1 /*
2 * Copyright (c) 2016, Freescale Semiconductor, Inc.
3 * Copyright 2016-2022 NXP
4 * All rights reserved.
5 *
6 * SPDX-License-Identifier: BSD-3-Clause
7 */
8
9 #include "fsl_ctimer.h"
10
11 /* Component ID definition, used by tools. */
12 #ifndef FSL_COMPONENT_ID
13 #define FSL_COMPONENT_ID "platform.drivers.ctimer"
14 #endif
15
16 /*******************************************************************************
17 * Prototypes
18 ******************************************************************************/
19 /*!
20 * @brief Gets the instance from the base address
21 *
22 * @param base Ctimer peripheral base address
23 *
24 * @return The Timer instance
25 */
26 static uint32_t CTIMER_GetInstance(CTIMER_Type *base);
27
28 /*!
29 * @brief CTIMER generic IRQ handle function.
30 *
31 * @param index FlexCAN peripheral instance index.
32 */
33 static void CTIMER_GenericIRQHandler(uint32_t index);
34
35 /*******************************************************************************
36 * Variables
37 ******************************************************************************/
38 /*! @brief Pointers to Timer bases for each instance. */
39 static CTIMER_Type *const s_ctimerBases[] = CTIMER_BASE_PTRS;
40
41 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
42 /*! @brief Pointers to Timer clocks for each instance. */
43 static const clock_ip_name_t s_ctimerClocks[] = CTIMER_CLOCKS;
44 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
45
46 #if !(defined(FSL_FEATURE_CTIMER_HAS_NO_RESET) && (FSL_FEATURE_CTIMER_HAS_NO_RESET))
47 #if !(defined(FSL_SDK_DISABLE_DRIVER_RESET_CONTROL) && FSL_SDK_DISABLE_DRIVER_RESET_CONTROL)
48 #if defined(FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET) && FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET
49 /*! @brief Pointers to Timer resets for each instance, writing a zero asserts the reset */
50 static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS_N;
51 #else
52 /*! @brief Pointers to Timer resets for each instance, writing a one asserts the reset */
53 static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS;
54 #endif
55 #endif
56 #endif /* FSL_SDK_DISABLE_DRIVER_RESET_CONTROL */
57
58 /*! @brief Pointers real ISRs installed by drivers for each instance. */
59 static ctimer_callback_t *s_ctimerCallback[sizeof(s_ctimerBases) / sizeof(s_ctimerBases[0])] = {0};
60
61 /*! @brief Callback type installed by drivers for each instance. */
62 static ctimer_callback_type_t ctimerCallbackType[sizeof(s_ctimerBases) / sizeof(s_ctimerBases[0])] = {
63 kCTIMER_SingleCallback};
64
65 /*! @brief Array to map timer instance to IRQ number. */
66 static const IRQn_Type s_ctimerIRQ[] = CTIMER_IRQS;
67
68 /*******************************************************************************
69 * Code
70 ******************************************************************************/
CTIMER_GetInstance(CTIMER_Type * base)71 static uint32_t CTIMER_GetInstance(CTIMER_Type *base)
72 {
73 uint32_t instance;
74 uint32_t ctimerArrayCount = (sizeof(s_ctimerBases) / sizeof(s_ctimerBases[0]));
75
76 /* Find the instance index from base address mappings. */
77 for (instance = 0; instance < ctimerArrayCount; instance++)
78 {
79 if (s_ctimerBases[instance] == base)
80 {
81 break;
82 }
83 }
84
85 assert(instance < ctimerArrayCount);
86
87 return instance;
88 }
89
90 /*!
91 * brief Ungates the clock and configures the peripheral for basic operation.
92 *
93 * note This API should be called at the beginning of the application before using the driver.
94 *
95 * param base Ctimer peripheral base address
96 * param config Pointer to the user configuration structure.
