __HAL_RCC_APB2_FORCE_RESET();
212    __HAL_RCC_APB2_RELEASE_RESET();
213 
214   __HAL_RCC_APB4_FORCE_RESET();
215   __HAL_RCC_APB4_RELEASE_RESET();
216 
217   /* De-Init the low level hardware */
218   HAL_MspDeInit();
219 
220   /* Return function status */
221   return HAL_OK;
222 }
223 
224 /**
225   * @brief  Initializes the MSP.
226   * @retval None
227   */
HAL_MspInit(void)228 __weak void HAL_MspInit(void)
229 {
230   /* NOTE : This function Should not be modified, when the callback is needed,
231             the HAL_MspInit could be implemented in the user file
232    */
233 }
234 
235 /**
236   * @brief  DeInitializes the MSP.
237   * @retval None
238   */
HAL_MspDeInit(void)239 __weak void HAL_MspDeInit(void)
240 {
241   /* NOTE : This function Should not be modified, when the callback is needed,
242             the HAL_MspDeInit could be implemented in the user file
243    */
244 }
245 
246 /**
247   * @brief This function configures the source of the time base.
248   *        The time source is configured  to have 1ms time base with a dedicated
249   *        Tick interrupt priority.
250   * @note This function is called  automatically at the beginning of program after
251   *       reset by HAL_Init() or at any time when clock is reconfigured  by HAL_RCC_ClockConfig().
252   * @note In the default implementation, SysTick timer is the source of time base.
253   *       It is used to generate interrupts at regular time intervals.
254   *       Care must be taken if HAL_Delay() is called from a peripheral ISR process,
255   *       the SysTick interrupt must have higher priority (numerically lower)
256   *       than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
257   *       The function is declared as __weak  to be overwritten  in case of other
258   *       implementation  in user file.
259   * @param TickPriority: Tick interrupt priority.
260   * @retval HAL status
261   */
HAL_InitTick(uint32_t TickPriority)262 __weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
263 {
264   /* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/
265   if((uint32_t)uwTickFreq == 0UL)
266   {
267     return HAL_ERROR;
268   }
269 
270     /* Configure the SysTick to have interrupt in 1ms time basis*/
271     if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U)
272     {
273       return HAL_ERROR;
274     }
275 
276   /* Configure the SysTick IRQ priority */
277   if (TickPriority < (1UL << __NVIC_PRIO_BITS))
278   {
279     HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
280     uwTickPrio = TickPriority;
281   }
282   else
283   {
284     return HAL_ERROR;
285   }
286 
287   /* Return function status */
288   return HAL_OK;
289 }
290 
291 /**
292   * @}
293   */
294 
295 /** @addtogroup HAL_Group2
296  *  @brief    HAL Control functions
297  *
298 @verbatim
299  ===============================================================================
300                       ##### HAL Control functions #####
301  ===============================================================================
302     [..]  This section provides functions allowing to:
303       (+) Provide a tick value in millisecond
304       (+) Provide a blocking delay in millisecond
305       (+) Suspend the time base source interrupt
306       (+) Resume the time base source interrupt
307       (+) Get the HAL API driver version
308       (+) Get the device identifier
309       (+) Get the device revision identifier
310       (+) Enable/Disable Debug module during SLEEP mode
311       (+) Enable/Disable Debug module during STOP mode
312       (+) Enable/Disable Debug module during STANDBY mode
313 
314 @endverbatim
315   * @{
316   */
317 
318 /**
319   * @brief This function is called to increment  a global variable "uwTick"
320   *        used as application time base.
321   * @note In the default implementation, this variable is incremented each 1ms
322   *       in Systick ISR.
323  * @note This function is declared as __weak to be overwritten in case of other
324   *      implementations in user file.
325   * @retval None
326   */
HAL_IncTick(void)327 __weak void HAL_IncTick(void)
328 {
329   uwTick += (uint32_t)uwTickFreq;
330 }
331 
332 /**
333   * @brief Provides a tick value in millisecond.
334   * @note This function is declared as __weak to be overwritten in case of other
335   *       implementations in user file.
336   * @retval tick value
337   */
HAL_GetTick(void)338 __weak uint32_t HAL_GetTick(void)
339 {
340   return uwTick;
341 }
342 
343 /**
344   * @brief This function returns a tick priority.
