1 /*
2 * Copyright (c) 2011-2014, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Misc utilities
10 *
11 * Misc utilities usable by the kernel and application code.
12 */
13
14 #ifndef ZEPHYR_INCLUDE_SYS_UTIL_H_
15 #define ZEPHYR_INCLUDE_SYS_UTIL_H_
16
17 #include <zephyr/sys/util_macro.h>
18 #include <zephyr/toolchain.h>
19
20 /* needs to be outside _ASMLANGUAGE so 'true' and 'false' can turn
21 * into '1' and '0' for asm or linker scripts
22 */
23 #include <stdbool.h>
24
25 #ifndef _ASMLANGUAGE
26
27 #include <zephyr/types.h>
28 #include <stddef.h>
29 #include <stdint.h>
30
31 /** @brief Number of bits that make up a type */
32 #define NUM_BITS(t) (sizeof(t) * 8)
33
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37
38 /**
39 * @defgroup sys-util Utility Functions
40 * @ingroup utilities
41 * @{
42 */
43
44 /** @brief Cast @p x, a pointer, to an unsigned integer. */
45 #define POINTER_TO_UINT(x) ((uintptr_t) (x))
46 /** @brief Cast @p x, an unsigned integer, to a <tt>void*</tt>. */
47 #define UINT_TO_POINTER(x) ((void *) (uintptr_t) (x))
48 /** @brief Cast @p x, a pointer, to a signed integer. */
49 #define POINTER_TO_INT(x) ((intptr_t) (x))
50 /** @brief Cast @p x, a signed integer, to a <tt>void*</tt>. */
51 #define INT_TO_POINTER(x) ((void *) (intptr_t) (x))
52
53 #if !(defined(__CHAR_BIT__) && defined(__SIZEOF_LONG__) && defined(__SIZEOF_LONG_LONG__))
54 # error Missing required predefined macros for BITS_PER_LONG calculation
55 #endif
56
57 /** Number of bits in a long int. */
58 #define BITS_PER_LONG (__CHAR_BIT__ * __SIZEOF_LONG__)
59
60 /** Number of bits in a long long int. */
61 #define BITS_PER_LONG_LONG (__CHAR_BIT__ * __SIZEOF_LONG_LONG__)
62
63 /**
64 * @brief Create a contiguous bitmask starting at bit position @p l
65 * and ending at position @p h.
66 */
67 #define GENMASK(h, l) \
68 (((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
69
70 /**
71 * @brief Create a contiguous 64-bit bitmask starting at bit position @p l
72 * and ending at position @p h.
73 */
74 #define GENMASK64(h, l) \
75 (((~0ULL) - (1ULL << (l)) + 1) & (~0ULL >> (BITS_PER_LONG_LONG - 1 - (h))))
76
77 /** @brief Extract the Least Significant Bit from @p value. */
78 #define LSB_GET(value) ((value) & -(value))
79
80 /**
81 * @brief Extract a bitfield element from @p value corresponding to
82 * the field mask @p mask.
83 */
84 #define FIELD_GET(mask, value) (((value) & (mask)) / LSB_GET(mask))
85
86 /**
87 * @brief Prepare a bitfield element using @p value with @p mask representing
88 * its field position and width. The result should be combined
89 * with other fields using a logical OR.
90 */
91 #define FIELD_PREP(mask, value) (((value) * LSB_GET(mask)) & (mask))
92
93 /** @brief 0 if @p cond is true-ish; causes a compile error otherwise. */
94 #define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)
95
96 #if defined(__cplusplus)
97
98 /* The built-in function used below for type checking in C is not
99 * supported by GNU C++.
100 */
101 #define ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
102
103 #else /* __cplusplus */
104
105 /**
106 * @brief Zero if @p array has an array type, a compile error otherwise
107 *
108 * This macro is available only from C, not C++.
109 */
110 #define IS_ARRAY(array) \
111 ZERO_OR_COMPILE_ERROR( \
112 !__builtin_types_compatible_p(__typeof__(array), \
113 __typeof__(&(array)[0])))
114
115 /**
116 * @brief Number of elements in the given @p array
117 *
118 * In C++, due to language limitations, this will accept as @p array
119 * any type that implements <tt>operator[]</tt>. The results may not be
120 * particularly meaningful in this case.