97 */
CTIMER_Init(CTIMER_Type * base,const ctimer_config_t * config)98 void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
99 {
100 assert(config != NULL);
101
102 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
103 /* Enable the timer clock*/
104 CLOCK_EnableClock(s_ctimerClocks[CTIMER_GetInstance(base)]);
105 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
106
107 #if !(defined(FSL_SDK_DISABLE_DRIVER_RESET_CONTROL) && FSL_SDK_DISABLE_DRIVER_RESET_CONTROL)
108 /* Reset the module. */
109 #if !(defined(FSL_FEATURE_CTIMER_HAS_NO_RESET) && (FSL_FEATURE_CTIMER_HAS_NO_RESET))
110 RESET_PeripheralReset(s_ctimerResets[CTIMER_GetInstance(base)]);
111 #endif
112 #endif /* FSL_SDK_DISABLE_DRIVER_RESET_CONTROL */
113
114 /* Setup the cimer mode and count select */
115 #if !(defined(FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE) && (FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE))
116 base->CTCR = CTIMER_CTCR_CTMODE(config->mode) | CTIMER_CTCR_CINSEL(config->input);
117 #endif
118 /* Setup the timer prescale value */
119 base->PR = CTIMER_PR_PRVAL(config->prescale);
120 }
121
122 /*!
123 * brief Gates the timer clock.
124 *
125 * param base Ctimer peripheral base address
126 */
CTIMER_Deinit(CTIMER_Type * base)127 void CTIMER_Deinit(CTIMER_Type *base)
128 {
129 uint32_t index = CTIMER_GetInstance(base);
130 /* Stop the timer */
131 base->TCR &= ~CTIMER_TCR_CEN_MASK;
132
133 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
134 /* Disable the timer clock*/
135 CLOCK_DisableClock(s_ctimerClocks[index]);
136 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
137
138 /* Disable IRQ at NVIC Level */
139 (void)DisableIRQ(s_ctimerIRQ[index]);
140 }
141
142 /*!
143 * brief Fills in the timers configuration structure with the default settings.
144 *
145 * The default values are:
146 * code
147 * config->mode = kCTIMER_TimerMode;
148 * config->input = kCTIMER_Capture_0;
149 * config->prescale = 0;
150 * endcode
151 * param config Pointer to the user configuration structure.
152 */
CTIMER_GetDefaultConfig(ctimer_config_t * config)153 void CTIMER_GetDefaultConfig(ctimer_config_t *config)
154 {
155 assert(config != NULL);
156
157 /* Initializes the configure structure to zero. */
158 (void)memset(config, 0, sizeof(*config));
159
160 /* Run as a timer */
161 config->mode = kCTIMER_TimerMode;
162 /* This field is ignored when mode is timer */
163 config->input = kCTIMER_Capture_0;
164 /* Timer counter is incremented on every APB bus clock */
165 config->prescale = 0;
166 }
167
168 /*!
169 * brief Configures the PWM signal parameters.
170 *
171 * Enables PWM mode on the match channel passed in and will then setup the match value
172 * and other match parameters to generate a PWM signal.
173 * This function can manually assign the specified channel to set the PWM cycle.
174 *
175 * note When setting PWM output from multiple output pins, all should use the same PWM
176 * frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.
177 *
178 * param base Ctimer peripheral base address
179 * param pwmPeriodChannel Specify the channel to control the PWM period
180 * param matchChannel Match pin to be used to output the PWM signal
181 * param dutyCyclePercent PWM pulse width; the value should be between 0 to 100
182 * param pwmFreq_Hz PWM signal frequency in Hz
183 * param srcClock_Hz Timer counter clock in Hz
184 * param enableInt Enable interrupt when the timer value reaches the match value of the PWM pulse,
185 * if it is 0 then no interrupt will be generated.
