1 /*
2 * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #pragma once
7
8 #include <stdbool.h>
9 #include <stdlib.h>
10 #include "esp_attr.h"
11
12 #include "soc/adc_periph.h"
13 #include "soc/apb_saradc_struct.h"
14 #include "soc/apb_saradc_reg.h"
15 #include "soc/rtc_cntl_struct.h"
16 #include "soc/rtc_cntl_reg.h"
17 #include "soc/clk_tree_defs.h"
18 #include "hal/misc.h"
19 #include "hal/assert.h"
20 #include "hal/adc_types.h"
21 #include "hal/adc_types_private.h"
22 #include "hal/regi2c_ctrl.h"
23
24 #include "soc/regi2c_saradc.h"
25
26 #ifdef __cplusplus
27 extern "C" {
28 #endif
29
30 #define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
31 #define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
32 #define ADC_LL_EVENT_THRES0_HIGH BIT(29)
33 #define ADC_LL_EVENT_THRES1_HIGH BIT(28)
34 #define ADC_LL_EVENT_THRES0_LOW BIT(27)
35 #define ADC_LL_EVENT_THRES1_LOW BIT(26)
36
37 /*---------------------------------------------------------------
38 Oneshot
39 ---------------------------------------------------------------*/
40 #define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
41 #define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
42
43 /*---------------------------------------------------------------
44 DMA
45 ---------------------------------------------------------------*/
46 #define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
47 #define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
48 #define ADC_LL_FSM_START_WAIT_DEFAULT (5)
49 #define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
50 #define ADC_LL_SAMPLE_CYCLE_DEFAULT (2)
51 #define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1)
52
53 #define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
54 #define ADC_LL_CLKM_DIV_B_DEFAULT 1
55 #define ADC_LL_CLKM_DIV_A_DEFAULT 0
56 #define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
57 #define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
58
59 /**
60 * Workaround: on ESP32C3, the internal hardware counter that counts ADC samples will not be automatically cleared,
61 * and there is no dedicated register to manually clear it. (see section 3.2 of the errata document).
62 * Therefore, traverse from 0 to the value configured last time, so as to clear the ADC sample counter.
63 */
64 #define ADC_LL_WORKAROUND_CLEAR_EOF_COUNTER (1)
65
66 /*---------------------------------------------------------------
67 PWDET (Power Detect)
68 ---------------------------------------------------------------*/
69 #define ADC_LL_PWDET_CCT_DEFAULT (4)
70
71 typedef enum {
72 ADC_LL_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
73 ADC_LL_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
74 ADC_LL_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
75 } adc_ll_power_t;
76
77 typedef enum {
78 ADC_LL_CTRL_DIG = 0, ///< For ADC1. Select DIG controller.
79 ADC_LL_CTRL_ARB = 1, ///< For ADC2. The controller is selected by the arbiter.
80 } adc_ll_controller_t;
81
82 /**
83 * @brief ADC digital controller (DMA mode) work mode.
84 *
85 * @note The conversion mode affects the sampling frequency:
86 * ESP32C3 only support ONLY_ADC1 mode
87 * SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
88 */
89 typedef enum {
90 ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
91 } adc_ll_digi_convert_mode_t;
92
93 typedef struct {
94 union {
95 struct {
96 uint8_t atten: 2;
97 uint8_t channel: 3;
98 uint8_t unit: 1;
99 uint8_t reserved: 2;
100 };
101 uint8_t val;
102 };
103 } __attribute__((packed)) adc_ll_digi_pattern_table_t;
104
105 /*---------------------------------------------------------------
106 Digital controller setting
107 ---------------------------------------------------------------*/
108
109 /**
110 * Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
111 *
112 * @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
113 * @param start_wait Delay time after open xpd.
114 * @param standby_wait Delay time to close xpd.
115 */
adc_ll_digi_set_fsm_time(uint32_t rst_wait,uint32_t start_wait,uint32_t standby_wait)116 static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
117 {
118 // Internal FSM reset wait time
119 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait);
120 // Internal FSM start wait time
121 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait);
122 // Internal FSM standby wait time
123 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait);
124 }
125
126 /**
127 * Set adc sample cycle for digital controller.