345   * @retval tick priority
346   */
HAL_GetTickPrio(void)347 uint32_t HAL_GetTickPrio(void)
348 {
349   return uwTickPrio;
350 }
351 
352 /**
353   * @brief Set new tick Freq.
354   * @retval Status
355   */
HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)356 HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
357 {
358   HAL_StatusTypeDef status  = HAL_OK;
359   HAL_TickFreqTypeDef prevTickFreq;
360 
361   assert_param(IS_TICKFREQ(Freq));
362 
363   if (uwTickFreq != Freq)
364   {
365 
366     /* Back up uwTickFreq frequency */
367     prevTickFreq = uwTickFreq;
368 
369     /* Update uwTickFreq global variable used by HAL_InitTick() */
370     uwTickFreq = Freq;
371 
372     /* Apply the new tick Freq  */
373     status = HAL_InitTick(uwTickPrio);
374     if (status != HAL_OK)
375     {
376       /* Restore previous tick frequency */
377       uwTickFreq = prevTickFreq;
378     }
379   }
380 
381   return status;
382 }
383 
384 /**
385   * @brief Return tick frequency.
386   * @retval tick period in Hz
387   */
HAL_GetTickFreq(void)388 HAL_TickFreqTypeDef HAL_GetTickFreq(void)
389 {
390   return uwTickFreq;
391 }
392 
393 /**
394   * @brief This function provides minimum delay (in milliseconds) based
395   *        on variable incremented.
396   * @note In the default implementation , SysTick timer is the source of time base.
397   *       It is used to generate interrupts at regular time intervals where uwTick
398   *       is incremented.
399   * @note This function is declared as __weak to be overwritten in case of other
400   *       implementations in user file.
401   * @param Delay  specifies the delay time length, in milliseconds.
402   * @retval None
403   */
HAL_Delay(uint32_t Delay)404 __weak void HAL_Delay(uint32_t Delay)
405 {
406   uint32_t tickstart = HAL_GetTick();
407   uint32_t wait = Delay;
408 
409   /* Add a freq to guarantee minimum wait */
410   if (wait < HAL_MAX_DELAY)
411   {
412     wait += (uint32_t)(uwTickFreq);
413   }
414 
415   while ((HAL_GetTick() - tickstart) < wait)
416   {
417   }
418 }
419 
420 /**
421   * @brief Suspend Tick increment.
422   * @note In the default implementation , SysTick timer is the source of time base. It is
423   *       used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
424   *       is called, the SysTick interrupt will be disabled and so Tick increment
425   *       is suspended.
426   * @note This function is declared as __weak to be overwritten in case of other
427   *       implementations in user file.
428   * @retval None
429   */
HAL_SuspendTick(void)430 __weak void HAL_SuspendTick(void)
431 {
432   /* Disable SysTick Interrupt */
433   SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
434 }
435 
436 /**
437   * @brief Resume Tick increment.
438   * @note In the default implementation , SysTick timer is the source of time base. It is
439   *       used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
440   *       is called, the SysTick interrupt will be enabled and so Tick increment
441   *       is resumed.
442   * @note This function is declared as __weak to be overwritten in case of other
443   *       implementations in user file.
444   * @retval None
445   */
HAL_ResumeTick(void)446 __weak void HAL_ResumeTick(void)
447 {
448   /* Enable SysTick Interrupt */
449   SysTick->CTRL  |= SysTick_CTRL_TICKINT_Msk;
450 }
451 
452 /**
453   * @brief  Returns the HAL revision
454   * @retval version : 0xXYZR (8bits for each decimal, R for RC)
455   */
HAL_GetHalVersion(void)456 uint32_t HAL_GetHalVersion(void)
457 {
458  return __STM32H7xx_HAL_VERSION;
459 }
460 
461 /**
462   * @brief  Returns the device revision identifier.
463   * @retval Device revision identifier
464   */
HAL_GetREVID(void)465 uint32_t HAL_GetREVID(void)
466 {
467    return((DBGMCU->IDCODE) >> 16);
468 }
469 
470 /**
471   * @brief  Returns the device identifier.