186 *
187 * return kStatus_Success on success
188 * kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM cycle
189 */
CTIMER_SetupPwm(CTIMER_Type * base,const ctimer_match_t pwmPeriodChannel,ctimer_match_t matchChannel,uint8_t dutyCyclePercent,uint32_t pwmFreq_Hz,uint32_t srcClock_Hz,bool enableInt)190 status_t CTIMER_SetupPwm(CTIMER_Type *base,
191 const ctimer_match_t pwmPeriodChannel,
192 ctimer_match_t matchChannel,
193 uint8_t dutyCyclePercent,
194 uint32_t pwmFreq_Hz,
195 uint32_t srcClock_Hz,
196 bool enableInt)
197 {
198 assert(pwmFreq_Hz > 0U);
199
200 uint32_t reg;
201 uint32_t period, pulsePeriod = 0;
202 uint32_t timerClock = srcClock_Hz / (base->PR + 1U);
203 uint32_t index = CTIMER_GetInstance(base);
204
205 if (matchChannel == pwmPeriodChannel)
206 {
207 return kStatus_Fail;
208 }
209
210 /* Enable PWM mode on the match channel */
211 base->PWMC |= (1UL << (uint32_t)matchChannel);
212
213 /* Clear the stop, reset and interrupt bits for this channel */
214 reg = base->MCR;
215 reg &=
216 ~(((uint32_t)((uint32_t)CTIMER_MCR_MR0R_MASK | (uint32_t)CTIMER_MCR_MR0S_MASK | (uint32_t)CTIMER_MCR_MR0I_MASK))
217 << ((uint32_t)matchChannel * 3U));
218
219 /* If call back function is valid then enable match interrupt for the channel */
220 if (enableInt)
221 {
222 reg |= (((uint32_t)CTIMER_MCR_MR0I_MASK) << (CTIMER_MCR_MR0I_SHIFT + ((uint32_t)matchChannel * 3U)));
223 }
224
225 /* Reset the counter when match on PWM period channel (pwmPeriodChannel) */
226 reg |= ((uint32_t)((uint32_t)CTIMER_MCR_MR0R_MASK) << ((uint32_t)pwmPeriodChannel * 3U));
227
228 base->MCR = reg;
229
230 /* Calculate PWM period match value */
231 period = (timerClock / pwmFreq_Hz) - 1U;
232
233 /* Calculate pulse width match value */
234 if (dutyCyclePercent == 0U)
235 {
236 pulsePeriod = period + 1U;
237 }
238 else
239 {
240 pulsePeriod = (period * (100U - (uint32_t)dutyCyclePercent)) / 100U;
241 }
242
243 /* Specified channel pwmPeriodChannel will define the PWM period */
244 base->MR[pwmPeriodChannel] = period;
245
246 /* This will define the PWM pulse period */
247 base->MR[matchChannel] = pulsePeriod;
248 /* Clear status flags */
249 CTIMER_ClearStatusFlags(base, ((uint32_t)CTIMER_IR_MR0INT_MASK) << (uint32_t)matchChannel);
250 /* If call back function is valid then enable interrupt and update the call back function */
251 if (enableInt)
252 {
253 (void)EnableIRQ(s_ctimerIRQ[index]);
254 }
255
256 return kStatus_Success;
257 }
258
259 /*!
260 * brief Configures the PWM signal parameters.
261 *
262 * Enables PWM mode on the match channel passed in and will then setup the match value
263 * and other match parameters to generate a PWM signal.
264 * This function can manually assign the specified channel to set the PWM cycle.
265 *
266 * note When setting PWM output from multiple output pins, all should use the same PWM
267 * period
268 *
269 * param base Ctimer peripheral base address
270 * param pwmPeriodChannel Specify the channel to control the PWM period
271 * param matchChannel Match pin to be used to output the PWM signal
272 * param pwmPeriod PWM period match value
273 * param pulsePeriod Pulse width match value
274 * param enableInt Enable interrupt when the timer value reaches the match value of the PWM pulse,
275 * if it is 0 then no interrupt will be generated.
276 *
277 * return kStatus_Success on success
278 * kStatus_Fail If matchChannel is equal to pwmPeriodChannel; this channel is reserved to set the PWM period
279 */