121 *
122 * In C, passing a pointer as @p array causes a compile error.
123 */
124 #define ARRAY_SIZE(array) \
125 ((size_t) (IS_ARRAY(array) + (sizeof(array) / sizeof((array)[0]))))
126
127 #endif /* __cplusplus */
128
129 /**
130 * @brief Whether @p ptr is an element of @p array
131 *
132 * This macro can be seen as a slightly stricter version of @ref PART_OF_ARRAY
133 * in that it also ensures that @p ptr is aligned to an array-element boundary
134 * of @p array.
135 *
136 * In C, passing a pointer as @p array causes a compile error.
137 *
138 * @param array the array in question
139 * @param ptr the pointer to check
140 *
141 * @return 1 if @p ptr is part of @p array, 0 otherwise
142 */
143 #define IS_ARRAY_ELEMENT(array, ptr) \
144 ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
145 POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]) && \
146 (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) % sizeof((array)[0]) == 0)
147
148 /**
149 * @brief Index of @p ptr within @p array
150 *
151 * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
152 * when @p ptr does not fall into the range of @p array or when @p ptr
153 * is not aligned to an array-element boundary of @p array.
154 *
155 * In C, passing a pointer as @p array causes a compile error.
156 *
157 * @param array the array in question
158 * @param ptr pointer to an element of @p array
159 *
160 * @return the array index of @p ptr within @p array, on success
161 */
162 #define ARRAY_INDEX(array, ptr) \
163 ({ \
164 __ASSERT_NO_MSG(IS_ARRAY_ELEMENT(array, ptr)); \
165 (__typeof__((array)[0]) *)(ptr) - (array); \
166 })
167
168 /**
169 * @brief Check if a pointer @p ptr lies within @p array.
170 *
171 * In C but not C++, this causes a compile error if @p array is not an array
172 * (e.g. if @p ptr and @p array are mixed up).
173 *
174 * @param array an array
175 * @param ptr a pointer
176 * @return 1 if @p ptr is part of @p array, 0 otherwise
177 */
178 #define PART_OF_ARRAY(array, ptr) \
179 ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
180 POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]))
181
182 /**
183 * @brief Array-index of @p ptr within @p array, rounded down
184 *
185 * This macro behaves much like @ref ARRAY_INDEX with the notable
186 * difference that it accepts any @p ptr in the range of @p array rather than
187 * exclusively a @p ptr aligned to an array-element boundary of @p array.
188 *
189 * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
190 * when @p ptr does not fall into the range of @p array.
191 *
192 * In C, passing a pointer as @p array causes a compile error.
193 *
194 * @param array the array in question
195 * @param ptr pointer to an element of @p array
196 *
197 * @return the array index of @p ptr within @p array, on success
198 */
199 #define ARRAY_INDEX_FLOOR(array, ptr) \
200 ({ \
201 __ASSERT_NO_MSG(PART_OF_ARRAY(array, ptr)); \
202 (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) / sizeof((array)[0]); \
203 })
204
205 /**
206 * @brief Iterate over members of an array using an index variable
207 *
208 * @param array the array in question
209 * @param idx name of array index variable
210 */
211 #define ARRAY_FOR_EACH(array, idx) for (size_t idx = 0; (idx) < ARRAY_SIZE(array); ++(idx))
212
213 /**
214 * @brief Iterate over members of an array using a pointer
215 *
216 * @param array the array in question
217 * @param ptr pointer to an element of @p array
218 */
219 #define ARRAY_FOR_EACH_PTR(array, ptr) \
220 for (__typeof__(*(array)) *ptr = (array); (size_t)((ptr) - (array)) < ARRAY_SIZE(array); \
221 ++(ptr))
222
223 /**
224 * @brief Validate if two entities have a compatible type
225 *
226 * @param a the first entity to be compared
227 * @param b the second entity to be compared
228 * @return 1 if the two elements are compatible, 0 if they are not
229 */
230 #define SAME_TYPE(a, b) __builtin_types_compatible_p(__typeof__(a), __typeof__(b))
231
232 /**
233 * @brief Validate CONTAINER_OF parameters, only applies to C mode.
