1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/lite/micro/memory_helpers.h"
17
18 #include <cstddef>
19 #include <cstdint>
20
21 #include "flatbuffers/flatbuffers.h" // from @flatbuffers
22 #include "tensorflow/lite/c/common.h"
23 #include "tensorflow/lite/core/api/error_reporter.h"
24 #include "tensorflow/lite/core/api/flatbuffer_conversions.h"
25 #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
26 #include "tensorflow/lite/schema/schema_generated.h"
27
28 namespace tflite {
29
AlignPointerUp(uint8_t * data,size_t alignment)30 uint8_t* AlignPointerUp(uint8_t* data, size_t alignment) {
31 std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
32 uint8_t* aligned_result = reinterpret_cast<uint8_t*>(
33 ((data_as_uintptr_t + (alignment - 1)) / alignment) * alignment);
34 return aligned_result;
35 }
36
AlignPointerDown(uint8_t * data,size_t alignment)37 uint8_t* AlignPointerDown(uint8_t* data, size_t alignment) {
38 std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
39 uint8_t* aligned_result =
40 reinterpret_cast<uint8_t*>((data_as_uintptr_t / alignment) * alignment);
41 return aligned_result;
42 }
43
AlignSizeUp(size_t size,size_t alignment)44 size_t AlignSizeUp(size_t size, size_t alignment) {
45 size_t aligned_size = (((size + (alignment - 1)) / alignment) * alignment);
46 return aligned_size;
47 }
48
TfLiteTypeSizeOf(TfLiteType type,size_t * size)49 TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size) {
50 switch (type) {
51 case kTfLiteFloat16:
52 *size = sizeof(int16_t);
53 break;
54 case kTfLiteFloat32:
55 *size = sizeof(float);
56 break;
57 case kTfLiteFloat64:
58 *size = sizeof(double);
59 break;
60 case kTfLiteInt16:
61 *size = sizeof(int16_t);
62 break;
63 case kTfLiteInt32:
64 *size = sizeof(int32_t);
65 break;
66 case kTfLiteUInt32:
67 *size = sizeof(uint32_t);
68 break;
69 case kTfLiteUInt8:
70 *size = sizeof(uint8_t);
71 break;
72 case kTfLiteInt8:
73 *size = sizeof(int8_t);
74 break;
75 case kTfLiteInt64:
76 *size = sizeof(int64_t);
77 break;
78 case kTfLiteUInt64:
79 *size = sizeof(uint64_t);
80 break;
81 case kTfLiteBool:
82 *size = sizeof(bool);
83 break;
84 case kTfLiteComplex64:
85 *size = sizeof(float) * 2;
86 break;
87 case kTfLiteComplex128:
88 *size = sizeof(double) * 2;
89 break;
90 default:
91 return kTfLiteError;
92 }
93 return kTfLiteOk;
94 }
95
BytesRequiredForTensor(const tflite::Tensor & flatbuffer_tensor,size_t * bytes,size_t * type_size,ErrorReporter * error_reporter)96 TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor,
97 size_t* bytes, size_t* type_size,
98 ErrorReporter* error_reporter) {
99 int element_count = 1;
100 // If flatbuffer_tensor.shape == nullptr, then flatbuffer_tensor is a scalar
101 // so has 1 element.
102 if (flatbuffer_tensor.shape() != nullptr) {
103 for (size_t n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) {
104 element_count *= flatbuffer_tensor.shape()->Get(n);
105 }
106 }
107
108 TfLiteType tf_lite_type;
109 TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
110 &tf_lite_type, error_reporter));
111 TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(tf_lite_type, type_size));
112 *bytes = element_count * (*type_size);
113 return kTfLiteOk;
114 }
115
TfLiteEvalTensorByteLength(const TfLiteEvalTensor * eval_tensor,size_t * out_bytes)116 TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor,
117 size_t* out_bytes) {
118 TFLITE_DCHECK(out_bytes != nullptr);
119
120 int element_count = 1;
121 // If eval_tensor->dims == nullptr, then tensor is a scalar so has 1 element.
122 if (eval_tensor->dims != nullptr) {
123 for (int n = 0; n < eval_tensor->dims->size; ++n) {
124 element_count *= eval_tensor->dims->data[n];
125 }
126 }
127 size_t type_size;
128 TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(eval_tensor->type, &type_size));
129 *out_bytes = element_count * type_size;
130 return kTfLiteOk;
131 }
132
AllocateOutputDimensionsFromInput(TfLiteContext * context,const TfLiteTensor * input1,const TfLiteTensor * input2,TfLiteTensor * output)133 TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context,
134 const TfLiteTensor* input1,
135 const TfLiteTensor* input2,
136 TfLiteTensor* output) {
137 const TfLiteTensor* input = nullptr;
138
139 TF_LITE_ENSURE(context, input1->dims != nullptr);
140 TF_LITE_ENSURE(context, input2->dims != nullptr);
141 TF_LITE_ENSURE(context, output->dims->size == 0);
142
143 input = input1->dims->size > input2->dims->size ? input1 : input2;
144 TF_LITE_ENSURE(context, output->type == input->type);
145
146 size_t size = 0;
147 TfLiteTypeSizeOf(input->type, &size);
148 const int dimensions_count = tflite::GetTensorShape(input).DimensionsCount();
149 for (int i = 0; i < dimensions_count; i++) {
150 size *= input->dims->data[i];
151 }
152
153 output->bytes = size;
154
155 output->dims =
156 reinterpret_cast<TfLiteIntArray*>(context->AllocatePersistentBuffer(
157 context, TfLiteIntArrayGetSizeInBytes(size)));
158
159 output->dims->size = input->dims->size;
160 for (int i = 0; i < dimensions_count; i++) {
161 output->dims->data[i] = input->dims->data[i];
162 }
163
164 return kTfLiteOk;
165 }
166
167 } // namespace tflite
168