/* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* expl.c * * Exponential function, long double precision * * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-10000 50000 1.12e-19 2.81e-20 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ /* Exponential function */ static long double P[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L, }; static long double Q[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L, }; static const long double C1 = 6.9314575195312500000000E-1L; static const long double C2 = 1.4286068203094172321215E-6L; static const long double MAXLOGL = 1.1356523406294143949492E4L; static const long double MINLOGL = -1.13994985314888605586758E4L; static const long double LOG2EL = 1.4426950408889634073599E0L; long double expl(long double x) { long double px, xx; int n; if( isnan(x) ) return(x + x); if( x > MAXLOGL) { if (isinf(x)) return x; return __math_oflowl(0); } if( x < MINLOGL ) { if (isinf(x)) return 0.0L; return __math_uflowl(0); } /* Express e**x = e**g 2**n * = e**g e**( n loge(2) ) * = e**( g + n loge(2) ) */ px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */ n = px; x -= px * C1; x -= px * C2; /* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */ xx = x * x; px = x * __polevll( xx, P, 2 ); x = px/( __polevll( xx, Q, 3 ) - px ); x = 1.0L + ldexpl( x, 1 ); x = ldexpl( x, n ); return(x); }