/* @(#)e_acos.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* acos(x) * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ #include "fdlibm.h" #ifdef _NEED_FLOAT64 static const __float64 one = _F_64(1.00000000000000000000e+00), /* 0x3FF00000, 0x00000000 */ pi = _F_64(3.14159265358979311600e+00), /* 0x400921FB, 0x54442D18 */ pio2_hi = _F_64(1.57079632679489655800e+00), /* 0x3FF921FB, 0x54442D18 */ pio2_lo = _F_64(6.12323399573676603587e-17), /* 0x3C91A626, 0x33145C07 */ pS0 = _F_64(1.66666666666666657415e-01), /* 0x3FC55555, 0x55555555 */ pS1 = _F_64(-3.25565818622400915405e-01), /* 0xBFD4D612, 0x03EB6F7D */ pS2 = _F_64(2.01212532134862925881e-01), /* 0x3FC9C155, 0x0E884455 */ pS3 = _F_64(-4.00555345006794114027e-02), /* 0xBFA48228, 0xB5688F3B */ pS4 = _F_64(7.91534994289814532176e-04), /* 0x3F49EFE0, 0x7501B288 */ pS5 = _F_64(3.47933107596021167570e-05), /* 0x3F023DE1, 0x0DFDF709 */ qS1 = _F_64(-2.40339491173441421878e+00), /* 0xC0033A27, 0x1C8A2D4B */ qS2 = _F_64(2.02094576023350569471e+00), /* 0x40002AE5, 0x9C598AC8 */ qS3 = _F_64(-6.88283971605453293030e-01), /* 0xBFE6066C, 0x1B8D0159 */ qS4 = _F_64(7.70381505559019352791e-02); /* 0x3FB3B8C5, 0xB12E9282 */ __float64 acos64(__float64 x) { __float64 z, p, q, r, w, s, c, df; __int32_t hx, ix; GET_HIGH_WORD(hx, x); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x| >= 1 */ __uint32_t lx; GET_LOW_WORD(lx, x); if (((ix - 0x3ff00000) | lx) == 0) { /* |x|==1 */ if (hx > 0) return _F_64(0.0); /* acos(1) = 0 */ else return pi + _F_64(2.0) * pio2_lo; /* acos(-1)= pi */ } return __math_invalid(x); /* acos(|x|>1) is NaN */ } if (ix < 0x3fe00000) { /* |x| < 0.5 */ if (ix <= 0x3c600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/ z = x * x; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; return pio2_hi - (x - (pio2_lo - x * r)); } else if (hx < 0) { /* x < -0.5 */ z = (one + x) * _F_64(0.5); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); s = sqrt64(z); r = p / q; w = r * s - pio2_lo; return pi - _F_64(2.0) * (s + w); } else { /* x > 0.5 */ z = (one - x) * _F_64(0.5); s = sqrt64(z); df = s; SET_LOW_WORD(df, 0); c = (z - df * df) / (s + df); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; w = r * s + c; return _F_64(2.0) * (df + w); } } _MATH_ALIAS_d_d(acos) #endif /* _NEED_FLOAT64 */