472   * @retval Device identifier
473   */
HAL_GetDEVID(void)474 uint32_t HAL_GetDEVID(void)
475 {
476    return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
477 }
478 
479 /**
480   * @brief  Return the first word of the unique device identifier (UID based on 96 bits)
481   * @retval Device identifier
482   */
HAL_GetUIDw0(void)483 uint32_t HAL_GetUIDw0(void)
484 {
485   return(READ_REG(*((uint32_t *)UID_BASE)));
486 }
487 
488 /**
489   * @brief  Return the second word of the unique device identifier (UID based on 96 bits)
490   * @retval Device identifier
491   */
HAL_GetUIDw1(void)492 uint32_t HAL_GetUIDw1(void)
493 {
494   return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
495 }
496 
497 /**
498   * @brief  Return the third word of the unique device identifier (UID based on 96 bits)
499   * @retval Device identifier
500   */
HAL_GetUIDw2(void)501 uint32_t HAL_GetUIDw2(void)
502 {
503   return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
504 }
505 
506 /**
507   * @brief Configure the internal voltage reference buffer voltage scale.
508   * @param VoltageScaling  specifies the output voltage to achieve
509   *          This parameter can be one of the following values:
510   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.5 V.
511   *                                                This requires VDDA equal to or higher than 2.8 V.
512   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.048 V.
513   *                                                This requires VDDA equal to or higher than 2.4 V.
514   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.8 V.
515   *                                                This requires VDDA equal to or higher than 2.1 V.
516   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.5 V.
517   *                                                This requires VDDA equal to or higher than 1.8 V.
518   * @retval None
519   */
HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)520 void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
521 {
522   /* Check the parameters */
523   assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
524 
525   MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
526 }
527 
528 /**
529   * @brief Configure the internal voltage reference buffer high impedance mode.
530   * @param Mode  specifies the high impedance mode
531   *          This parameter can be one of the following values:
532   *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
533   *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
534   * @retval None
535   */
HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)536 void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
537 {
538   /* Check the parameters */
539   assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
540 
541   MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
542 }
543 
544 /**
545   * @brief  Tune the Internal Voltage Reference buffer (VREFBUF).
546   * @retval None
547   */
HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)548 void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
549 {
550   /* Check the parameters */
551   assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
552 
553   MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
554 }
555 
556 /**
557   * @brief  Enable the Internal Voltage Reference buffer (VREFBUF).
558   * @retval HAL_OK/HAL_TIMEOUT
559   */
HAL_SYSCFG_EnableVREFBUF(void)560 HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
561 {
562   uint32_t  tickstart;
563 
564   SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
565 
566   /* Get Start Tick*/
567   tickstart = HAL_GetTick();
568 
569   /* Wait for VRR bit  */
570   while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL)
571   {
572     if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
573     {
574       return HAL_TIMEOUT;
575     }
576   }
577 
578   return HAL_OK;
579 }
580 
581 /**
582   * @brief  Disable the Internal Voltage Reference buffer (VREFBUF).
583   *
584   * @retval None
585   */
HAL_SYSCFG_DisableVREFBUF(void)586 void HAL_SYSCFG_DisableVREFBUF(void)
587 {
588   CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
589 }
590 
591 #if defined(SYSCFG_PMCR_EPIS_SEL)
592 /**
593   * @brief  Ethernet PHY Interface Selection either MII or RMII
594   * @param  SYSCFG_ETHInterface: Selects the Ethernet PHY interface
595   *   This parameter can be one of the following values:
596   *   @arg SYSCFG_ETH_MII : Select the Media Independent Interface
597   *   @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface
598   * @retval None
599   */
HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)600 void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
601 {
602   /* Check the parameter */
603   assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));
604 
605   MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface));
606 }
607 #endif /* SYSCFG_PMCR_EPIS_SEL */
608 
609 /**
610   * @brief  Analog Switch control for dual analog pads.