128 *
129 * @note Normally, please use default value.
130 * @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
131 * Range: 2 ~ 0xFF.
132 */
adc_ll_set_sample_cycle(uint32_t sample_cycle)133 static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
134 {
135 /* Should be called before writing I2C registers. */
136 SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
137 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
138 }
139
140 /**
141 * Set SAR ADC module clock division factor.
142 * SAR ADC clock divided from digital controller clock.
143 *
144 * @param div Division factor.
145 */
adc_ll_digi_set_clk_div(uint32_t div)146 static inline void adc_ll_digi_set_clk_div(uint32_t div)
147 {
148 /* ADC clock divided from digital controller clock clk */
149 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
150 }
151
152 /**
153 * Set adc max conversion number for digital controller.
154 * If the number of ADC conversion is equal to the maximum, the conversion is stopped.
155 *
156 * @param meas_num Max conversion number. Range: 0 ~ 255.
157 */
adc_ll_digi_set_convert_limit_num(uint32_t meas_num)158 static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
159 {
160 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num);
161 }
162
163 /**
164 * Enable max conversion number detection for digital controller.
165 * If the number of ADC conversion is equal to the maximum, the conversion is stopped.
166 *
167 * @param enable true: enable; false: disable
168 */
adc_ll_digi_convert_limit_enable(bool enable)169 static inline void adc_ll_digi_convert_limit_enable(bool enable)
170 {
171 APB_SARADC.ctrl2.meas_num_limit = enable;
172 }
173
174 /**
175 * Set adc conversion mode for digital controller.
176 *
177 * @note ESP32C3 only support ADC1 single mode.
178 *
179 * @param mode Conversion mode select.
180 */
adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)181 static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
182 {
183 //ESP32C3 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
184 }
185
186 /**
187 * Set pattern table length for digital controller.
188 * The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
189 * and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
190 * pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
191 *
192 * @param adc_n ADC unit.
193 * @param patt_len Items range: 1 ~ 8.
194 */
adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n,uint32_t patt_len)195 static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
196 {
197 APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
198 }
199
200 /**
201 * Set pattern table for digital controller.
202 * The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
203 * resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
204 * pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
205 *
206 * @param adc_n ADC unit.
207 * @param pattern_index Items index. Range: 0 ~ 7.
208 * @param pattern Stored conversion rules.
209 */
adc_ll_digi_set_pattern_table(adc_unit_t adc_n,uint32_t pattern_index,adc_digi_pattern_config_t table)210 static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
211 {
212 uint32_t tab;
213 uint8_t index = pattern_index / 4;
214 uint8_t offset = (pattern_index % 4) * 6;
215 adc_ll_digi_pattern_table_t pattern = {0};
216
217 pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
218 tab = APB_SARADC.sar_patt_tab[index].sar_patt_tab1; // Read old register value
219 tab &= (~(0xFC0000 >> offset)); // Clear old data
220 tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
221 APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back
222 }
223
224 /**
225 * Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
226 *
227 * @param adc_n ADC unit.
228 */
adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)229 static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
230 {
231 APB_SARADC.ctrl.sar_patt_p_clear = 1;
232 APB_SARADC.ctrl.sar_patt_p_clear = 0;
233 }
234
235 /**
236 * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
237 *
238 * @note Only ADC2 have arbiter function.
239 * @param cycle range: 0 ~ 4.
240 */
adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)241 static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
242 {
243 APB_SARADC.ctrl.wait_arb_cycle = cycle;
244 }
245
246 /**
247 * ADC Digital controller output data invert or not.
248 *
249 * @param adc_n ADC unit.
250 * @param inv_en data invert or not.
251 */
adc_ll_digi_output_invert(adc_unit_t adc_n,bool inv_en)252 static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
253 {
254 if (adc_n == ADC_UNIT_1) {
255 APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
256 } else { // adc_n == ADC_UNIT_2
257 APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
258 }
259 }
260
261 /**
262 * Set the interval clock cycle for the digital controller to trigger the measurement.
