#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import copy import unittest import command import config import copy import ipv6 import thread_cert from pktverify.consts import WIRESHARK_OVERRIDE_PREFS, ADDR_QRY_URI, ADDR_NTF_URI, NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV from pktverify.packet_verifier import PacketVerifier from pktverify.bytes import Bytes LEADER = 1 ROUTER1 = 2 DUT_ROUTER2 = 3 ROUTER3 = 4 SED1 = 5 PREFIX_1 = '2001::/64' GUA_1_START = '2001' PREFIX_2 = '2002::/64' # Test Purpose and Description: # ----------------------------- # The purpose of this test case is to validate that the DUT is able to generate # Address Query and Address Notification messages properly. # The Leader is configured as a Border Router with DHCPv6 server for prefixes # 2001:: & 2002:: # # Test Topology: # ------------- # Router_1 - Leader # / \ # Router_3 Router_2(DUT) # | # SED # # DUT Types: # ---------- # Router class Cert_5_3_09_AddressQuery(thread_cert.TestCase): USE_MESSAGE_FACTORY = False TOPOLOGY = { LEADER: { 'name': 'LEADER', 'mode': 'rdn', 'allowlist': [ROUTER1, DUT_ROUTER2, ROUTER3] }, ROUTER1: { 'name': 'ROUTER_1', 'mode': 'rdn', 'allowlist': [LEADER] }, DUT_ROUTER2: { 'name': 'ROUTER_2', 'mode': 'rdn', 'allowlist': [LEADER, SED1] }, ROUTER3: { 'name': 'ROUTER_3', 'mode': 'rdn', 'allowlist': [LEADER] }, SED1: { 'name': 'SED', 'is_mtd': True, 'mode': '-', 'timeout': config.DEFAULT_CHILD_TIMEOUT, 'allowlist': [DUT_ROUTER2] }, } # override wireshark preferences with case needed parameters CASE_WIRESHARK_PREFS = copy.deepcopy(WIRESHARK_OVERRIDE_PREFS) CASE_WIRESHARK_PREFS['6lowpan.context1'] = PREFIX_1 CASE_WIRESHARK_PREFS['6lowpan.context2'] = PREFIX_2 def test(self): # 1 & 2 ALL: Build and verify the topology self.nodes[LEADER].start() self.simulator.go(config.LEADER_STARTUP_DELAY) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') # Configure the LEADER to be a DHCPv6 Border Router for prefixes self.nodes[LEADER].add_prefix(PREFIX_1, 'pdros') self.nodes[LEADER].add_prefix(PREFIX_2, 'pdro') self.nodes[LEADER].register_netdata() self.nodes[ROUTER1].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.nodes[DUT_ROUTER2].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router') self.nodes[ROUTER3].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER3].get_state(), 'router') self.nodes[SED1].start() self.simulator.go(5) self.assertEqual(self.nodes[SED1].get_state(), 'child') self.collect_rlocs() self.collect_rloc16s() self.collect_ipaddrs() # 3 SED1: The SED1 sends an ICMPv6 Echo Request to ROUTER3 using GUA # PREFIX_1 address router3_addr = self.nodes[ROUTER3].get_addr(PREFIX_1) self.assertTrue(router3_addr is not None) self.assertTrue(self.nodes[SED1].ping(router3_addr)) # 4 ROUTER1: ROUTER1 sends an ICMPv6 Echo Request to the SED1 using GUA # PREFIX_1 address sed1_addr = self.nodes[SED1].get_addr(PREFIX_1) self.assertTrue(sed1_addr is not None) self.assertTrue(self.nodes[ROUTER1].ping(sed1_addr)) self.simulator.go(1) # 5 SED1: SED1 sends an ICMPv6 Echo Request to the ROUTER3 using GUA # PREFIX_1 address self.assertTrue(self.nodes[SED1].ping(router3_addr)) self.simulator.go(1) # 6 DUT_ROUTER2: Power off ROUTER3 and wait 580s to allow LEADER to # expire its Router ID self.nodes[ROUTER3].stop() self.simulator.go(580) # The SED1 sends an ICMPv6 Echo Request to ROUTER3 GUA PREFIX_1 address self.assertFalse(self.nodes[SED1].ping(router3_addr)) self.simulator.go(1) # 7 SED1: Power off SED1 and wait to allow DUT_ROUTER2 to timeout the # child self.nodes[SED1].stop() self.simulator.go(3) self.simulator.go(config.DEFAULT_CHILD_TIMEOUT) # ROUTER1 sends two ICMPv6 Echo Requests to SED1 GUA PREFIX_1 address self.assertFalse(self.nodes[ROUTER1].ping(sed1_addr)) self.assertFalse(self.nodes[ROUTER1].ping(sed1_addr)) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] ROUTER_1 = pv.vars['ROUTER_1'] ROUTER_1_RLOC = pv.vars['ROUTER_1_RLOC'] ROUTER_2 = pv.vars['ROUTER_2'] ROUTER_2_RLOC = pv.vars['ROUTER_2_RLOC'] ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16'] ROUTER_3 = pv.vars['ROUTER_3'] SED = pv.vars['SED'] SED_RLOC16 = pv.vars['SED_RLOC16'] MM = pv.vars['MM_PORT'] GUA1 = {} for node in ('ROUTER_1', 'ROUTER_3', 'SED'): for addr in pv.vars['%s_IPADDRS' % node]: if addr.startswith(Bytes(GUA_1_START)): GUA1[node] = addr # Step 1: Build the topology as described for i in range(1, 4): pv.verify_attached('ROUTER_%d' % i, 'LEADER') pv.verify_attached('SED', 'ROUTER_2', 'MTD') # Step 2: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001:: # address # The DUT MUST generate an Address Query Request on SED’s behalf # to find each node’s RLOC. # The Address Query Request MUST be sent to the Realm-Local # All-Routers address (FF03::2) # CoAP URI-Path # - NON POST coap:// # CoAP Payload # - Target EID TLV # The DUT MUST receive and process the incoming Address Query # Response and forward the ICMPv6 Echo Reply packet to SED _pkt = pkts.filter_ping_request().\ filter_wpan_src64(SED).\ filter_ipv6_dst(GUA1['ROUTER_3']).\ must_next() pkts.filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_3']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_3).\ filter_ipv6_dst(GUA1['SED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_2).\ filter_wpan_dst16(SED_RLOC16).\ must_next() # Step 3: Router_1 sends an ICMPv6 Echo Request to SED using GUA 2001:: # address # The DUT MUST respond to the Address Query Request with a properly # formatted Address Notification Message: # CoAP URI-Path # - CON POST coap://[
]:MM/a/an # CoAP Payload # - ML-EID TLV # - RLOC16 TLV # - Target EID TLV # The IPv6 Source address MUST be the RLOC of the originator # The IPv6 Destination address MUST be the RLOC of the destination pkts.filter_wpan_src64(ROUTER_1).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['SED']).\ must_next() pkts.filter_ipv6_src_dst(ROUTER_2_RLOC, ROUTER_1_RLOC).\ filter_coap_request(ADDR_NTF_URI, port=MM).\ filter(lambda p: { NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV } <= set(p.coap.tlv.type) and\ p.thread_address.tlv.target_eid == GUA1['SED'] and\ p.thread_address.tlv.rloc16 == ROUTER_2_RLOC16 ).\ must_next() _pkt = pkts.filter_ping_request().\ filter_wpan_src64(ROUTER_1).\ filter_ipv6_dst(GUA1['SED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(SED).\ filter_ipv6_dst(GUA1['ROUTER_1']).\ must_next() # Step 5: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001:: # address # The DUT MUST not send an Address Query as Router_3 address should # be cached. # The DUT MUST forward the ICMPv6 Echo Reply to SED _pkt = pkts.filter_ping_request().\ filter_wpan_src64(SED).\ filter_ipv6_dst(GUA1['ROUTER_3']).\ must_next() lstart = pkts.index pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_3).\ filter_ipv6_dst(GUA1['SED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_2).\ filter_wpan_dst16(SED_RLOC16).\ must_next() lend = pkts.index pkts.range(lstart, lend).filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ must_not_next() # Step 6: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001:: # address # The DUT MUST update its address cache and remove all entries # based on Router_3’s Router ID. # The DUT MUST send an Address Query to discover Router_3’s RLOC address. pkts.filter_ping_request().\ filter_wpan_src64(SED).\ filter_ipv6_dst(GUA1['ROUTER_3']).\ must_next() pkts.filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_3']).\ must_next() # Step 7: Router_1 sends two ICMPv6 Echo Requests to SED using GUA 2001:: # address # The DUT MUST NOT respond with an Address Notification message pkts.filter_wpan_src64(ROUTER_2).\ filter_ipv6_dst(ROUTER_1_RLOC).\ filter_coap_request(ADDR_NTF_URI, port=MM).\ must_not_next() pkts.filter_ping_request().\ filter_wpan_src64(ROUTER_1).\ filter_ipv6_dst(GUA1['SED']).\ must_next() if __name__ == '__main__': unittest.main()