611   * @param  SYSCFG_AnalogSwitch: Selects the analog pad
612   *   This parameter can be one or a combination of the following values:
613   *   @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
614   *   @arg SYSCFG_SWITCH_PA1:  Select PA1 analog switch
615   *   @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch
616   *   @arg SYSCFG_SWITCH_PC3:  Select PC3 analog switch
617   * @param  SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C)
618   *   This parameter can be one or a combination of the following values:
619   *   @arg SYSCFG_SWITCH_PA0_OPEN
620   *   @arg SYSCFG_SWITCH_PA0_CLOSE
621   *   @arg SYSCFG_SWITCH_PA1_OPEN
622   *   @arg SYSCFG_SWITCH_PA1_CLOSE
623   *   @arg SYSCFG_SWITCH_PC2_OPEN
624   *   @arg SYSCFG_SWITCH_PC2_CLOSE
625   *   @arg SYSCFG_SWITCH_PC3_OPEN
626   *   @arg SYSCFG_SWITCH_PC3_CLOSE
627   * @retval None
628   */
629 
HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch,uint32_t SYSCFG_SwitchState)630 void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
631 {
632   /* Check the parameter */
633   assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
634   assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));
635 
636   MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState));
637 }
638 
639 #if defined(SYSCFG_PMCR_BOOSTEN)
640 /**
641   * @brief  Enables the booster to reduce the total harmonic distortion of the analog
642   *         switch when the supply voltage is lower than 2.7 V.
643   * @note   Activating the booster allows to guaranty the analog switch AC performance
644   *         when the supply voltage is below 2.7 V: in this case, the analog switch
645   *         performance is the same on the full voltage range
646   * @retval None
647   */
HAL_SYSCFG_EnableBOOST(void)648 void HAL_SYSCFG_EnableBOOST(void)
649 {
650  SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
651 }
652 
653 /**
654   * @brief  Disables the booster
655   * @note   Activating the booster allows to guaranty the analog switch AC performance
656   *         when the supply voltage is below 2.7 V: in this case, the analog switch
657   *         performance is the same on the full voltage range
658   * @retval None
659   */
HAL_SYSCFG_DisableBOOST(void)660 void HAL_SYSCFG_DisableBOOST(void)
661 {
662  CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
663 }
664 #endif /* SYSCFG_PMCR_BOOSTEN */
665 
666 #if defined (SYSCFG_UR2_BOOT_ADD0) ||  defined (SYSCFG_UR2_BCM7_ADD0)
667 /**
668   * @brief  BootCM7 address 0 configuration
669   * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
670   *   This parameter can be one of the following values:
671   *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
672   *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
673   * @param  BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1
674   * @retval None
675   */
HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister,uint32_t BootAddress)676 void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
677 {
678   /* Check the parameters */
679   assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
680   assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
681   if ( BootRegister == SYSCFG_BOOT_ADDR0 )
682   {
683     /* Configure CM7 BOOT ADD0 */
684 #if defined(DUAL_CORE)
685     MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos));
686 #else
687     MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos));
688 #endif /*DUAL_CORE*/
689   }
690   else
691   {
692     /* Configure CM7 BOOT ADD1 */
693 #if defined(DUAL_CORE)
694     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16));
695 #else
696     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16));
697 #endif /*DUAL_CORE*/
698   }
699 }
700 #endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */
701 
702 #if defined(DUAL_CORE)
703 /**
704   * @brief  BootCM4 address 0 configuration
705   * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
706   *   This parameter can be one of the following values:
707   *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
708   *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
709   * @param  BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1
710   * @retval None
711   */
HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister,uint32_t BootAddress)712 void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
713 {
714   /* Check the parameters */
715   assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
716   assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
717 
718   if ( BootRegister == SYSCFG_BOOT_ADDR0 )
719   {
720     /* Configure CM4 BOOT ADD0 */
721     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos));
722   }
723 
724   else
725   {
726     /* Configure CM4 BOOT ADD1 */
727     MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16));
728   }
729 }
730 
731 /**
732   * @brief  Enables the Cortex-M7 boot
733   * @retval None
734   */
HAL_SYSCFG_EnableCM7BOOT(void)735 void HAL_SYSCFG_EnableCM7BOOT(void)
736 {
737  SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7);
738 }
739 
740 /**
741   * @brief  Disables the Cortex-M7 boot
742   * @note   Disabling the boot will gate the CPU clock
743   * @retval None
744   */
HAL_SYSCFG_DisableCM7BOOT(void)745 void HAL_SYSCFG_DisableCM7BOOT(void)
746 {
747  CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ;
748 }
749 
750 /**
751   * @brief  Enables the Cortex-M4 boot
752   * @retval None
753   */
HAL_SYSCFG_EnableCM4BOOT(void)754 void HAL_SYSCFG_EnableCM4BOOT(void)
755 {
756  SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
757 }
758 
759 /**
760   * @brief  Disables the Cortex-M4 boot
761   * @note   Disabling the boot will gate the CPU clock
762   * @retval None
763   */
HAL_SYSCFG_DisableCM4BOOT(void)764 void HAL_SYSCFG_DisableCM4BOOT(void)
765 {
766   CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
767 }
768 #endif /*DUAL_CORE*/
769 /**
770   * @brief  Enables the I/O Compensation Cell.