234 */
235 #ifndef __cplusplus
236 #define CONTAINER_OF_VALIDATE(ptr, type, field) \
237 BUILD_ASSERT(SAME_TYPE(*(ptr), ((type *)0)->field) || \
238 SAME_TYPE(*(ptr), void), \
239 "pointer type mismatch in CONTAINER_OF");
240 #else
241 #define CONTAINER_OF_VALIDATE(ptr, type, field)
242 #endif
243
244 /**
245 * @brief Get a pointer to a structure containing the element
246 *
247 * Example:
248 *
249 * struct foo {
250 * int bar;
251 * };
252 *
253 * struct foo my_foo;
254 * int *ptr = &my_foo.bar;
255 *
256 * struct foo *container = CONTAINER_OF(ptr, struct foo, bar);
257 *
258 * Above, @p container points at @p my_foo.
259 *
260 * @param ptr pointer to a structure element
261 * @param type name of the type that @p ptr is an element of
262 * @param field the name of the field within the struct @p ptr points to
263 * @return a pointer to the structure that contains @p ptr
264 */
265 #define CONTAINER_OF(ptr, type, field) \
266 ({ \
267 CONTAINER_OF_VALIDATE(ptr, type, field) \
268 ((type *)(((char *)(ptr)) - offsetof(type, field))); \
269 })
270
271 /**
272 * @brief Concatenate input arguments
273 *
274 * Concatenate provided tokens into a combined token during the preprocessor pass.
275 * This can be used to, for ex., build an identifier out of multiple parts,
276 * where one of those parts may be, for ex, a number, another macro, or a macro argument.
277 *
278 * @param ... Tokens to concatencate
279 *
280 * @return Concatenated token.
281 */
282 #define CONCAT(...) \
283 UTIL_CAT(_CONCAT_, NUM_VA_ARGS_LESS_1(__VA_ARGS__))(__VA_ARGS__)
284
285 /**
286 * @brief Value of @p x rounded up to the next multiple of @p align.
287 */
288 #define ROUND_UP(x, align) \
289 ((((unsigned long)(x) + ((unsigned long)(align) - 1)) / \
290 (unsigned long)(align)) * (unsigned long)(align))
291
292 /**
293 * @brief Value of @p x rounded down to the previous multiple of @p align.
294 */
295 #define ROUND_DOWN(x, align) \
296 (((unsigned long)(x) / (unsigned long)(align)) * (unsigned long)(align))
297
298 /** @brief Value of @p x rounded up to the next word boundary. */
299 #define WB_UP(x) ROUND_UP(x, sizeof(void *))
300
301 /** @brief Value of @p x rounded down to the previous word boundary. */
302 #define WB_DN(x) ROUND_DOWN(x, sizeof(void *))
303
304 /**
305 * @brief Divide and round up.
306 *
307 * Example:
308 * @code{.c}
309 * DIV_ROUND_UP(1, 2); // 1
310 * DIV_ROUND_UP(3, 2); // 2
311 * @endcode
312 *
313 * @param n Numerator.
314 * @param d Denominator.
315 *
316 * @return The result of @p n / @p d, rounded up.
317 */
318 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
319
320 /**
321 * @brief Divide and round to the nearest integer.
322 *
323 * Example:
324 * @code{.c}
325 * DIV_ROUND_CLOSEST(5, 2); // 3
326 * DIV_ROUND_CLOSEST(5, -2); // -3
327 * DIV_ROUND_CLOSEST(5, 3); // 2
328 * @endcode
329 *
330 * @param n Numerator.
331 * @param d Denominator.
332 *
333 * @return The result of @p n / @p d, rounded to the nearest integer.
334 */
335 #define DIV_ROUND_CLOSEST(n, d) \
336 ((((n) < 0) ^ ((d) < 0)) ? ((n) - ((d) / 2)) / (d) : \
337 ((n) + ((d) / 2)) / (d))
338
339 /**
340 * @brief Ceiling function applied to @p numerator / @p divider as a fraction.
