/* Single-precision sin function. Copyright (c) 2018 Arm Ltd. All rights reserved. SPDX-License-Identifier: BSD-3-Clause Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The name of the company may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fdlibm.h" #if !__OBSOLETE_MATH_FLOAT #include #include "math_config.h" #include "sincosf.h" /* Fast sinf implementation. Worst-case ULP is 0.5607, maximum relative error is 0.5303 * 2^-23. A single-step range reduction is used for small values. Large inputs have their range reduced using fast integer arithmetic. */ float sinf (float y) { double x = (double) y; double s; int n; const sincos_t *p = &__sincosf_table[0]; if (abstop12 (y) < abstop12 (pio4)) { s = x * x; if (unlikely (abstop12 (y) < abstop12 (0x1p-12f))) { if (unlikely (abstop12 (y) < abstop12 (0x1p-126f))) /* Force underflow for tiny y. */ force_eval_float (s); return y; } return sinf_poly (x, s, p, 0); } else if (likely (abstop12 (y) < abstop12 (120.0f))) { x = reduce_fast (x, p, &n); /* Setup the signs for sin and cos. */ s = p->sign[n & 3]; if (n & 2) p = &__sincosf_table[1]; return sinf_poly (x * s, x * x, p, n); } else if (abstop12 (y) < abstop12 (INFINITY)) { uint32_t xi = asuint (y); int sign = xi >> 31; x = reduce_large (xi, &n); /* Setup signs for sin and cos - include original sign. */ s = p->sign[(n + sign) & 3]; if ((n + sign) & 2) p = &__sincosf_table[1]; return sinf_poly (x * s, x * x, p, n); } else return __math_invalidf (y); } #endif