CTIMER_SetupPwmPeriod(CTIMER_Type * base,const ctimer_match_t pwmPeriodChannel,ctimer_match_t matchChannel,uint32_t pwmPeriod,uint32_t pulsePeriod,bool enableInt)280 status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base,
281 const ctimer_match_t pwmPeriodChannel,
282 ctimer_match_t matchChannel,
283 uint32_t pwmPeriod,
284 uint32_t pulsePeriod,
285 bool enableInt)
286 {
287 /* Some CTimers only have 16bits , so the value is limited*/
288 #if defined(FSL_FEATURE_SOC_CTIMER16B) && FSL_FEATURE_SOC_CTIMER16B
289 assert(!((FSL_FEATURE_CTIMER_BIT_SIZEn(base) < 32) && (pulsePeriod > 0xFFFFU)));
290 #endif
291
292 uint32_t reg;
293 uint32_t index = CTIMER_GetInstance(base);
294
295 if (matchChannel == pwmPeriodChannel)
296 {
297 return kStatus_Fail;
298 }
299
300 /* Enable PWM mode on PWM pulse channel */
301 base->PWMC |= (1UL << (uint32_t)matchChannel);
302
303 /* Clear the stop, reset and interrupt bits for PWM pulse channel */
304 reg = base->MCR;
305 reg &=
306 ~((uint32_t)((uint32_t)CTIMER_MCR_MR0R_MASK | (uint32_t)CTIMER_MCR_MR0S_MASK | (uint32_t)CTIMER_MCR_MR0I_MASK)
307 << ((uint32_t)matchChannel * 3U));
308
309 /* If call back function is valid then enable match interrupt for PWM pulse channel */
310 if (enableInt)
311 {
312 reg |= (((uint32_t)CTIMER_MCR_MR0I_MASK) << (CTIMER_MCR_MR0I_SHIFT + ((uint32_t)matchChannel * 3U)));
313 }
314
315 /* Reset the counter when match on PWM period channel (pwmPeriodChannel) */
316 reg |= ((uint32_t)((uint32_t)CTIMER_MCR_MR0R_MASK) << ((uint32_t)pwmPeriodChannel * 3U));
317
318 base->MCR = reg;
319
320 /* Specified channel pwmPeriodChannel will define the PWM period */
321 base->MR[pwmPeriodChannel] = pwmPeriod;
322
323 /* This will define the PWM pulse period */
324 base->MR[matchChannel] = pulsePeriod;
325 /* Clear status flags */
326 CTIMER_ClearStatusFlags(base, ((uint32_t)CTIMER_IR_MR0INT_MASK) << (uint32_t)matchChannel);
327 /* If call back function is valid then enable interrupt and update the call back function */
328 if (enableInt)
329 {
330 (void)EnableIRQ(s_ctimerIRQ[index]);
331 }
332
333 return kStatus_Success;
334 }
335
336 /*!
337 * brief Updates the duty cycle of an active PWM signal.
338 *
339 * note Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution.
340 * This function can manually assign the specified channel to set the PWM cycle.
341 *
342 * param base Ctimer peripheral base address
343 * param pwmPeriodChannel Specify the channel to control the PWM period
344 * param matchChannel Match pin to be used to output the PWM signal
345 * param dutyCyclePercent New PWM pulse width; the value should be between 0 to 100
346 */
CTIMER_UpdatePwmDutycycle(CTIMER_Type * base,const ctimer_match_t pwmPeriodChannel,ctimer_match_t matchChannel,uint8_t dutyCyclePercent)347 void CTIMER_UpdatePwmDutycycle(CTIMER_Type *base,
348 const ctimer_match_t pwmPeriodChannel,
349 ctimer_match_t matchChannel,
350 uint8_t dutyCyclePercent)
351 {
352 uint32_t pulsePeriod = 0, period;
353
354 /* Specified channel pwmPeriodChannel defines the PWM period */
355 period = base->MR[pwmPeriodChannel];
356
357 /* For 0% dutycyle, make pulse period greater than period so the event will never occur */
358 if (dutyCyclePercent == 0U)
359 {
360 pulsePeriod = period + 1U;
361 }
362 else
363 {
364 pulsePeriod = (period * (100U - (uint32_t)dutyCyclePercent)) / 100U;
365 }
366
367 /* Update dutycycle */
368 base->MR[matchChannel] = pulsePeriod;
369 }
370
371 /*!
372 * brief Setup the match register.
373 *
374 * User configuration is used to setup the match value and action to be taken when a match occurs.