341 * @deprecated Use DIV_ROUND_UP() instead.
342 */
343 #define ceiling_fraction(numerator, divider) __DEPRECATED_MACRO \
344 DIV_ROUND_UP(numerator, divider)
345
346 #ifndef MAX
347 /**
348 * @brief Obtain the maximum of two values.
349 *
350 * @note Arguments are evaluated twice. Use Z_MAX for a GCC-only, single
351 * evaluation version
352 *
353 * @param a First value.
354 * @param b Second value.
355 *
356 * @returns Maximum value of @p a and @p b.
357 */
358 #define MAX(a, b) (((a) > (b)) ? (a) : (b))
359 #endif
360
361 #ifndef MIN
362 /**
363 * @brief Obtain the minimum of two values.
364 *
365 * @note Arguments are evaluated twice. Use Z_MIN for a GCC-only, single
366 * evaluation version
367 *
368 * @param a First value.
369 * @param b Second value.
370 *
371 * @returns Minimum value of @p a and @p b.
372 */
373 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
374 #endif
375
376 #ifndef CLAMP
377 /**
378 * @brief Clamp a value to a given range.
379 *
380 * @note Arguments are evaluated multiple times. Use Z_CLAMP for a GCC-only,
381 * single evaluation version.
382 *
383 * @param val Value to be clamped.
384 * @param low Lowest allowed value (inclusive).
385 * @param high Highest allowed value (inclusive).
386 *
387 * @returns Clamped value.
388 */
389 #define CLAMP(val, low, high) (((val) <= (low)) ? (low) : MIN(val, high))
390 #endif
391
392 /**
393 * @brief Checks if a value is within range.
394 *
395 * @note @p val is evaluated twice.
396 *
397 * @param val Value to be checked.
398 * @param min Lower bound (inclusive).
399 * @param max Upper bound (inclusive).
400 *
401 * @retval true If value is within range
402 * @retval false If the value is not within range
403 */
404 #define IN_RANGE(val, min, max) ((val) >= (min) && (val) <= (max))
405
406 /**
407 * @brief Is @p x a power of two?
408 * @param x value to check
409 * @return true if @p x is a power of two, false otherwise
410 */
is_power_of_two(unsigned int x)411 static inline bool is_power_of_two(unsigned int x)
412 {
413 return IS_POWER_OF_TWO(x);
414 }
415
416 /**
417 * @brief Arithmetic shift right
418 * @param value value to shift
419 * @param shift number of bits to shift
420 * @return @p value shifted right by @p shift; opened bit positions are
421 * filled with the sign bit
422 */
arithmetic_shift_right(int64_t value,uint8_t shift)423 static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)
424 {
425 int64_t sign_ext;
426
427 if (shift == 0U) {
428 return value;
429 }
430
431 /* extract sign bit */
432 sign_ext = (value >> 63) & 1;
433
434 /* make all bits of sign_ext be the same as the value's sign bit */
435 sign_ext = -sign_ext;
436
437 /* shift value and fill opened bit positions with sign bit */
438 return (value >> shift) | (sign_ext << (64 - shift));
439 }
440
441 /**
442 * @brief byte by byte memcpy.
443 *
444 * Copy `size` bytes of `src` into `dest`. This is guaranteed to be done byte by byte.
445 *
446 * @param dst Pointer to the destination memory.
447 * @param src Pointer to the source of the data.
448 * @param size The number of bytes to copy.
449 */
bytecpy(void * dst,const void * src,size_t size)450 static inline void bytecpy(void *dst, const void *src, size_t size)
451 {
452 size_t i;
453
454 for (i = 0; i < size; ++i) {
455 ((volatile uint8_t *)dst)[i] = ((volatile const uint8_t *)src)[i];
456 }
457 }
458
459 /**
460 * @brief byte by byte swap.
461 *
462 * Swap @a size bytes between memory regions @a a and @a b. This is
463 * guaranteed to be done byte by byte.