263 * Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
264 *
265 * @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
266 * @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
267 */
adc_ll_digi_set_trigger_interval(uint32_t cycle)268 static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
269 {
270 APB_SARADC.ctrl2.timer_target = cycle;
271 }
272
273 /**
274 * Enable digital controller timer to trigger the measurement.
275 */
adc_ll_digi_trigger_enable(void)276 static inline void adc_ll_digi_trigger_enable(void)
277 {
278 APB_SARADC.ctrl2.timer_en = 1;
279 }
280
281 /**
282 * Disable digital controller timer to trigger the measurement.
283 */
adc_ll_digi_trigger_disable(void)284 static inline void adc_ll_digi_trigger_disable(void)
285 {
286 APB_SARADC.ctrl2.timer_en = 0;
287 }
288
289 /**
290 * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
291 * Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
292 *
293 * @param div_num Division factor. Range: 0 ~ 255.
294 * @param div_b Division factor. Range: 1 ~ 63.
295 * @param div_a Division factor. Range: 0 ~ 63.
296 */
adc_ll_digi_controller_clk_div(uint32_t div_num,uint32_t div_b,uint32_t div_a)297 static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
298 {
299 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num);
300 APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b;
301 APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a;
302 }
303
304 /**
305 * Enable clock and select clock source for ADC digital controller.
306 *
307 * @param clk_src clock source for ADC digital controller.
308 */
adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)309 static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
310 {
311 // Only support APB clock, should always set to 1 or 2
312 APB_SARADC.apb_adc_clkm_conf.clk_sel = 2;
313 APB_SARADC.ctrl.sar_clk_gated = 1;
314 }
315
316 /**
317 * Disable clock for ADC digital controller.
318 */
adc_ll_digi_controller_clk_disable(void)319 static inline void adc_ll_digi_controller_clk_disable(void)
320 {
321 APB_SARADC.ctrl.sar_clk_gated = 0;
322 }
323
324 /**
325 * Reset adc digital controller filter.
326 *
327 * @param idx Filter index
328 * @param adc_n ADC unit.
329 */
adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx,adc_unit_t adc_n)330 static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
331 {
332 (void)adc_n;
333 APB_SARADC.filter_ctrl0.filter_reset = 1;
334 APB_SARADC.filter_ctrl0.filter_reset = 0;
335 }
336
337 /**
338 * Set adc digital controller filter coeff.
339 *
340 * @param idx filter index
341 * @param adc_n adc unit
342 * @param channel adc channel
343 * @param coeff filter coeff
344 */
adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx,adc_unit_t adc_n,adc_channel_t channel,adc_digi_iir_filter_coeff_t coeff)345 static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
346 {
347 uint32_t factor_reg_val = 0;
348 switch (coeff) {
349 case ADC_DIGI_IIR_FILTER_COEFF_2:
350 factor_reg_val = 1;
351 break;
352 case ADC_DIGI_IIR_FILTER_COEFF_4:
353 factor_reg_val = 2;
354 break;
355 case ADC_DIGI_IIR_FILTER_COEFF_8:
356 factor_reg_val = 3;
357 break;
358 case ADC_DIGI_IIR_FILTER_COEFF_16:
359 factor_reg_val = 4;
360 break;
361 case ADC_DIGI_IIR_FILTER_COEFF_64:
362 factor_reg_val = 6;
363 break;
364 default:
365 HAL_ASSERT(false);
366 }
367
368 if (idx == ADC_DIGI_IIR_FILTER_0) {
369 APB_SARADC.filter_ctrl0.filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
370 APB_SARADC.filter_ctrl1.filter_factor0 = factor_reg_val;
371 } else if (idx == ADC_DIGI_IIR_FILTER_1) {
372 APB_SARADC.filter_ctrl0.filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
373 APB_SARADC.filter_ctrl1.filter_factor1 = factor_reg_val;
374 }
375 }
376
377 /**
378 * Enable adc digital controller filter.
379 * Filtering the ADC data to obtain smooth data at higher sampling rates.
