/* @(#)s_erf.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* FUNCTION <>, <>, <>, <>---error function INDEX erf INDEX erff INDEX erfc INDEX erfcf SYNOPSIS #include double erf(double <[x]>); float erff(float <[x]>); double erfc(double <[x]>); float erfcf(float <[x]>); DESCRIPTION <> calculates an approximation to the ``error function'', which estimates the probability that an observation will fall within <[x]> standard deviations of the mean (assuming a normal distribution). @tex The error function is defined as $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$ @end tex <> calculates the complementary probability; that is, <)>> is <<1 - erf(<[x]>)>>. <> is computed directly, so that you can use it to avoid the loss of precision that would result from subtracting large probabilities (on large <[x]>) from 1. <> and <> differ from <> and <> only in the argument and result types. RETURNS For positive arguments, <> and all its variants return a probability---a number between 0 and 1. PORTABILITY None of the variants of <> are ANSI C. */ /* double erf(double x) * double erfc(double x) * x * 2 |\ * erf(x) = --------- | exp(-t*t)dt * sqrt(pi) \| * 0 * * erfc(x) = 1-erf(x) * Note that * erf(-x) = -erf(x) * erfc(-x) = 2 - erfc(x) * * Method: * 1. For |x| in [0, 0.84375] * erf(x) = x + x*R(x^2) * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] * where R = P/Q where P is an odd poly of degree 8 and * Q is an odd poly of degree 10. * -57.90 * | R - (erf(x)-x)/x | <= 2 * * * Remark. The formula is derived by noting * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) * and that * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 * is close to one. The interval is chosen because the fix * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is * near 0.6174), and by some experiment, 0.84375 is chosen to * guarantee the error is less than one ulp for erf. * * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and * c = 0.84506291151 rounded to single (24 bits) * erf(x) = sign(x) * (c + P1(s)/Q1(s)) * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 * 1+(c+P1(s)/Q1(s)) if x < 0 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 * Remark: here we use the taylor series expansion at x=1. * erf(1+s) = erf(1) + s*Poly(s) * = 0.845.. + P1(s)/Q1(s) * That is, we use rational approximation to approximate * erf(1+s) - (c = (single)0.84506291151) * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] * where * P1(s) = degree 6 poly in s * Q1(s) = degree 6 poly in s * * 3. For x in [1.25,1/0.35(~2.857143)], * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) * erf(x) = 1 - erfc(x) * where * R1(z) = degree 7 poly in z, (z=1/x^2) * S1(z) = degree 8 poly in z * * 4. For x in [1/0.35,28] * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6 x >= 28 * erf(x) = sign(x) *(1 - tiny) (raise inexact) * erfc(x) = tiny*tiny (raise underflow) if x > 0 * = 2 - tiny if x<0 * * 7. Special case: * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, * erfc/erf(NaN) is NaN */ #include "fdlibm.h" #ifdef _NEED_FLOAT64 static const __float64 tiny = _F_64(1e-300), half = _F_64(5.00000000000000000000e-01), /* 0x3FE00000, 0x00000000 */ one = _F_64(1.00000000000000000000e+00), /* 0x3FF00000, 0x00000000 */ two = _F_64(2.00000000000000000000e+00), /* 0x40000000, 0x00000000 */ /* c = (float)0.84506291151 */ erx = _F_64(8.45062911510467529297e-01), /* 0x3FEB0AC1, 0x60000000 */ /* * Coefficients for approximation to erf on [0,0.84375] */ efx = _F_64(1.28379167095512586316e-01), /* 0x3FC06EBA, 