464 *
465 * @param a Pointer to the the first memory region.
466 * @param b Pointer to the the second memory region.
467 * @param size The number of bytes to swap.
468 */
byteswp(void * a,void * b,size_t size)469 static inline void byteswp(void *a, void *b, size_t size)
470 {
471 uint8_t t;
472 uint8_t *aa = (uint8_t *)a;
473 uint8_t *bb = (uint8_t *)b;
474
475 for (; size > 0; --size) {
476 t = *aa;
477 *aa++ = *bb;
478 *bb++ = t;
479 }
480 }
481
482 /**
483 * @brief Convert a single character into a hexadecimal nibble.
484 *
485 * @param c The character to convert
486 * @param x The address of storage for the converted number.
487 *
488 * @return Zero on success or (negative) error code otherwise.
489 */
490 int char2hex(char c, uint8_t *x);
491
492 /**
493 * @brief Convert a single hexadecimal nibble into a character.
494 *
495 * @param c The number to convert
496 * @param x The address of storage for the converted character.
497 *
498 * @return Zero on success or (negative) error code otherwise.
499 */
500 int hex2char(uint8_t x, char *c);
501
502 /**
503 * @brief Convert a binary array into string representation.
504 *
505 * @param buf The binary array to convert
506 * @param buflen The length of the binary array to convert
507 * @param hex Address of where to store the string representation.
508 * @param hexlen Size of the storage area for string representation.
509 *
510 * @return The length of the converted string, or 0 if an error occurred.
511 */
512 size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen);
513
514 /**
515 * @brief Convert a hexadecimal string into a binary array.
516 *
517 * @param hex The hexadecimal string to convert
518 * @param hexlen The length of the hexadecimal string to convert.
519 * @param buf Address of where to store the binary data
520 * @param buflen Size of the storage area for binary data
521 *
522 * @return The length of the binary array, or 0 if an error occurred.
523 */
524 size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen);
525
526 /**
527 * @brief Convert a binary coded decimal (BCD 8421) value to binary.
528 *
529 * @param bcd BCD 8421 value to convert.
530 *
531 * @return Binary representation of input value.
532 */
bcd2bin(uint8_t bcd)533 static inline uint8_t bcd2bin(uint8_t bcd)
534 {
535 return ((10 * (bcd >> 4)) + (bcd & 0x0F));
536 }
537
538 /**
539 * @brief Convert a binary value to binary coded decimal (BCD 8421).
540 *
541 * @param bin Binary value to convert.
542 *
543 * @return BCD 8421 representation of input value.
544 */
bin2bcd(uint8_t bin)545 static inline uint8_t bin2bcd(uint8_t bin)
546 {
547 return (((bin / 10) << 4) | (bin % 10));
548 }
549
550 /**
551 * @brief Convert a uint8_t into a decimal string representation.
552 *
553 * Convert a uint8_t value into its ASCII decimal string representation.
554 * The string is terminated if there is enough space in buf.
555 *
556 * @param buf Address of where to store the string representation.
557 * @param buflen Size of the storage area for string representation.
558 * @param value The value to convert to decimal string
559 *
560 * @return The length of the converted string (excluding terminator if
561 * any), or 0 if an error occurred.
562 */
563 uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value);
564
565 /**
566 * @brief Properly truncate a NULL-terminated UTF-8 string
567 *
568 * Take a NULL-terminated UTF-8 string and ensure that if the string has been
569 * truncated (by setting the NULL terminator) earlier by other means, that
570 * the string ends with a properly formatted UTF-8 character (1-4 bytes).
571 *
572 * @htmlonly
573 * Example:
574 * char test_str[] = "€€€";
575 * char trunc_utf8[8];
576 *
577 * printf("Original : %s\n", test_str); // €€€
578 * strncpy(trunc_utf8, test_str, sizeof(trunc_utf8));
579 * trunc_utf8[sizeof(trunc_utf8) - 1] = '\0';
580 * printf("Bad : %s\n", trunc_utf8); // €€�
581 * utf8_trunc(trunc_utf8);
582 * printf("Truncated: %s\n", trunc_utf8); // €€
583 * @endhtmlonly
584 *
585 * @param utf8_str NULL-terminated string
586 *
587 * @return Pointer to the @p utf8_str
588 */
589 char *utf8_trunc(char *utf8_str);
590
591 /**
592 * @brief Copies a UTF-8 encoded string from @p src to @p dst
593 *
594 * The resulting @p dst will always be NULL terminated if @p n is larger than 0,
595 * and the @p dst string will always be properly UTF-8 truncated.