380 *
381 * @param idx filter index
382 * @param adc_n ADC unit
383 * @param enable Enable / Disable
384 */
adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx,adc_unit_t adc_n,bool enable)385 static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
386 {
387 (void)adc_n;
388 if (!enable) {
389 if (idx == ADC_DIGI_IIR_FILTER_0) {
390 APB_SARADC.filter_ctrl0.filter_channel0 = 0xF;
391 APB_SARADC.filter_ctrl1.filter_factor0 = 0;
392 } else if (idx == ADC_DIGI_IIR_FILTER_1) {
393 APB_SARADC.filter_ctrl0.filter_channel1 = 0xF;
394 APB_SARADC.filter_ctrl1.filter_factor1 = 0;
395 }
396 }
397 //nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
398 }
399
400 /**
401 * Set monitor mode of adc digital controller.
402 *
403 * @note If the channel info is not supported, the monitor function will not be enabled.
404 * @param adc_n ADC unit.
405 * @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
406 * false: If ADC_OUT < threshold, Generates monitor interrupt.
407 */
adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx,adc_digi_monitor_t * cfg)408 static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
409 {
410 if (idx == ADC_DIGI_MONITOR_IDX0) {
411 APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
412 APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold;
413 APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold;
414 } else { // ADC_DIGI_MONITOR_IDX1
415 APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
416 APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold;
417 APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold;
418 }
419 }
420
421 /**
422 * Enable/disable monitor of adc digital controller.
423 *
424 * @note If the channel info is not supported, the monitor function will not be enabled.
425 * @param adc_n ADC unit.
426 */
adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)427 static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
428 {
429 if (idx == ADC_DIGI_MONITOR_IDX0) {
430 APB_SARADC.thres0_ctrl.thres0_channel = 0xF;
431 } else { // ADC_DIGI_MONITOR_IDX1
432 APB_SARADC.thres1_ctrl.thres1_channel = 0xF;
433 }
434 }
435
436 /**
437 * Set DMA eof num of adc digital controller.
438 * If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
439 *
440 * @param num eof num of DMA.
441 */
adc_ll_digi_dma_set_eof_num(uint32_t num)442 static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
443 {
444 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num);
445 }
446
447 /**
448 * Clear ADC sample counter of adc digital controller.
449 */
adc_ll_digi_dma_clr_eof(void)450 static inline void adc_ll_digi_dma_clr_eof(void)
451 {
452 uint32_t eof_num = HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num);
453 for (int i = 0; i <= eof_num; i++)
454 {
455 HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, i);
456 }
457 }
458
459 /**
460 * Enable output data to DMA from adc digital controller.
461 */
adc_ll_digi_dma_enable(void)462 static inline void adc_ll_digi_dma_enable(void)
463 {
464 APB_SARADC.dma_conf.apb_adc_trans = 1;
465 }
466
467 /**
468 * Disable output data to DMA from adc digital controller.
469 */
adc_ll_digi_dma_disable(void)470 static inline void adc_ll_digi_dma_disable(void)
471 {
472 APB_SARADC.dma_conf.apb_adc_trans = 0;
473 }
474
475 /**
476 * Reset adc digital controller.
477 */
adc_ll_digi_reset(void)478 static inline void adc_ll_digi_reset(void)
479 {
480 APB_SARADC.dma_conf.apb_adc_reset_fsm = 1;
481 APB_SARADC.dma_conf.apb_adc_reset_fsm = 0;
482 }
483
484 /*---------------------------------------------------------------
485 PWDET(Power detect) controller setting
486 ---------------------------------------------------------------*/
487 /**
488 * Set adc cct for PWDET controller.
489 *
490 * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
491 * @param cct Range: 0 ~ 7.
492 */
adc_ll_pwdet_set_cct(uint32_t cct)493 static inline void adc_ll_pwdet_set_cct(uint32_t cct)
494 {
495 /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
496 RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
497 }
498
499 /**
500 * Get adc cct for PWDET controller.
501 *
502 * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
503 * @return cct Range: 0 ~ 7.