0x8214DB69 */ efx8 = _F_64(1.02703333676410069053e+00), /* 0x3FF06EBA, 0x8214DB69 */ pp0 = _F_64(1.28379167095512558561e-01), /* 0x3FC06EBA, 0x8214DB68 */ pp1 = _F_64(-3.25042107247001499370e-01), /* 0xBFD4CD7D, 0x691CB913 */ pp2 = _F_64(-2.84817495755985104766e-02), /* 0xBF9D2A51, 0xDBD7194F */ pp3 = _F_64(-5.77027029648944159157e-03), /* 0xBF77A291, 0x236668E4 */ pp4 = _F_64(-2.37630166566501626084e-05), /* 0xBEF8EAD6, 0x120016AC */ qq1 = _F_64(3.97917223959155352819e-01), /* 0x3FD97779, 0xCDDADC09 */ qq2 = _F_64(6.50222499887672944485e-02), /* 0x3FB0A54C, 0x5536CEBA */ qq3 = _F_64(5.08130628187576562776e-03), /* 0x3F74D022, 0xC4D36B0F */ qq4 = _F_64(1.32494738004321644526e-04), /* 0x3F215DC9, 0x221C1A10 */ qq5 = _F_64(-3.96022827877536812320e-06), /* 0xBED09C43, 0x42A26120 */ /* * Coefficients for approximation to erf in [0.84375,1.25] */ pa0 = _F_64(-2.36211856075265944077e-03), /* 0xBF6359B8, 0xBEF77538 */ pa1 = _F_64(4.14856118683748331666e-01), /* 0x3FDA8D00, 0xAD92B34D */ pa2 = _F_64(-3.72207876035701323847e-01), /* 0xBFD7D240, 0xFBB8C3F1 */ pa3 = _F_64(3.18346619901161753674e-01), /* 0x3FD45FCA, 0x805120E4 */ pa4 = _F_64(-1.10894694282396677476e-01), /* 0xBFBC6398, 0x3D3E28EC */ pa5 = _F_64(3.54783043256182359371e-02), /* 0x3FA22A36, 0x599795EB */ pa6 = _F_64(-2.16637559486879084300e-03), /* 0xBF61BF38, 0x0A96073F */ qa1 = _F_64(1.06420880400844228286e-01), /* 0x3FBB3E66, 0x18EEE323 */ qa2 = _F_64(5.40397917702171048937e-01), /* 0x3FE14AF0, 0x92EB6F33 */ qa3 = _F_64(7.18286544141962662868e-02), /* 0x3FB2635C, 0xD99FE9A7 */ qa4 = _F_64(1.26171219808761642112e-01), /* 0x3FC02660, 0xE763351F */ qa5 = _F_64(1.36370839120290507362e-02), /* 0x3F8BEDC2, 0x6B51DD1C */ qa6 = _F_64(1.19844998467991074170e-02), /* 0x3F888B54, 0x5735151D */ /* * Coefficients for approximation to erfc in [1.25,1/0.35] */ ra0 = _F_64(-9.86494403484714822705e-03), /* 0xBF843412, 0x600D6435 */ ra1 = _F_64(-6.93858572707181764372e-01), /* 0xBFE63416, 0xE4BA7360 */ ra2 = _F_64(-1.05586262253232909814e+01), /* 0xC0251E04, 0x41B0E726 */ ra3 = _F_64(-6.23753324503260060396e+01), /* 0xC04F300A, 0xE4CBA38D */ ra4 = _F_64(-1.62396669462573470355e+02), /* 0xC0644CB1, 0x84282266 */ ra5 = _F_64(-1.84605092906711035994e+02), /* 0xC067135C, 0xEBCCABB2 */ ra6 = _F_64(-8.12874355063065934246e+01), /* 0xC0545265, 0x57E4D2F2 */ ra7 = _F_64(-9.81432934416914548592e+00), /* 0xC023A0EF, 0xC69AC25C */ sa1 = _F_64(1.96512716674392571292e+01), /* 0x4033A6B9, 0xBD707687 */ sa2 = _F_64(1.37657754143519042600e+02), /* 0x4061350C, 0x526AE721 */ sa3 = _F_64(4.34565877475229228821e+02), /* 0x407B290D, 0xD58A1A71 */ sa4 = _F_64(6.45387271733267880336e+02), /* 0x40842B19, 0x21EC2868 */ sa5 = _F_64(4.29008140027567833386e+02), /* 0x407AD021, 0x57700314 */ sa6 = _F_64(1.08635005541779435134e+02), /* 0x405B28A3, 0xEE48AE2C */ sa7 = _F_64(6.57024977031928170135e+00), /* 0x401A47EF, 0x8E484A93 */ sa8 = _F_64(-6.04244152148580987438e-02), /* 0xBFAEEFF2, 0xEE749A62 */ /* * Coefficients for approximation to erfc in [1/.35,28] */ rb0 = _F_64(-9.86494292470009928597e-03), /* 0xBF843412, 0x39E86F4A */ rb1 = _F_64(-7.99283237680523006574e-01), /* 0xBFE993BA, 0x70C285DE */ rb2 = _F_64(-1.77579549177547519889e+01), /* 0xC031C209, 0x555F995A */ rb3 = _F_64(-1.60636384855821916062e+02), /* 0xC064145D, 0x43C5ED98 */ rb4 = _F_64(-6.37566443368389627722e+02), /* 0xC083EC88, 0x1375F228 */ rb5 = _F_64(-1.02509513161107724954e+03), /* 0xC0900461, 0x6A2E5992 */ rb6 = _F_64(-4.83519191608651397019e+02), /* 0xC07E384E, 0x9BDC383F */ sb1 = _F_64(3.03380607434824582924e+01), /* 0x403E568B, 0x261D5190 */ sb2 = _F_64(3.25792512996573918826e+02), /* 0x40745CAE, 0x221B9F0A */ sb3 = _F_64(1.53672958608443695994e+03), /* 0x409802EB, 0x189D5118 */ sb4 = _F_64(3.19985821950859553908e+03), /* 0x40A8FFB7, 0x688C246A */ sb5 = _F_64(2.55305040643316442583e+03), /* 0x40A3F219, 0xCEDF3BE6 */ sb6 = _F_64(4.74528541206955367215e+02), /* 0x407DA874, 0xE79FE763 */ sb7 = _F_64(-2.24409524465858183362e+01); /* 0xC03670E2, 0x42712D62 */ __float64 erf64(__float64 x) { __int32_t hx, ix, i; __float64 R, S, P, Q, s, y, z, r; GET_HIGH_WORD(hx, x); ix = hx & 0x7fffffff; if (ix >= 0x7ff00000) { /* erf(nan)=nan */ i = ((__uint32_t)hx >> 31) << 1; return (__float64)(1 - i) + one / x; /* erf(+-inf)=+-1 */ } if (ix < 0x3feb0000) { /* |x|<0.84375 */ if (ix < 0x3e300000) { /* |x|<2**-28 */ if (ix < 0x00800000) return _F_64(0.125) * (_F_64(8.0) * x + efx8 * x); /*avoid underflow */ return x + efx * x; } z = x * x; r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); y = r / s; return x + x * y; } if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ s = fabs64(x) - one; P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6))))); Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6))))); if (hx >= 0) return erx + P / Q; else return -erx - P / Q; } if (ix >= 0x40180000) { /* inf>|x|>=6 */ if (hx >= 0) return one - tiny; else return tiny - one; } x = fabs64(x); s = one / (x * x); if (ix < 0x4006DB6E) { /* |x| < 1/0.35 */ R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7)))))); S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s * (sa5 + s * (sa6 + s * (sa7 + s * sa8))))))); } else { /* |x| >= 1/0.35 */ R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6))))); S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7)))))); } z = x; SET_LOW_WORD(z, 0); r = exp(-z * z - _F_64(0.5625)) * exp((z - x) * (z + x) + R / S); if (hx >= 0) return one - r / x; else return r / x - one; } _MATH_ALIAS_d_d(erf) __float64 erfc64(__float64 x) { __int32_t hx, ix; __float64 R, S, P, Q, s, y, z, r; GET_HIGH_WORD(hx, x); ix = hx & 0x7fffffff; if (ix >= 0x7ff00000) { /* erfc(nan)=nan */ /* erfc(+-inf)=0,2 */ return (__float64)(((__uint32_t)hx >> 31) << 1) + one / x; } if (ix < 0x3feb0000) { /* |x|<0.84375 */ if (ix < 0x3c700000) /* |x|<2**-56 */ return one - x; z = x * x; r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); y = r / s; if (hx < 0x3fd00000) { /* x<1/4 */ return one - (x + x * y); } else { r = x * y; r += (x - half); return half - r; } } if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ s = fabs64(x) - one; P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6))))); Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6))))); if (hx >= 0) { z = one - erx; return z - P / Q; } else { z = erx + P / Q; return one + z; } } if (ix < 0x403c0000) { /* |x|<28 */ x = fabs64(x); s = one / (x * x); if (ix < 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7)))))); S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s * (sa5 + s * (sa6 + s * (sa7 + s * sa8))))))); } else { /* |x| >= 1/.35 ~ 2.857143 */ if (hx < 0 && ix >= 0x40180000) return two - tiny; /* x < -6 */ R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6))))); S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7)))))); } z = x; SET_LOW_WORD(z, 0); r = exp(-z * z - _F_64(0.5625)) * exp((z - x) * (z + x) + R / S); if (hx > 0) return r / x; else return two - r / x; } else { if (hx > 0) return __math_uflow(0); else return two - tiny; } } _MATH_ALIAS_d_d(erfc) #endif /* _NEED_FLOAT64 */