596 *
597 * @param dst The destination of the UTF-8 string.
598 * @param src The source string
599 * @param n The size of the @p dst buffer. Maximum number of characters copied
600 * is @p n - 1. If 0 nothing will be done, and the @p dst will not be
601 * NULL terminated.
602 *
603 * @return Pointer to the @p dst
604 */
605 char *utf8_lcpy(char *dst, const char *src, size_t n);
606
607 #define __z_log2d(x) (32 - __builtin_clz(x) - 1)
608 #define __z_log2q(x) (64 - __builtin_clzll(x) - 1)
609 #define __z_log2(x) (sizeof(__typeof__(x)) > 4 ? __z_log2q(x) : __z_log2d(x))
610
611 /**
612 * @brief Compute log2(x)
613 *
614 * @note This macro expands its argument multiple times (to permit use
615 * in constant expressions), which must not have side effects.
616 *
617 * @param x An unsigned integral value to compute logarithm of (positive only)
618 *
619 * @return log2(x) when 1 <= x <= max(x), -1 when x < 1
620 */
621 #define LOG2(x) ((x) < 1 ? -1 : __z_log2(x))
622
623 /**
624 * @brief Compute ceil(log2(x))
625 *
626 * @note This macro expands its argument multiple times (to permit use
627 * in constant expressions), which must not have side effects.
628 *
629 * @param x An unsigned integral value
630 *
631 * @return ceil(log2(x)) when 1 <= x <= max(type(x)), 0 when x < 1
632 */
633 #define LOG2CEIL(x) ((x) < 1 ? 0 : __z_log2((x)-1) + 1)
634
635 /**
636 * @brief Compute next highest power of two
637 *
638 * Equivalent to 2^ceil(log2(x))
639 *
640 * @note This macro expands its argument multiple times (to permit use
641 * in constant expressions), which must not have side effects.
642 *
643 * @param x An unsigned integral value
644 *
645 * @return 2^ceil(log2(x)) or 0 if 2^ceil(log2(x)) would saturate 64-bits
646 */
647 #define NHPOT(x) ((x) < 1 ? 1 : ((x) > (1ULL<<63) ? 0 : 1ULL << LOG2CEIL(x)))
648
649 /**
650 * @brief Determine if a buffer exceeds highest address
651 *
652 * This macro determines if a buffer identified by a starting address @a addr
653 * and length @a buflen spans a region of memory that goes beond the highest
654 * possible address (thereby resulting in a pointer overflow).
655 *
656 * @param addr Buffer starting address
657 * @param buflen Length of the buffer
658 *
659 * @return true if pointer overflow detected, false otherwise
660 */
661 #define Z_DETECT_POINTER_OVERFLOW(addr, buflen) \
662 (((buflen) != 0) && \
663 ((UINTPTR_MAX - (uintptr_t)(addr)) <= ((uintptr_t)((buflen) - 1))))
664
665 /**
666 * @brief XOR n bytes
667 *
668 * @param dst Destination of where to store result. Shall be @p len bytes.
669 * @param src1 First source. Shall be @p len bytes.
670 * @param src2 Second source. Shall be @p len bytes.
671 * @param len Number of bytes to XOR.
672 */
mem_xor_n(uint8_t * dst,const uint8_t * src1,const uint8_t * src2,size_t len)673 static inline void mem_xor_n(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, size_t len)
674 {
675 while (len--) {
676 *dst++ = *src1++ ^ *src2++;
677 }
678 }
679
680 /**
681 * @brief XOR 32 bits
682 *
683 * @param dst Destination of where to store result. Shall be 32 bits.