504 */
adc_ll_pwdet_get_cct(void)505 static inline uint32_t adc_ll_pwdet_get_cct(void)
506 {
507 /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
508 return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
509 }
510
511 /*---------------------------------------------------------------
512 Common setting
513 ---------------------------------------------------------------*/
514 /**
515 * Set ADC module power management.
516 *
517 * @param manage Set ADC power status.
518 */
519 __attribute__((always_inline))
adc_ll_digi_set_power_manage(adc_ll_power_t manage)520 static inline void adc_ll_digi_set_power_manage(adc_ll_power_t manage)
521 {
522 /* Bit1 0:Fsm 1: SW mode
523 Bit0 0:SW mode power down 1: SW mode power on */
524 if (manage == ADC_LL_POWER_SW_ON) {
525 APB_SARADC.ctrl.sar_clk_gated = 1;
526 APB_SARADC.ctrl.xpd_sar_force = 3;
527 } else if (manage == ADC_LL_POWER_BY_FSM) {
528 APB_SARADC.ctrl.sar_clk_gated = 1;
529 APB_SARADC.ctrl.xpd_sar_force = 0;
530 } else if (manage == ADC_LL_POWER_SW_OFF) {
531 APB_SARADC.ctrl.sar_clk_gated = 0;
532 APB_SARADC.ctrl.xpd_sar_force = 2;
533 }
534 }
535
536 __attribute__((always_inline))
adc_ll_set_controller(adc_unit_t adc_n,adc_ll_controller_t ctrl)537 static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
538 {
539 //Not used on ESP32C3
540 }
541
542 /**
543 * Set ADC2 module arbiter work mode.
544 * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
545 * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
546 *
547 * @note Only ADC2 support arbiter.
548 * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
549 *
550 * @param mode Refer to `adc_arbiter_mode_t`.
551 */
552 __attribute__((always_inline))
adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)553 static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
554 {
555 if (mode == ADC_ARB_MODE_FIX) {
556 APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
557 APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1;
558 } else if (mode == ADC_ARB_MODE_LOOP) {
559 APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
560 APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0;
561 } else {
562 APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter.
563 }
564 }
565
566 /**
567 * Set ADC2 module controller priority in arbiter.
568 * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
569 * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
570 *
571 * @note Only ADC2 support arbiter.
572 * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
573 * @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
574 *
575 * @param pri_rtc RTC controller priority. Range: 0 ~ 2.
576 * @param pri_dig Digital controller priority. Range: 0 ~ 2.
577 * @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
578 */
579 __attribute__((always_inline))
adc_ll_set_arbiter_priority(uint8_t pri_rtc,uint8_t pri_dig,uint8_t pri_pwdet)580 static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
581 {
582 if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
583 APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc;
584 APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig;
585 APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet;
586 }
587 /* Should select highest priority controller. */
588 if (pri_rtc > pri_dig) {
589 if (pri_rtc > pri_pwdet) {
590 APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
591 APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1;
592 APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
593 } else {
594 APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
595 APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
596 APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
597 }
598 } else {
599 if (pri_dig > pri_pwdet) {
600 APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1;
601 APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
602 APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
603 } else {
604 APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
605 APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
606 APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
607 }
608 }
609 }
610
611 /* ADC calibration code. */
612 /**
613 * @brief Set common calibration configuration. Should be shared with other parts (PWDET).
614 */
615 __attribute__((always_inline))
adc_ll_calibration_init(adc_unit_t adc_n)616 static inline void adc_ll_calibration_init(adc_unit_t adc_n)
617 {
618 if (adc_n == ADC_UNIT_1) {
619 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
620 } else {
621 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
622 }
623 }
624
625 /**
626 * Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
627 *
628 * @note Different ADC units and different attenuation options use different calibration data (initial data).
629 *
630 * @param adc_n ADC index number.
631 * @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
632 * false: Use IO external voltage as calibration voltage.