771   * @note   The I/O compensation cell can be used only when the device supply
772   *         voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
773   * @retval None
774   */
HAL_EnableCompensationCell(void)775 void HAL_EnableCompensationCell(void)
776 {
777   SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ;
778 }
779 
780 /**
781   * @brief  Power-down the I/O Compensation Cell.
782   * @note   The I/O compensation cell can be used only when the device supply
783   *         voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
784   * @retval None
785   */
HAL_DisableCompensationCell(void)786 void HAL_DisableCompensationCell(void)
787 {
788   CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN);
789 }
790 
791 
792 /**
793   * @brief  To Enable optimize the I/O speed when the product voltage is low.
794   * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
795   *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
796   *         higher than 2.5 V might be destructive.
797   * @retval None
798   */
HAL_SYSCFG_EnableIOSpeedOptimize(void)799 void HAL_SYSCFG_EnableIOSpeedOptimize(void)
800 {
801 #if defined(SYSCFG_CCCSR_HSLV)
802   SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
803 #else
804   SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
805 #endif   /* SYSCFG_CCCSR_HSLV */
806 }
807 
808 /**
809   * @brief  To Disable optimize the I/O speed when the product voltage is low.
810   * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
811   *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
812   *         higher than 2.5 V might be destructive.
813   * @retval None
814   */
HAL_SYSCFG_DisableIOSpeedOptimize(void)815 void HAL_SYSCFG_DisableIOSpeedOptimize(void)
816 {
817 #if defined(SYSCFG_CCCSR_HSLV)
818   CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
819 #else
820   CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
821 #endif   /* SYSCFG_CCCSR_HSLV */
822 }
823 
824 /**
825   * @brief  Code selection for the I/O Compensation cell
826   * @param  SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
827   *   This parameter can be one of the following values:
828   *   @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
829   *   @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
830   * @retval None
831   */
HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)832 void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
833 {
834   /* Check the parameter */
835   assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
836   MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode));
837 }
838 
839 /**
840   * @brief  Code selection for the I/O Compensation cell
841   * @param  SYSCFG_PMOSCode: PMOS compensation code
842   *         This code is applied to the I/O compensation cell when the CS bit of the
843   *          SYSCFG_CMPCR is set
844   * @param  SYSCFG_NMOSCode: NMOS compensation code
845   *         This code is applied to the I/O compensation cell when the CS bit of the
846   *          SYSCFG_CMPCR is set
847   * @retval None
848   */
HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode,uint32_t SYSCFG_NMOSCode)849 void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
850 {
851   /* Check the parameter */
852   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
853   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
854   MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
855 }
856 
857 #if defined(SYSCFG_CCCR_NCC_MMC)
858 /**
859   * @brief  Code selection for the I/O Compensation cell
860   * @param  SYSCFG_PMOSCode: VDDMMC PMOS compensation code
861   *         This code is applied to the I/O compensation cell when the CS bit of the
862   *          SYSCFG_CMPCR is set
863   * @param  SYSCFG_NMOSCode: VDDMMC NMOS compensation code
864   *         This code is applied to the I/O compensation cell when the CS bit of the
865   *          SYSCFG_CMPCR is set
866   * @retval None
867   */
HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode,uint32_t SYSCFG_NMOSCode)868 void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
869 {
870   /* Check the parameter */
871   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
872   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
