/* ef_jn.c -- float version of e_jn.c. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include "fdlibm.h" static const float two = 2.0000000000e+00, /* 0x40000000 */ one = 1.0000000000e+00; /* 0x3F800000 */ static const float zero = 0.0000000000e+00; float jnf(int n, float x) { __int32_t i, hx, ix, sgn; float a, b, temp, di; float z, w; /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) * Thus, J(-n,x) = J(n,-x) */ GET_FLOAT_WORD(hx, x); ix = 0x7fffffff & hx; /* if J(n,NaN) is NaN */ if (FLT_UWORD_IS_NAN(ix)) return x + x; if (n < 0) { n = -n; x = -x; hx ^= 0x80000000; } if (n == 0) return (j0f(x)); if (n == 1) return (j1f(x)); sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */ x = fabsf(x); if (FLT_UWORD_IS_ZERO(ix) || FLT_UWORD_IS_INFINITE(ix)) b = zero; else if ((float)n <= x) { /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ a = j0f(x); b = j1f(x); for (i = 1; i < n; i++) { temp = b; b = b * ((float)(i + i) / x) - a; /* avoid underflow */ a = temp; } } else { if (ix < 0x30800000) { /* x < 2**-29 */ /* x is tiny, return the first Taylor expansion of J(n,x) * J(n,x) = 1/n!*(x/2)^n - ... */ if (n > 33) /* underflow */ b = zero; else { temp = x * (float)0.5; b = temp; for (a = one, i = 2; i <= n; i++) { a *= (float)i; /* a = n! */ b *= temp; /* b = (x/2)^n */ } b = b / a; } } else { /* use backward recurrence */ /* x x^2 x^2 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... * 2n - 2(n+1) - 2(n+2) * * 1 1 1 * (for large x) = ---- ------ ------ ..... * 2n 2(n+1) 2(n+2) * -- - ------ - ------ - * x x x * * Let w = 2n/x and h=2/x, then the above quotient * is equal to the continued fraction: * 1 * = ----------------------- * 1 * w - ----------------- * 1 * w+h - --------- * w+2h - ... * * To determine how many terms needed, let * Q(0) = w, Q(1) = w(w+h) - 1, * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), * When Q(k) > 1e4 good for single * When Q(k) > 1e9 good for double * When Q(k) > 1e17 good for quadruple */ /* determine k */ float t, v; float q0, q1, h, tmp; __int32_t k, m; w = (n + n) / (float)x; h = (float)2.0 / (float)x; q0 = w; z = w + h; q1 = w * z - (float)1.0; k = 1; while (q1 < (float)1.0e9) { k += 1; z += h; tmp = z * q1 - q0; q0 = q1; q1 = tmp; } m = n + n; for (t = zero, i = 2 * (n + k); i >= m; i -= 2) t = one / (i / x - t); a = t; b = one; /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) * Hence, if n*(log(2n/x)) > ... * single 8.8722839355e+01 * double 7.09782712893383973096e+02 * long double 1.1356523406294143949491931077970765006170e+04 * then recurrent value may overflow and the result is * likely underflow to zero */ tmp = n; v = two / x; tmp = tmp * logf(fabsf(v * tmp)); if (tmp < (float)8.8721679688e+01) { for (i = n - 1, di = (float)(i + i); i > 0; i--) { temp = b; b *= di; b = b / x - a; a = temp; di -= two; } } else { for (i = n - 1, di = (float)(i + i); i > 0; i--) { temp = b; b *= di; b = b / x - a; a = temp; di -= two; /* scale b to avoid spurious overflow */ if (b > (float)1e10) { a /= b; t /= b; b = one; } } } b = (t * j0f(x) / b); } } if (sgn == 1) return -b; else return b; } float ynf(int n, float x) { __int32_t i, hx, ix, ib; __int32_t sign; float a, b, temp; GET_FLOAT_WORD(hx, x); ix = 0x7fffffff & hx; if (ix == 0) return __math_divzerof(1); if (ix > 0x7f800000) return x+x; if (hx < 0) return __math_invalidf(x); if (ix == 0x7f800000) return zero; sign = 1; if (n < 0) { n = -n; sign = 1 - ((n & 1) << 1); } if (n == 0) return (y0f(x)); if (n == 1) return (sign * y1f(x)); a = y0f(x); b = y1f(x); /* quit if b is -inf */ GET_FLOAT_WORD(ib, b); for (i = 1; i < n && ib != (__int32_t)0xff800000; i++) { temp = b; b = ((float)(i + i) / x) * b - a; GET_FLOAT_WORD(ib, b); a = temp; } if (sign > 0) return b; else return -b; } _MATH_ALIAS_f_if(jn) _MATH_ALIAS_f_if(yn)