633 */
adc_ll_calibration_prepare(adc_unit_t adc_n,bool internal_gnd)634 static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd)
635 {
636 /* Enable/disable internal connect GND (for calibration). */
637 if (adc_n == ADC_UNIT_1) {
638 if (internal_gnd) {
639 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
640 } else {
641 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
642 }
643 } else {
644 if (internal_gnd) {
645 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
646 } else {
647 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
648 }
649 }
650 }
651
652 /**
653 * Resume register status after calibration.
654 *
655 * @param adc_n ADC index number.
656 */
adc_ll_calibration_finish(adc_unit_t adc_n)657 static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
658 {
659 if (adc_n == ADC_UNIT_1) {
660 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
661 } else {
662 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
663 }
664 }
665
666 /**
667 * Set the calibration result to ADC.
668 *
669 * @note Different ADC units and different attenuation options use different calibration data (initial data).
670 *
671 * @param adc_n ADC index number.
672 */
673 __attribute__((always_inline))
adc_ll_set_calibration_param(adc_unit_t adc_n,uint32_t param)674 static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
675 {
676 uint8_t msb = param >> 8;
677 uint8_t lsb = param & 0xFF;
678 if (adc_n == ADC_UNIT_1) {
679 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
680 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
681 } else {
682 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
683 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
684 }
685 }
686 /* Temp code end. */
687
688 /**
689 * Output ADCn inter reference voltage to ADC2 channels.
690 *
691 * This function routes the internal reference voltage of ADCn to one of
692 * ADC1's channels. This reference voltage can then be manually measured
693 * for calibration purposes.
694 *
695 * @param[in] adc ADC unit select
696 * @param[in] channel ADC1 channel number
697 * @param[in] en Enable/disable the reference voltage output
698 */
adc_ll_vref_output(adc_unit_t adc,adc_channel_t channel,bool en)699 static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
700 {
701 if (en) {
702 REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
703 SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
704
705 REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2);
706 SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
707 SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
708 SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
709 APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF;
710 APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF;
711 APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
712 APB_SARADC.onetime_sample.onetime_channel = channel;
713 SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
714 if (adc == ADC_UNIT_1) {
715 /* Config test mux to route v_ref to ADC1 Channels */
716 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
717 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
718 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
719 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
720 } else {
721 /* Config test mux to route v_ref to ADC2 Channels */
722 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
723 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
724 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
725 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
726 }
727 } else {
728 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
729 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
730 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
731 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
732 APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
733 APB_SARADC.onetime_sample.onetime_channel = 0xf;
734 REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0);
735 REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0);
736 CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
737 CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
738 CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
739 }
740 }
741
742 /*---------------------------------------------------------------
743 Oneshot Read
744 ---------------------------------------------------------------*/
745 /**
746 * Set adc output data format for oneshot mode
747 *
748 * @note ESP32C3 Oneshot mode only supports 12bit.
749 * @param adc_n ADC unit.
750 * @param bits Output data bits width option.
751 */
adc_oneshot_ll_set_output_bits(adc_unit_t adc_n,adc_bitwidth_t bits)752 static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
753 {
754 //ESP32C3 only supports 12bit, leave here for compatibility
755 HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
756 }
757
758 /**
759 * Enable adc channel to start convert.
760 *
761 * @note Only one channel can be selected for measurement.
762 *
763 * @param adc_n ADC unit.
764 * @param channel ADC channel number for each ADCn.
765 */
adc_oneshot_ll_set_channel(adc_unit_t adc_n,adc_channel_t channel)766 static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
767 {
768 APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | channel);
769 }
770
771 /**
772 * Disable adc channel to start convert.
773 *
774 * @note Only one channel can be selected in once measurement.
775 *
776 * @param adc_n ADC unit.
777 */
adc_oneshot_ll_disable_channel(adc_unit_t adc_n)778 static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
779 {
780 if (adc_n == ADC_UNIT_1) {
781 APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0xF);
782 } else { // adc_n == ADC_UNIT_2
783 APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0x1);
784 }
785 }
786
787 /**
788 * Start oneshot conversion by software
789 *
790 * @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
791 * otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
792 * This hardware limitation will be removed in future versions.