873   MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
874 }
875 #endif /* SYSCFG_CCCR_NCC_MMC */
876 
877 #if defined(SYSCFG_ADC2ALT_ADC2_ROUT0)
878 /** @brief  SYSCFG ADC2 internal input alternate connection macros
879   * @param Adc2AltRout0 This parameter can be a value of :
880   *     @arg @ref SYSCFG_ADC2_ROUT0_DAC1_1   DAC1_out1 connected to ADC2 VINP[16]
881   *     @arg @ref SYSCFG_ADC2_ROUT0_VBAT4    VBAT/4 connected to ADC2 VINP[16]
882   */
HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)883 void HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)
884 {
885   /* Check the parameters */
886   assert_param(IS_SYSCFG_ADC2ALT_ROUT0(Adc2AltRout0));
887 
888   MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT0, Adc2AltRout0);
889 }
890 #endif /*SYSCFG_ADC2ALT_ADC2_ROUT0*/
891 
892 #if defined(SYSCFG_ADC2ALT_ADC2_ROUT1)
893 /** @brief  SYSCFG ADC2 internal input alternate connection macros
894   * @param Adc2AltRout1  This parameter can be a value of :
895   *     @arg @ref SYSCFG_ADC2_ROUT1_DAC1_2   DAC1_out2 connected to ADC2 VINP[17]
896   *     @arg @ref SYSCFG_ADC2_ROUT1_VREFINT  VREFINT connected to ADC2 VINP[17]
897   */
HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)898 void HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)
899 {
900   /* Check the parameters */
901   assert_param(IS_SYSCFG_ADC2ALT_ROUT1(Adc2AltRout1));
902 
903   MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT1, Adc2AltRout1);
904 }
905 #endif /*SYSCFG_ADC2ALT_ADC2_ROUT1*/
906 
907 /**
908   * @brief  Enable the Debug Module during Domain1/CDomain SLEEP mode
909   * @retval None
910   */
HAL_DBGMCU_EnableDBGSleepMode(void)911 void HAL_DBGMCU_EnableDBGSleepMode(void)
912 {
913   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
914 }
915 
916 /**
917   * @brief  Disable the Debug Module during Domain1/CDomain SLEEP mode
918   * @retval None
919   */
HAL_DBGMCU_DisableDBGSleepMode(void)920 void HAL_DBGMCU_DisableDBGSleepMode(void)
921 {
922   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
923 }
924 
925 
926 /**
927   * @brief  Enable the Debug Module during Domain1/CDomain STOP mode
928   * @retval None
929   */
HAL_DBGMCU_EnableDBGStopMode(void)930 void HAL_DBGMCU_EnableDBGStopMode(void)
931 {
932   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
933 }
934 
935 /**
936   * @brief  Disable the Debug Module during Domain1/CDomain STOP mode
937   * @retval None
938   */
HAL_DBGMCU_DisableDBGStopMode(void)939 void HAL_DBGMCU_DisableDBGStopMode(void)
940 {
941   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
942 }
943 
944 /**
945   * @brief  Enable the Debug Module during Domain1/CDomain STANDBY mode
946   * @retval None
947   */
HAL_DBGMCU_EnableDBGStandbyMode(void)948 void HAL_DBGMCU_EnableDBGStandbyMode(void)
949 {
950   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
951 }
952 
953 /**
954   * @brief  Disable the Debug Module during Domain1/CDomain STANDBY mode
955   * @retval None
956   */
HAL_DBGMCU_DisableDBGStandbyMode(void)957 void HAL_DBGMCU_DisableDBGStandbyMode(void)
958 {
959   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
960 }
961 
962 #if defined(DUAL_CORE)
963 /**
964   * @brief  Enable the Debug Module during Domain1 SLEEP mode
965   * @retval None
966   */
HAL_EnableDomain2DBGSleepMode(void)967 void HAL_EnableDomain2DBGSleepMode(void)
968 {
969   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
970 }
971 
972 /**
973   * @brief  Disable the Debug Module during Domain2 SLEEP mode
974   * @retval None
975   */
HAL_DisableDomain2DBGSleepMode(void)976 void HAL_DisableDomain2DBGSleepMode(void)
977 {
978   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
979 }
980 
981 /**
982   * @brief  Enable the Debug Module during Domain2 STOP mode
983   * @retval None
984   */
HAL_EnableDomain2DBGStopMode(void)985 void HAL_EnableDomain2DBGStopMode(void)
986 {
987   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
988 }
989 
990 /**
991   * @brief  Disable the Debug Module during Domain2 STOP mode
992   * @retval None
993   */
HAL_DisableDomain2DBGStopMode(void)994 void HAL_DisableDomain2DBGStopMode(void)
995 {
996   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
997 }
998 
999 /**
