/* @(#)e_fmod.c 1.3 95/01/18 */ /*- * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #define BIAS (LDBL_MAX_EXP - 1) /* * These macros add and remove an explicit integer bit in front of the * fractional mantissa, if the architecture doesn't have such a bit by * default already. */ #ifdef LDBL_IMPLICIT_NBIT #define LDBL_NBIT 0 #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) #define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS) #else #define LDBL_NBIT 0x80000000 #define SET_NBIT(hx) (hx) #define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS - 1) #endif #define MANL_SHIFT (EXT_FRACLMBITS + EXT_FRACLBITS - 1) static const long double Zero[] = {0.0L, -0.0L}; /* * Return the IEEE remainder and set *quo to the last n bits of the * quotient, rounded to the nearest integer. We choose n=31 because * we wind up computing all the integer bits of the quotient anyway as * a side-effect of computing the remainder by the shift and subtract * method. In practice, this is far more bits than are needed to use * remquo in reduction algorithms. * * Assumptions: * - The low part of the mantissa fits in a manl_t exactly. * - The high part of the mantissa fits in an int64_t with enough room * for an explicit integer bit in front of the fractional bits. */ long double remquol(long double x, long double y, int *quo) { int64_t hx,hz,hy,_hx; uint64_t lx,ly,lz; uint64_t sx,sxy; int ix,iy,n,q; GET_LDOUBLE_WORDS64(hx,lx,x); GET_LDOUBLE_WORDS64(hy,ly,y); sx = (hx>>48)&0x8000; sxy = sx ^ ((hy>>48)&0x8000); hx &= 0x7fffffffffffffffLL; /* |x| */ hy &= 0x7fffffffffffffffLL; /* |y| */ SET_LDOUBLE_WORDS64(x,hx,lx); SET_LDOUBLE_WORDS64(y,hy,ly); /* purge off exception values */ if((hy|ly)==0 || /* y=0 */ ((hx>>48) == BIAS + LDBL_MAX_EXP) || /* or x not finite */ ((hy>>48) == BIAS + LDBL_MAX_EXP && (((hy&0x0000ffffffffffffLL)&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */ return (x*y)/(x*y); if((hx>>48)<=(hy>>48)) { if(((hx>>48)<(hy>>48)) || ((hx&0x0000ffffffffffffLL)<=(hy&0x0000ffffffffffffLL) && ((hx&0x0000ffffffffffffLL)<(hy&0x0000ffffffffffffLL) || lx>48) == 0) { /* subnormal x */ x *= 0x1.0p512L; GET_LDOUBLE_WORDS64(hx,lx,x); ix = (hx>>48) - (BIAS + 512); } else { ix = (hx>>48) - BIAS; } /* determine iy = ilogb(y) */ if((hy>>48) == 0) { /* subnormal y */ y *= 0x1.0p512L; GET_LDOUBLE_WORDS64(hy,ly,y); iy = (hy>>48) - (BIAS + 512); } else { iy = (hy>>48) - BIAS; } /* set up {hx,lx}, {hy,ly} and align y to x */ _hx = SET_NBIT(hx & 0x0000ffffffffffffLL); hy = SET_NBIT(hy & 0x0000ffffffffffffLL); /* fix point fmod */ n = ix - iy; q = 0; while(n--) { hz=_hx-hy;lz=lx-ly; if(lx>MANL_SHIFT); lx = lx+lx;} else {_hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;} q <<= 1; } hz=_hx-hy;lz=lx-ly; if(lx=0) {_hx=hz;lx=lz;q++;} /* convert back to floating value and restore the sign */ if((_hx|lx)==0) { /* return sign(x)*0 */ *quo = (sxy ? -q : q); return Zero[sx!=0]; } while(_hx<(1LL<>MANL_SHIFT); lx = lx+lx; iy -= 1; } hx = (hx&0xffff000000000000LL) | (_hx&0x0000ffffffffffffLL); if (iy < LDBL_MIN_EXP) { hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS + 512)<<48; SET_LDOUBLE_WORDS64(x,hx,lx); x *= 0x1p-512L; GET_LDOUBLE_WORDS64(hx,lx,x); } else { hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS)<<48; } hx &= 0x7fffffffffffffffLL; SET_LDOUBLE_WORDS64(x,hx,lx); fixup: y = fabsl(y); if (y < LDBL_MIN * 2) { if (x+x>y || (x+x==y && (q & 1))) { q++; x-=y; } } else if (x>0.5L*y || (x==0.5L*y && (q & 1))) { q++; x-=y; } GET_LDOUBLE_MSW64(hx,x); hx ^= (sx << 48); SET_LDOUBLE_MSW64(x,hx); q &= 0x7fffffff; *quo = (sxy ? -q : q); return x; }