793 */
adc_oneshot_ll_start(bool val)794 static inline void adc_oneshot_ll_start(bool val)
795 {
796 APB_SARADC.onetime_sample.onetime_start = val;
797 }
798
799 /**
800 * Clear the event for each ADCn for Oneshot mode
801 *
802 * @param event ADC event
803 */
adc_oneshot_ll_clear_event(uint32_t event_mask)804 static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
805 {
806 APB_SARADC.int_clr.val |= event_mask;
807 }
808
809 /**
810 * Check the event for each ADCn for Oneshot mode
811 *
812 * @param event ADC event
813 *
814 * @return
815 * -true : The conversion process is finish.
816 * -false : The conversion process is not finish.
817 */
adc_oneshot_ll_get_event(uint32_t event_mask)818 static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
819 {
820 return (APB_SARADC.int_raw.val & event_mask);
821 }
822
823 /**
824 * Get the converted value for each ADCn for RTC controller.
825 *
826 * @param adc_n ADC unit.
827 * @return
828 * - Converted value.
829 */
adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)830 static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
831 {
832 uint32_t ret_val = 0;
833 if (adc_n == ADC_UNIT_1) {
834 ret_val = APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff;
835 } else { // adc_n == ADC_UNIT_2
836 ret_val = APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff;
837 }
838 return ret_val;
839 }
840
841 /**
842 * Analyze whether the obtained raw data is correct.
843 * ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
844 *
845 * @param adc_n ADC unit.
846 * @param raw_data ADC raw data input (convert value).
847 * @return
848 * - 1: The data is correct to use.
849 * - 0: The data is invalid.
850 */
adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n,uint32_t raw_data)851 static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
852 {
853 if (adc_n == ADC_UNIT_1) {
854 return true;
855 }
856
857 //The raw data API returns value without channel information. Read value directly from the register
858 if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) {
859 return false;
860 }
861
862 return true;
863 }
864
865 /**
866 * ADC module RTC output data invert or not.
867 *
868 * @param adc_n ADC unit.
869 * @param inv_en data invert or not.
870 */
adc_oneshot_ll_output_invert(adc_unit_t adc_n,bool inv_en)871 static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
872 {
873 (void)adc_n;
874 (void)inv_en;
875 //For compatibility
876 }
877
878 /**
879 * Enable oneshot conversion trigger
880 *
881 * @param adc_n ADC unit
882 */
adc_oneshot_ll_enable(adc_unit_t adc_n)883 static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
884 {
885 if (adc_n == ADC_UNIT_1) {
886 APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
887 } else {
888 APB_SARADC.onetime_sample.adc2_onetime_sample = 1;
889 }
890 }
891
892 /**
893 * Disable oneshot conversion trigger for all the ADC units
894 */
adc_oneshot_ll_disable_all_unit(void)895 static inline void adc_oneshot_ll_disable_all_unit(void)
896 {
897 APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
898 APB_SARADC.onetime_sample.adc2_onetime_sample = 0;
899 }
900
901 /**
902 * Set attenuation
903 *
904 * @note Attenuation is for all channels
905 *
906 * @param adc_n ADC unit
907 * @param channel ADC channel
908 * @param atten ADC attenuation
909 */
adc_oneshot_ll_set_atten(adc_unit_t adc_n,adc_channel_t channel,adc_atten_t atten)910 static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
911 {
912 (void)adc_n;
913 (void)channel;
914 // Attenuation is for all channels, unit and channel are for compatibility
915 APB_SARADC.onetime_sample.onetime_atten = atten;
916 }
917
918 /**
919 * Get the attenuation of a particular channel on ADCn.
920 *
921 * @param adc_n ADC unit.
922 * @param channel ADCn channel number.
923 * @return atten The attenuation option.
924 */
925 __attribute__((always_inline))
adc_ll_get_atten(adc_unit_t adc_n,adc_channel_t channel)926 static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
927 {
928 (void)adc_n;
929 (void)channel;
930 return APB_SARADC.onetime_sample.onetime_atten;
931 }
932
933 #ifdef __cplusplus
934 }
935 #endif
936