1000   * @brief  Enable the Debug Module during Domain2 STANDBY mode
1001   * @retval None
1002   */
HAL_EnableDomain2DBGStandbyMode(void)1003 void HAL_EnableDomain2DBGStandbyMode(void)
1004 {
1005   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
1006 }
1007 
1008 /**
1009   * @brief  Disable the Debug Module during Domain2 STANDBY mode
1010   * @retval None
1011   */
HAL_DisableDomain2DBGStandbyMode(void)1012 void HAL_DisableDomain2DBGStandbyMode(void)
1013 {
1014   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
1015 }
1016 #endif /*DUAL_CORE*/
1017 
1018 #if defined(DBGMCU_CR_DBG_STOPD3)
1019 /**
1020   * @brief  Enable the Debug Module during Domain3/SRDomain STOP mode
1021   * @retval None
1022   */
HAL_EnableDomain3DBGStopMode(void)1023 void HAL_EnableDomain3DBGStopMode(void)
1024 {
1025   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
1026 }
1027 
1028 /**
1029   * @brief  Disable the Debug Module during Domain3/SRDomain STOP mode
1030   * @retval None
1031   */
HAL_DisableDomain3DBGStopMode(void)1032 void HAL_DisableDomain3DBGStopMode(void)
1033 {
1034   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
1035 }
1036 #endif /*DBGMCU_CR_DBG_STOPD3*/
1037 
1038 #if defined(DBGMCU_CR_DBG_STANDBYD3)
1039 /**
1040   * @brief  Enable the Debug Module during Domain3/SRDomain STANDBY mode
1041   * @retval None
1042   */
HAL_EnableDomain3DBGStandbyMode(void)1043 void HAL_EnableDomain3DBGStandbyMode(void)
1044 {
1045   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
1046 }
1047 
1048 /**
1049   * @brief  Disable the Debug Module during Domain3/SRDomain STANDBY mode
1050   * @retval None
1051   */
HAL_DisableDomain3DBGStandbyMode(void)1052 void HAL_DisableDomain3DBGStandbyMode(void)
1053 {
1054   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
1055 }
1056 #endif /*DBGMCU_CR_DBG_STANDBYD3*/
1057 
1058 /**
1059   * @brief  Set the FMC Memory Mapping Swapping config.
1060   * @param  BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be
1061             FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
1062   * @retval HAL state
1063   */
HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)1064 void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)
1065 {
1066   /* Check the parameter */
1067   assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig));
1068   MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig);
1069 }
1070 
1071 /**
1072   * @brief  Get FMC Bank mapping mode.
1073   * @retval The FMC Bank mapping mode. This parameter can be
1074             FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
1075 */
HAL_GetFMCMemorySwappingConfig(void)1076 uint32_t HAL_GetFMCMemorySwappingConfig(void)
1077 {
1078   return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP);
1079 }
1080 
1081 /**
1082   * @brief  Configure the EXTI input event line edge
1083   * @note    No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21),
1084   *          EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
1085   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1086   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1087   * @param   EXTI_Edge: Specifies  EXTI line Edge used.
1088   *          This parameter can be one of the following values :
1089   *   @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection
1090   *   @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection
1091   * @retval None
1092   */
HAL_EXTI_EdgeConfig(uint32_t EXTI_Line,uint32_t EXTI_Edge)1093 void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge )
1094 {
1095   /* Check the parameter */
1096   assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
1097   assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge));
1098 
1099   /* Clear Rising Falling edge configuration */
1100   CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1101   CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1102 
1103   if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE)
1104   {
1105    SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1106   }
1107   if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE)
1108   {
1109    SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1110   }
1111 }
1112 
1113 /**
1114   * @brief  Generates a Software interrupt on selected EXTI line.
