// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #ifndef RYU_D2S_INTRINSICS_H #define RYU_D2S_INTRINSICS_H #include // Defines RYU_32_BIT_PLATFORM if applicable. #include "common.h" // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined. // Let's do the same for now. #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) #define HAS_UINT128 #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) #define HAS_64_BIT_INTRINSICS #endif #if defined(HAS_UINT128) typedef __uint128_t uint128_t; #endif #if defined(HAS_64_BIT_INTRINSICS) #include static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) { return _umul128(a, b, productHi); } static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) { // For the __shiftright128 intrinsic, the shift value is always // modulo 64. // In the current implementation of the double-precision version // of Ryu, the shift value is always < 64. (In the case // RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58]. // Otherwise in the range [2, 59].) // However, this function is now also called by s2d, which requires supporting // the larger shift range (TODO: what is the actual range?). // Check this here in case a future change requires larger shift // values. In this case this function needs to be adjusted. assert(dist < 64); return __shiftright128(lo, hi, (unsigned char) dist); } #else // defined(HAS_64_BIT_INTRINSICS) uint64_t __umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi); #define umul128(a,b,hi) __umul128(a,b,hi) uint64_t __shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist); #define shiftright128(lo,hi,dist) __shiftright128(lo,hi,dist) #endif // defined(HAS_64_BIT_INTRINSICS) #if defined(RYU_32_BIT_PLATFORM) // Returns the high 64 bits of the 128-bit product of a and b. static inline uint64_t umulh(const uint64_t a, const uint64_t b) { // Reuse the umul128 implementation. // Optimizers will likely eliminate the instructions used to compute the // low part of the product. uint64_t hi; umul128(a, b, &hi); return hi; } // On 32-bit platforms, compilers typically generate calls to library // functions for 64-bit divisions, even if the divisor is a constant. // // E.g.: // https://bugs.llvm.org/show_bug.cgi?id=37932 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443 // // The functions here perform division-by-constant using multiplications // in the same way as 64-bit compilers would do. // // NB: // The multipliers and shift values are the ones generated by clang x64 // for expressions like x/5, x/10, etc. static inline uint64_t div5(const uint64_t x) { return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2; } static inline uint64_t div10(const uint64_t x) { return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3; } static inline uint64_t div100(const uint64_t x) { return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2; } static inline uint64_t div1e8(const uint64_t x) { return umulh(x, 0xABCC77118461CEFDu) >> 26; } static inline uint64_t div1e9(const uint64_t x) { return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11; } static inline uint32_t mod1e9(const uint64_t x) { // Avoid 64-bit math as much as possible. // Returning (uint32_t) (x - 1000000000 * div1e9(x)) would // perform 32x64-bit multiplication and 64-bit subtraction. // x and 1000000000 * div1e9(x) are guaranteed to differ by // less than 10^9, so their highest 32 bits must be identical, // so we can truncate both sides to uint32_t before subtracting. // We can also simplify (uint32_t) (1000000000 * div1e9(x)). // We can truncate before multiplying instead of after, as multiplying // the highest 32 bits of div1e9(x) can't affect the lowest 32 bits. return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x)); } #else // defined(RYU_32_BIT_PLATFORM) static inline uint64_t div5(const uint64_t x) { return x / 5; } static inline uint64_t div10(const uint64_t x) { return x / 10; } static inline uint64_t div100(const uint64_t x) { return x / 100; } static inline uint64_t div1e8(const uint64_t x) { return x / 100000000; } static inline uint64_t div1e9(const uint64_t x) { return x / 1000000000; } static inline uint32_t mod1e9(const uint64_t x) { return (uint32_t) (x - 1000000000 * div1e9(x)); } #endif // defined(RYU_32_BIT_PLATFORM) uint32_t __pow5Factor(uint64_t value); #define pow5Factor(v) __pow5Factor(v) // Returns true if value is divisible by 5^p. static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) { // I tried a case distinction on p, but there was no performance difference. return pow5Factor(value) >= p; } // Returns true if value is divisible by 2^p. static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) { assert(value != 0); assert(p < 64); // __builtin_ctzll doesn't appear to be faster here. return (value & ((1ull << p) - 1)) == 0; } // We need a 64x128-bit multiplication and a subsequent 128-bit shift. // Multiplication: // The 64-bit factor is variable and passed in, the 128-bit factor comes // from a lookup table. We know that the 64-bit factor