/* @(#)s_lrint.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* FUNCTION <>, <>, <>, <>---round to integer INDEX lrint INDEX lrintf INDEX llrint INDEX llrintf SYNOPSIS #include long int lrint(double <[x]>); long int lrintf(float <[x]>); long long int llrint(double <[x]>); long long int llrintf(float <[x]>); DESCRIPTION The <> and <> functions round their argument to the nearest integer value, using the current rounding direction. If the rounded value is outside the range of the return type, the numeric result is unspecified. A range error may occur if the magnitude of <[x]> is too large. The "inexact" floating-point exception is raised in implementations that support it when the result differs in value from the argument (i.e., when a fraction actually has been truncated). RETURNS <[x]> rounded to an integral value, using the current rounding direction. SEEALSO <> PORTABILITY ANSI C, POSIX */ /* * lrint(x) * Return x rounded to integral value according to the prevailing * rounding mode. * Method: * Using floating addition. * Exception: * Inexact flag raised if x not equal to lrint(x). */ #include "fdlibm.h" #include #ifdef _NEED_FLOAT64 static const __float64 /* Adding a double, x, to 2^52 will cause the result to be rounded based on the fractional part of x, according to the implementation's current rounding mode. 2^52 is the smallest double that can be represented using all 52 significant digits. */ TWO52[2]={ _F_64(4.50359962737049600000e+15), /* 0x43300000, 0x00000000 */ _F_64(-4.50359962737049600000e+15), /* 0xC3300000, 0x00000000 */ }; long int lrint64(__float64 x) { __int32_t i0,j0,sx; __uint32_t i1; __float64 t; volatile __float64 w; long int result; EXTRACT_WORDS(i0,i1,x); /* Extract sign bit. */ sx = (i0>>31)&1; /* Extract exponent field. */ j0 = ((i0 & 0x7ff00000) >> 20) - 1023; /* j0 in [-1023,1024] */ if(j0 < 20) { /* j0 in [-1023,19] */ /* shift amt in [0,19] */ w = TWO52[sx] + x; t = w - TWO52[sx]; GET_HIGH_WORD(i0, t); /* After round: j0 in [0,20] */ j0 = ((i0 & 0x7ff00000) >> 20) - 1023; i0 &= 0x000fffff; i0 |= 0x00100000; /* shift amt in [20,0] */ if (j0 < 0) result = 0; else result = i0 >> (20 - j0); } else if (j0 < (int)(8 * sizeof (long int)) - 1) { /* 32bit return: j0 in [20,30] */ /* 64bit return: j0 in [20,62] */ if (j0 >= 52) /* 64bit return: j0 in [52,62] */ /* 64bit return: left shift amt in [32,42] */ result = ((long int) ((i0 & 0x000fffff) | 0x00100000) << (j0 - 20)) | /* 64bit return: right shift amt in [0,10] */ ((long int) i1 << (j0 - 52)); else { if (sizeof (long) == 4 && x > LONG_MAX) { t = nearbyint(x); if (t == LONG_MAX) __math_set_inexact(); else __math_set_invalid(); } else { /* 32bit return: j0 in [20,30] */ /* 64bit return: j0 in [20,51] */ w = TWO52[sx] + x; t = w - TWO52[sx]; } EXTRACT_WORDS (i0, i1, t); j0 = ((i0 & 0x7ff00000) >> 20) - 1023; i0 &= 0x000fffff; i0 |= 0x00100000; /* After round: * 32bit return: j0 in [20,31]; * 64bit return: j0 in [20,52] */ /* 32bit return: left shift amt in [0,11] */ /* 64bit return: left shift amt in [0,32] */ /* ***32bit return: right shift amt in [32,21] */ /* ***64bit return: right shift amt in [32,0] */ result = ((long int) i0 << (j0 - 20)) | SAFE_RIGHT_SHIFT (i1, (52 - j0)); } } else { if (sizeof (long) == 4 && (__float64) LONG_MIN - _F_64(1.0) < x && x < (__float64) LONG_MIN) { if (nearbyint(x) == LONG_MIN) __math_set_inexact(); else __math_set_invalid(); return LONG_MIN; } else if (x != LONG_MIN) { __math_set_invalid(); return sx ? LONG_MIN : LONG_MAX; } return (long int) x; } return sx ? -result : result; } _MATH_ALIAS_j_d(lrint) #endif /* _NEED_FLOAT64 */