/* From: @(#)e_rem_pio2.c 1.4 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * Optimized by Bruce D. Evans. */ //__FBSDID("$FreeBSD: src/lib/msun/ld80/e_rem_pio2l.h,v 1.3 2011/06/18 13:56:33 benl Exp $"); /* ld80 version of __ieee754_rem_pio2l(x,y) * * return the remainder of x rem pi/2 in y[0]+y[1] * use __kernel_rem_pio2() */ #include "../math_ld.h" #define BIAS (LDBL_MAX_EXP - 1) /* * invpio2: 64 bits of 2/pi * pio2_1: first 39 bits of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 39 bits of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 39 bits of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ static const double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ pio2_1 = 1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */ pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */ pio2_3 = 6.36831716351370313614e-25; /* 0x18a2e037074000.0p-133 */ #if defined(__amd64__) || defined(__i386__) /* Long double constants are slow on these arches, and broken on i386. */ static const volatile double invpio2hi = 6.3661977236758138e-01, /* 0x145f306dc9c883.0p-53 */ invpio2lo = -3.9356538861223811e-17, /* -0x16b00000000000.0p-107 */ pio2_1thi = -1.0746346554971943e-12, /* -0x12e7b9676733af.0p-92 */ pio2_1tlo = 8.8451028997905949e-29, /* 0x1c080000000000.0p-146 */ pio2_2thi = 6.3683171635109499e-25, /* 0x18a2e03707344a.0p-133 */ pio2_2tlo = 2.3183081793789774e-41, /* 0x10280000000000.0p-187 */ pio2_3thi = -2.7529965190440717e-37, /* -0x176b7ed8fbbacc.0p-174 */ pio2_3tlo = -4.2006647512740502e-54; /* -0x19c00000000000.0p-230 */ #define invpio2 ((long double)invpio2hi + (long double)invpio2lo) #define pio2_1t ((long double)pio2_1thi + (long double)pio2_1tlo) #define pio2_2t ((long double)pio2_2thi + (long double)pio2_2tlo) #define pio2_3t ((long double)pio2_3thi + (long double)pio2_3tlo) #else static const long double invpio2 = 6.36619772367581343076e-01L, /* 0xa2f9836e4e44152a.0p-64 */ pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */ pio2_2t = 6.36831716351095013979e-25L, /* 0xc51701b839a25205.0p-144 */ pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */ #endif //VBS //static inline __always_inline int //__ieee754_rem_pio2l(long double x, long double *y) static inline int __ieee754_rem_pio2l(long double x, long double *y) { union IEEEl2bits u,u1; long double z,w,t,r,fn; double tx[3],ty[2]; int e0,ex,i,j,nx,n; int16_t expsign; u.e = x; expsign = u.xbits.expsign; ex = expsign & 0x7fff; if (ex < BIAS + 25 || (ex == BIAS + 25 && u.bits.manh < 0xc90fdaa2)) { /* |x| ~< 2^25*(pi/2), medium size */ /* Use a specialized rint() to get fn. Assume round-to-nearest. */ fn = x*invpio2+0x1.8p63L; fn = fn-0x1.8p63L; #ifdef HAVE_EFFICIENT_IRINT n = irint(fn); #else n = fn; #endif r = x-fn*(long double)pio2_1; w = fn*pio2_1t; /* 1st round good to 102 bit */ { union IEEEl2bits u2; int ex1; j = ex; y[0] = r-w; u2.e = y[0]; ex1 = u2.xbits.expsign & 0x7fff; i = j-ex1; if(i>22) { /* 2nd iteration needed, good to 141 */ t = r; w = fn*(long double)pio2_2; r = t-w; w = fn*pio2_2t-((t-r)-w); y[0] = r-w; u2.e = y[0]; ex1 = u2.xbits.expsign & 0x7fff; i = j-ex1; if(i>61) { /* 3rd iteration need, 180 bits acc */ t = r; /* will cover all possible cases */ w = fn*(long double)pio2_3; r = t-w; w = fn*pio2_3t-((t-r)-w); y[0] = r-w; } } } y[1] = (r-y[0])-w; return n; } /* * all other (large) arguments */ if(ex==0x7fff) { /* x is inf or NaN */ y[0]=y[1]=x-x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ u1.e = x; e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */ u1.xbits.expsign = ex - e0; z = u1.e; for(i=0;i<2;i++) { tx[i] = (double)((int32_t)(z)); z = (z-(long double)tx[i])*(long double)two24; } tx[2] = z; nx = 3; while(tx[nx-1]==zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx,ty,e0,nx,2); r = (long double)ty[0] + (long double)ty[1]; w = (long double)ty[1] - (r - (long double)ty[0]); if(expsign<0) {y[0] = -r; y[1] = -w; return -n;} y[0] = r; y[1] = w; return n; }