only has 55 // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit // factor only has 124 significant bits (i.e., the 4 topmost bits are // zeros). // Shift: // In principle, the multiplication result requires 55 + 124 = 179 bits to // represent. However, we then shift this value to the right by j, which is // at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 // bits. This means that we only need the topmost 64 significant bits of // the 64x128-bit multiplication. // // There are several ways to do this: // 1. Best case: the compiler exposes a 128-bit type. // We perform two 64x64-bit multiplications, add the higher 64 bits of the // lower result to the higher result, and shift by j - 64 bits. // // We explicitly cast from 64-bit to 128-bit, so the compiler can tell // that these are only 64-bit inputs, and can map these to the best // possible sequence of assembly instructions. // x64 machines happen to have matching assembly instructions for // 64x64-bit multiplications and 128-bit shifts. // // 2. Second best case: the compiler exposes intrinsics for the x64 assembly // instructions mentioned in 1. // // 3. We only have 64x64 bit instructions that return the lower 64 bits of // the result, i.e., we have to use plain C. // Our inputs are less than the full width, so we have three options: // a. Ignore this fact and just implement the intrinsics manually. // b. Split both into 31-bit pieces, which guarantees no internal overflow, // but requires extra work upfront (unless we change the lookup table). // c. Split only the first factor into 31-bit pieces, which also guarantees // no internal overflow, but requires extra work since the intermediate // results are not perfectly aligned. #if defined(HAS_UINT128) // Best case: use 128-bit type. static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { const uint128_t b0 = ((uint128_t) m) * mul[0]; const uint128_t b2 = ((uint128_t) m) * mul[1]; return (uint64_t) (((b0 >> 64) + b2) >> (j - 64)); } static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j, uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { // m <<= 2; // uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 // uint128_t b2 = ((uint128_t) m) * mul[1]; // 64 // // uint128_t hi = (b0 >> 64) + b2; // uint128_t lo = b0 & 0xffffffffffffffffull; // uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0]; // uint128_t vpLo = lo + (factor << 1); // *vp = (uint64_t) ((hi + (vpLo >> 64)) >> (j - 64)); // uint128_t vmLo = lo - (factor << mmShift); // *vm = (uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64)); // return (uint64_t) (hi >> (j - 64)); *vp = mulShift64(4 * m + 2, mul, j); *vm = mulShift64(4 * m - 1 - mmShift, mul, j); return mulShift64(4 * m, mul, j); } #elif defined(HAS_64_BIT_INTRINSICS) static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { // m is maximum 55 bits uint64_t high1; // 128 const uint64_t low1 = umul128(m, mul[1], &high1); // 64 uint64_t high0; // 64 umul128(m, mul[0], &high0); // 0 const uint64_t sum = high0 + low1; if (sum < high0) { ++high1; // overflow into high1 } return shiftright128(sum, high1, j - 64); } static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j, uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { *vp = mulShift64(4 * m + 2, mul, j); *vm = mulShift64(4 * m - 1 - mmShift, mul, j); return mulShift64(4 * m, mul, j); } #else // !defined(HAS_UINT128) && !defined(HAS_64_BIT_INTRINSICS) static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { // m is maximum 55 bits uint64_t high1; // 128 const uint64_t low1 = umul128(m, mul[1], &high1); // 64 uint64_t high0; // 64 umul128(m, mul[0], &high0); // 0 const uint64_t sum = high0 + low1; if (sum < high0) { ++high1; // overflow into high1 } return shiftright128(sum, high1, j - 64); } // This is faster if we don't have a 64x64->128-bit multiplication. static inline uint64_t mulShiftAll64(uint64_t m, const uint64_t* const mul, const int32_t j, uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { m <<= 1; // m is maximum 55 bits uint64_t tmp; const uint64_t lo = umul128(m, mul[0], &tmp); uint64_t hi; const uint64_t mid = tmp + umul128(m, mul[1], &hi); hi += mid < tmp; // overflow into hi const uint64_t lo2 = lo + mul[0]; const uint64_t mid2 = mid + mul[1] + (lo2 < lo); const uint64_t hi2 = hi + (mid2 < mid); *vp = shiftright128(mid2, hi2, (uint32_t) (j - 64 - 1)); if (mmShift == 1) { const uint64_t lo3 = lo - mul[0]; const uint64_t mid3 = mid - mul[1] - (lo3 > lo); const uint64_t hi3 = hi - (mid3 > mid); *vm = shiftright128(mid3, hi3, (uint32_t) (j - 64 - 1)); } else { const uint64_t lo3 = lo + lo; const uint64_t mid3 = mid + mid + (lo3 < lo); const uint64_t hi3 = hi + hi + (mid3 < mid); const uint64_t lo4 = lo3 - mul[0]; const uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3); const uint64_t hi4 = hi3 - (mid4 > mid3); *vm = shiftright128(mid4, hi4, (uint32_t) (j - 64)); } return shiftright128(mid, hi, (uint32_t) (j - 64 - 1)); } #endif // HAS_64_BIT_INTRINSICS #endif // RYU_D2S_INTRINSICS_H