1115   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1116   *          (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
1117   * @retval None
1118   */
HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)1119 void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
1120 {
1121   /* Check the parameters */
1122   assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
1123 
1124   SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1125 }
1126 
1127 
1128 /**
1129   * @brief  Clears the EXTI's line pending flags for Domain D1
1130   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1131   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1132   * @retval None
1133   */
HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)1134 void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)
1135 {
1136   /* Check the parameters */
1137  assert_param(IS_EXTI_D1_LINE(EXTI_Line));
1138  WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1139 
1140 }
1141 
1142 #if defined(DUAL_CORE)
1143 /**
1144   * @brief  Clears the EXTI's line pending flags for Domain D2
1145   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1146   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1147   * @retval None
1148   */
HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)1149 void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)
1150 {
1151   /* Check the parameters */
1152  assert_param(IS_EXTI_D2_LINE(EXTI_Line));
1153  WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1154 }
1155 
1156 #endif /*DUAL_CORE*/
1157 /**
1158   * @brief  Configure the EXTI input event line for Domain D1
1159   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1160   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1161   * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
1162   *          This parameter can be one or a combination of the following values :
1163   *   @arg EXTI_MODE_IT :  Interrupt Mode selected
1164   *   @arg EXTI_MODE_EVT : Event Mode selected
1165   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1166 
1167   * @retval None
1168   */
HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_Mode,uint32_t EXTI_LineCmd)1169 void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
1170 {
1171   /* Check the parameter */
1172   assert_param(IS_EXTI_D1_LINE(EXTI_Line));
1173   assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
1174 
1175   if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
1176   {
1177      if( EXTI_LineCmd == 0UL)
1178      {
1179        /* Clear EXTI line configuration */
1180         CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1181      }
1182      else
1183      {
1184         SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1185      }
1186   }
1187 
1188   if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
1189   {
1190     if( EXTI_LineCmd == 0UL)
1191     {
1192       /* Clear EXTI line configuration */
1193       CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1194     }
1195     else
1196     {
1197       SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1198     }
1199   }
1200 }
1201 
1202 #if defined(DUAL_CORE)
1203 /**
1204   * @brief  Configure the EXTI input event line for Domain D2
1205   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1206   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1207   * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
1208   *          This parameter can be one or a combination of the following values :
1209   *   @arg EXTI_MODE_IT :  Interrupt Mode selected
1210   *   @arg EXTI_MODE_EVT : Event Mode selected
1211   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1212 
1213   * @retval None
1214   */
HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_Mode,uint32_t EXTI_LineCmd)1215 void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
1216 {
1217   /* Check the parameter */
1218   assert_param(IS_EXTI_D2_LINE(EXTI_Line));
1219   assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
1220 
1221   if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
1222   {
1223     if( EXTI_LineCmd == 0UL)
1224     {
1225     /* Clear EXTI line configuration */
1226      CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1227     }
1228     else
1229     {
1230      SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1231     }
1232   }
1233 
1234   if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
1235   {
1236     if( EXTI_LineCmd == 0UL)
1237     {
1238       /* Clear EXTI line configuration */
1239       CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1240     }
1241     else
1242     {
1243       SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1244     }
1245   }
1246 }
1247 #endif /*DUAL_CORE*/
1248 
1249 /**
1250   * @brief  Configure the EXTI input event line for Domain D3
1251   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1252   *         (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34,
1253   *          EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53)
1254   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1255   * @param   EXTI_ClearSrc: Specifies the clear source of D3 pending event.
1256   *          This parameter can be one of the following values :
1257   *   @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source
1258   *   @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source
1259   *   @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source
1260   *   @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source
1261   * @retval None
1262   */
HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_LineCmd,uint32_t EXTI_ClearSrc)1263 void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc  )
1264 {
1265   __IO uint32_t *pRegv;
1266 
1267   /* Check the parameter */
1268   assert_param(IS_EXTI_D3_LINE(EXTI_Line));
1269   assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc));
1270 
1271   if( EXTI_LineCmd == 0UL)
1272   {
1273     /* Clear EXTI line configuration */
1274     CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1275   }
1276   else
1277   {
1278     SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1279   }
1280 
1281   if(((EXTI_Line>>4)%2UL) == 0UL)
1282   {
1283     pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL));
1284   }
1285   else
1286   {
1287     pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL));
1288   }
1289   MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL)));
1290 
1291 }
1292 
1293 
1294 
1295 /**
1296   * @}
1297   */
1298 
1299 /**
1300   * @}
1301   */
1302 
1303 /**
1304   * @}
1305   */
1306 
1307 /**
1308   * @}
1309   */
1310 
1311