/* @(#)s_tanh.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* tanhl(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanhl(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x) * -t * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) * t + 2 * 2 * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) * t + 2 * 40.0 < x <= INF : tanhl(x) := 1. * * Special cases: * tanhl(NaN) is NaN; * only tanhl(0)=0 is exact for finite argument. */ static const long double one = 1.0L, two = 2.0L, tiny = 1.0e-4900L; long double tanhl(long double x) { long double t, z; u_int32_t jx, ix; ieee_quad_shape_type u; /* Words of |x|. */ u.value = x; jx = u.parts32.mswhi; ix = jx & 0x7fffffff; /* x is INF or NaN */ if (ix >= 0x7fff0000) { /* for NaN it's not important which branch: tanhl(NaN) = NaN */ if (jx & 0x80000000) return one / x - one; /* tanhl(-inf)= -1; */ else return one / x + one; /* tanhl(+inf)=+1 */ } /* |x| < 40 */ if (ix < 0x40044000) { if (u.value == 0) return x; /* x == +- 0 */ if (ix < 0x3fc60000) /* |x| < 2^-57 */ return x * (one + tiny); /* tanh(small) = small */ u.parts32.mswhi = ix; /* Absolute value of x. */ if (ix >= 0x3fff0000) { /* |x| >= 1 */ t = expm1l (two * u.value); z = one - two / (t + two); } else { t = expm1l (-two * u.value); z = -t / (t + two); } /* |x| > 40, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (jx & 0x80000000) ? -z : z; }