/* @(#)s_tanh.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* tanhl(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanhl(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). * 2. 0 <= x <= 2**-55 : tanhl(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) * t + 2 * 2 * 1 <= x <= 23.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) * t + 2 * 23.0 < x <= INF : tanhl(x) := 1. * * Special cases: * tanhl(NaN) is NaN; * only tanhl(0)=0 is exact for finite argument. */ static const long double one=1.0L, two=2.0L, tiny = 1.0e-4900L; long double tanhl(long double x) { long double t,z; int32_t se; u_int32_t jj0,jj1,ix; /* High word of |x|. */ GET_LDOUBLE_WORDS(se,jj0,jj1,x); ix = se&0x7fff; /* x is INF or NaN */ if(ix==0x7fff) { /* for NaN it's not important which branch: tanhl(NaN) = NaN */ if (se&0x8000) return one/x-one; /* tanhl(-inf)= -1; */ else return one/x+one; /* tanhl(+inf)=+1 */ } /* |x| < 23 */ if (ix < 0x4003 || (ix == 0x4003 && jj0 < 0xb8000000u)) {/* |x|<23 */ if ((ix|jj0|jj1) == 0) return x; /* x == +- 0 */ if (ix<0x3fc8) /* |x|<2**-55 */ return x*(one+tiny); /* tanh(small) = small */ if (ix>=0x3fff) { /* |x|>=1 */ t = expm1l(two*fabsl(x)); z = one - two/(t+two); } else { t = expm1l(-two*fabsl(x)); z= -t/(t+two); } /* |x| > 23, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (se&0x8000)? -z: z; }