375 *
376 * param base Ctimer peripheral base address
377 * param matchChannel Match register to configure
378 * param config Pointer to the match configuration structure
379 */
CTIMER_SetupMatch(CTIMER_Type * base,ctimer_match_t matchChannel,const ctimer_match_config_t * config)380 void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config)
381 {
382 /* Some CTimers only have 16bits , so the value is limited*/
383 #if defined(FSL_FEATURE_SOC_CTIMER16B) && FSL_FEATURE_SOC_CTIMER16B
384 assert(!(FSL_FEATURE_CTIMER_BIT_SIZEn(base) < 32 && config->matchValue > 0xFFFFU));
385 #endif
386 uint32_t reg;
387 uint32_t index = CTIMER_GetInstance(base);
388
389 /* Set the counter operation when a match on this channel occurs */
390 reg = base->MCR;
391 reg &=
392 ~((uint32_t)((uint32_t)CTIMER_MCR_MR0R_MASK | (uint32_t)CTIMER_MCR_MR0S_MASK | (uint32_t)CTIMER_MCR_MR0I_MASK)
393 << ((uint32_t)matchChannel * 3U));
394 reg |= ((uint32_t)(config->enableCounterReset) << (CTIMER_MCR_MR0R_SHIFT + ((uint32_t)matchChannel * 3U)));
395 reg |= ((uint32_t)(config->enableCounterStop) << (CTIMER_MCR_MR0S_SHIFT + ((uint32_t)matchChannel * 3U)));
396 reg |= ((uint32_t)(config->enableInterrupt) << (CTIMER_MCR_MR0I_SHIFT + ((uint32_t)matchChannel * 3U)));
397 base->MCR = reg;
398
399 reg = base->EMR;
400 /* Set the match output operation when a match on this channel occurs */
401 reg &= ~(((uint32_t)CTIMER_EMR_EMC0_MASK) << ((uint32_t)matchChannel * 2U));
402 reg |= ((uint32_t)config->outControl) << (CTIMER_EMR_EMC0_SHIFT + ((uint32_t)matchChannel * 2U));
403
404 /* Set the initial state of the EM bit/output */
405 reg &= ~(((uint32_t)CTIMER_EMR_EM0_MASK) << (uint32_t)matchChannel);
406 reg |= ((uint32_t)config->outPinInitState) << (uint32_t)matchChannel;
407 base->EMR = reg;
408
409 /* Set the match value */
410 base->MR[matchChannel] = config->matchValue;
411 /* Clear status flags */
412 CTIMER_ClearStatusFlags(base, ((uint32_t)CTIMER_IR_MR0INT_MASK) << (uint32_t)matchChannel);
413 /* If interrupt is enabled then enable interrupt and update the call back function */
414 if (config->enableInterrupt)
415 {
416 (void)EnableIRQ(s_ctimerIRQ[index]);
417 }
418 }
419
420 /*!
421 * brief Get the status of output match.
422 *
423 * This function gets the status of output MAT, whether or not this output is connected to a pin.
424 * This status is driven to the MAT pins if the match function is selected via IOCON. 0 = LOW. 1 = HIGH.
425 *
426 * param base Ctimer peripheral base address
427 * param matchChannel External match channel, user can obtain the status of multiple match channels
428 * at the same time by using the logic of "|"
429 * enumeration ::ctimer_external_match_t
430 * return The mask of external match channel status flags. Users need to use the
431 * _ctimer_external_match type to decode the return variables.
432 */
CTIMER_GetOutputMatchStatus(CTIMER_Type * base,uint32_t matchChannel)433 uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
434 {
435 return (base->EMR & matchChannel);
436 }
437
438 #if !(defined(FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE) && (FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE))
439 /*!
440 * brief Setup the capture.
441 *
442 * param base Ctimer peripheral base address
443 * param capture Capture channel to configure
444 * param edge Edge on the channel that will trigger a capture
445 * param enableInt Flag to enable channel interrupts, if enabled then the registered call back
446 * is called upon capture
447 */
CTIMER_SetupCapture(CTIMER_Type * base,ctimer_capture_channel_t capture,ctimer_capture_edge_t edge,bool enableInt)448 void CTIMER_SetupCapture(CTIMER_Type *base,
449 ctimer_capture_channel_t capture,
450 ctimer_capture_edge_t edge,
451 bool enableInt)
452 {
453 uint32_t reg = base->CCR;
454 uint32_t index = CTIMER_GetInstance(base);
455
456 /* Set the capture edge */
457 reg &= ~((uint32_t)((uint32_t)CTIMER_CCR_CAP0RE_MASK | (uint32_t)CTIMER_CCR_CAP0FE_MASK |
458 (uint32_t)CTIMER_CCR_CAP0I_MASK)
459 << ((uint32_t)capture * 3U));
460 reg |= ((uint32_t)edge) << (CTIMER_CCR_CAP0RE_SHIFT + ((uint32_t)capture * 3U));
461 /* Clear status flags */
462 CTIMER_ClearStatusFlags(base, (((uint32_t)kCTIMER_Capture0Flag) << (uint32_t)capture));
463 /* If call back function is valid then enable capture interrupt for the channel and update the call back function */
464 if (enableInt)
465 {
466 reg |= ((uint32_t)CTIMER_CCR_CAP0I_MASK) << ((uint32_t)capture * 3U);
467 (void)EnableIRQ(s_ctimerIRQ[index]);
468 }
469 base->CCR = reg;
470 }
471 #endif
472
473 /*!
474 * brief Register callback.