684 * @param src1 First source. Shall be 32 bits.
685 * @param src2 Second source. Shall be 32 bits.
686 */
mem_xor_32(uint8_t dst[4],const uint8_t src1[4],const uint8_t src2[4])687 static inline void mem_xor_32(uint8_t dst[4], const uint8_t src1[4], const uint8_t src2[4])
688 {
689 mem_xor_n(dst, src1, src2, 4U);
690 }
691
692 /**
693 * @brief XOR 128 bits
694 *
695 * @param dst Destination of where to store result. Shall be 128 bits.
696 * @param src1 First source. Shall be 128 bits.
697 * @param src2 Second source. Shall be 128 bits.
698 */
mem_xor_128(uint8_t dst[16],const uint8_t src1[16],const uint8_t src2[16])699 static inline void mem_xor_128(uint8_t dst[16], const uint8_t src1[16], const uint8_t src2[16])
700 {
701 mem_xor_n(dst, src1, src2, 16);
702 }
703
704 #ifdef __cplusplus
705 }
706 #endif
707
708 /* This file must be included at the end of the !_ASMLANGUAGE guard.
709 * It depends on macros defined in this file above which cannot be forward declared.
710 */
711 #include <zephyr/sys/time_units.h>
712
713 #endif /* !_ASMLANGUAGE */
714
715 /** @brief Number of bytes in @p x kibibytes */
716 #ifdef _LINKER
717 /* This is used in linker scripts so need to avoid type casting there */
718 #define KB(x) ((x) << 10)
719 #else
720 #define KB(x) (((size_t)x) << 10)
721 #endif
722 /** @brief Number of bytes in @p x mebibytes */
723 #define MB(x) (KB(x) << 10)
724 /** @brief Number of bytes in @p x gibibytes */
725 #define GB(x) (MB(x) << 10)
726
727 /** @brief Number of Hz in @p x kHz */
728 #define KHZ(x) ((x) * 1000)
729 /** @brief Number of Hz in @p x MHz */
730 #define MHZ(x) (KHZ(x) * 1000)
731
732 /**
733 * @brief For the POSIX architecture add a minimal delay in a busy wait loop.
734 * For other architectures this is a no-op.
735 *
736 * In the POSIX ARCH, code takes zero simulated time to execute,
737 * so busy wait loops become infinite loops, unless we
738 * force the loop to take a bit of time.
739 * Include this macro in all busy wait/spin loops
740 * so they will also work when building for the POSIX architecture.
741 *
742 * @param t Time in microseconds we will busy wait
743 */
744 #if defined(CONFIG_ARCH_POSIX)
745 #define Z_SPIN_DELAY(t) k_busy_wait(t)
746 #else
747 #define Z_SPIN_DELAY(t)
748 #endif
749
750 /**
751 * @brief Wait for an expression to return true with a timeout
752 *
753 * Spin on an expression with a timeout and optional delay between iterations
754 *
755 * Commonly needed when waiting on hardware to complete an asynchronous
756 * request to read/write/initialize/reset, but useful for any expression.
757 *
758 * @param expr Truth expression upon which to poll, e.g.: XYZREG & XYZREG_EN
759 * @param timeout Timeout to wait for in microseconds, e.g.: 1000 (1ms)
760 * @param delay_stmt Delay statement to perform each poll iteration
761 * e.g.: NULL, k_yield(), k_msleep(1) or k_busy_wait(1)
762 *
763 * @retval expr As a boolean return, if false then it has timed out.
764 */
765 #define WAIT_FOR(expr, timeout, delay_stmt) \
766 ({ \
767 uint32_t _wf_cycle_count = k_us_to_cyc_ceil32(timeout); \
768 uint32_t _wf_start = k_cycle_get_32(); \
769 while (!(expr) && (_wf_cycle_count > (k_cycle_get_32() - _wf_start))) { \
770 delay_stmt; \
771 Z_SPIN_DELAY(10); \
772 } \
773 (expr); \
774 })
775
776 /**
777 * @}
778 */
779
780 #endif /* ZEPHYR_INCLUDE_SYS_UTIL_H_ */
781