475 *
476 * param base Ctimer peripheral base address
477 * param cb_func callback function
478 * param cb_type callback function type, singular or multiple
479 */
CTIMER_RegisterCallBack(CTIMER_Type * base,ctimer_callback_t * cb_func,ctimer_callback_type_t cb_type)480 void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type)
481 {
482 uint32_t index = CTIMER_GetInstance(base);
483 s_ctimerCallback[index] = cb_func;
484 ctimerCallbackType[index] = cb_type;
485 }
486
487 /*!
488 * brief CTIMER generic IRQ handle function.
489 *
490 * param index FlexCAN peripheral instance index.
491 */
CTIMER_GenericIRQHandler(uint32_t index)492 static void CTIMER_GenericIRQHandler(uint32_t index)
493 {
494 uint32_t int_stat, i, mask;
495 /* Get Interrupt status flags */
496 int_stat = CTIMER_GetStatusFlags(s_ctimerBases[index]);
497 /* Clear the status flags that were set */
498 CTIMER_ClearStatusFlags(s_ctimerBases[index], int_stat);
499 if (ctimerCallbackType[index] == kCTIMER_SingleCallback)
500 {
501 if (s_ctimerCallback[index][0] != NULL)
502 {
503 s_ctimerCallback[index][0](int_stat);
504 }
505 }
506 else
507 {
508 #if defined(FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE) && FSL_FEATURE_CTIMER_HAS_NO_INPUT_CAPTURE
509 for (i = 0; i <= CTIMER_IR_MR3INT_SHIFT; i++)
510 #else
511 #if defined(FSL_FEATURE_CTIMER_HAS_IR_CR3INT) && FSL_FEATURE_CTIMER_HAS_IR_CR3INT
512 for (i = 0; i <= CTIMER_IR_CR3INT_SHIFT; i++)
513 #else
514 #if !(defined(FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT) && FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT)
515 for (i = 0; i <= CTIMER_IR_CR2INT_SHIFT; i++)
516 #else
517 for (i = 0; i <= CTIMER_IR_CR1INT_SHIFT; i++)
518 #endif /* FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT */
519 #endif /* FSL_FEATURE_CTIMER_HAS_IR_CR3INT */
520 #endif
521 {
522 mask = 0x01UL << i;
523 /* For each status flag bit that was set call the callback function if it is valid */
524 if (((int_stat & mask) != 0U) && (s_ctimerCallback[index][i] != NULL))
525 {
526 s_ctimerCallback[index][i](int_stat);
527 }
528 }
529 }
530 SDK_ISR_EXIT_BARRIER;
531 }
532
533 /* IRQ handler functions overloading weak symbols in the startup */
534 #if defined(CTIMER0)
535 void CTIMER0_DriverIRQHandler(void);
CTIMER0_DriverIRQHandler(void)536 void CTIMER0_DriverIRQHandler(void)
537 {
538 CTIMER_GenericIRQHandler(0);
539 SDK_ISR_EXIT_BARRIER;
540 }
541 #endif
542
543 #if defined(CTIMER1)
544 void CTIMER1_DriverIRQHandler(void);
CTIMER1_DriverIRQHandler(void)545 void CTIMER1_DriverIRQHandler(void)
546 {
547 CTIMER_GenericIRQHandler(1);
548 SDK_ISR_EXIT_BARRIER;
549 }
550 #endif
551
552 #if defined(CTIMER2)
553 void CTIMER2_DriverIRQHandler(void);
CTIMER2_DriverIRQHandler(void)554 void CTIMER2_DriverIRQHandler(void)
555 {
556 CTIMER_GenericIRQHandler(2);
557 SDK_ISR_EXIT_BARRIER;
558 }
559 #endif
560
561 #if defined(CTIMER3)
562 void CTIMER3_DriverIRQHandler(void);
CTIMER3_DriverIRQHandler(void)563 void CTIMER3_DriverIRQHandler(void)
564 {
565 CTIMER_GenericIRQHandler(3);
566 SDK_ISR_EXIT_BARRIER;
567 }
568 #endif
569
570 #if defined(CTIMER4)
571 void CTIMER4_DriverIRQHandler(void);
CTIMER4_DriverIRQHandler(void)572 void CTIMER4_DriverIRQHandler(void)
573 {
574 CTIMER_GenericIRQHandler(4);
575 SDK_ISR_EXIT_BARRIER;
576 }
577 #endif
578