/* * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2019 JUUL Labs * Copyright (c) 2025 Nordic Semiconductor ASA * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "bootutil/bootutil.h" #include "bootutil_priv.h" #include "swap_priv.h" #include "bootutil/bootutil_log.h" #include "mcuboot_config/mcuboot_config.h" BOOT_LOG_MODULE_DECLARE(mcuboot); #ifdef MCUBOOT_SWAP_USING_OFFSET #if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) /* * FIXME: this might have to be updated for threaded sim */ int boot_status_fails = 0; #define BOOT_STATUS_ASSERT(x) \ do { \ if (!(x)) { \ boot_status_fails++; \ } \ } while (0) #else #define BOOT_STATUS_ASSERT(x) ASSERT(x) #endif #if defined(MCUBOOT_ENC_IMAGES) #define BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off) \ boot_copy_region(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off) #else #define BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off) \ boot_copy_region(state, fap_pri, fap_sec, pri_off, sec_off, sz) #endif uint32_t find_last_idx(struct boot_loader_state *state, uint32_t swap_size) { uint32_t sector_sz; uint32_t sz; uint32_t last_idx; sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); sz = 0; last_idx = 0; while (1) { sz += sector_sz; last_idx++; if (sz >= swap_size) { break; } } return last_idx; } int boot_read_image_header(struct boot_loader_state *state, int slot, struct image_header *out_hdr, struct boot_status *bs) { const struct flash_area *fap; uint32_t off = 0; uint32_t sz; uint32_t last_idx; uint32_t swap_size; int area_id; int rc; bool check_other_sector = true; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif if (bs == NULL) { area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); if (slot == BOOT_SECONDARY_SLOT && boot_swap_type_multi(BOOT_CURR_IMG(state)) != BOOT_SWAP_TYPE_REVERT) { off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0); } } else { if (!boot_status_is_reset(bs)) { check_other_sector = false; boot_find_status(BOOT_CURR_IMG(state), &fap); if (fap == NULL || boot_read_swap_size(fap, &swap_size)) { rc = BOOT_EFLASH; goto done; } flash_area_close(fap); last_idx = find_last_idx(state, swap_size); sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); /* * Find the correct offset or slot where the image header is expected to * be found for the steps where it is moved or swapped. */ if (bs->swap_type == BOOT_SWAP_TYPE_REVERT || boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) { if (slot == 0) { if (((bs->idx - BOOT_STATUS_IDX_0) > last_idx || ((bs->idx - BOOT_STATUS_IDX_0) == last_idx && bs->state == BOOT_STATUS_STATE_1))) { slot = 1; off = sz; } else { slot = 0; off = 0; } } else if (slot == 1) { if ((bs->idx - BOOT_STATUS_IDX_0) > last_idx || ((bs->idx - BOOT_STATUS_IDX_0) == last_idx && bs->state == BOOT_STATUS_STATE_2)) { slot = 0; off = 0; } else { slot = 1; off = 0; } } } else { if (slot == 0) { if ((bs->idx > BOOT_STATUS_IDX_0 || (bs->idx == BOOT_STATUS_IDX_0 && bs->state == BOOT_STATUS_STATE_1)) && bs->idx <= last_idx) { slot = 1; off = 0; } else { slot = 0; off = 0; } } else if (slot == 1) { if (bs->idx > BOOT_STATUS_IDX_0) { slot = 0; off = 0; } else { slot = 1; off = sz; } } } area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); } else { area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); if (bs->swap_type == BOOT_SWAP_TYPE_REVERT || boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) { off = 0; } else if (slot == BOOT_SECONDARY_SLOT) { off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0); } } } rc = flash_area_open(area_id, &fap); if (rc != 0) { rc = BOOT_EFLASH; goto done; } rc = flash_area_read(fap, off, out_hdr, sizeof *out_hdr); if (rc != 0) { rc = BOOT_EFLASH; goto done; } if (check_other_sector == true && out_hdr->ih_magic != IMAGE_MAGIC && slot == BOOT_SECONDARY_SLOT) { if (boot_swap_type_multi(BOOT_CURR_IMG(state)) != BOOT_SWAP_TYPE_REVERT) { off = 0; } else { off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0); } rc = flash_area_read(fap, off, out_hdr, sizeof(*out_hdr)); if (rc != 0) { rc = BOOT_EFLASH; goto done; } } #if defined(MCUBOOT_BOOTSTRAP) if (out_hdr->ih_magic == IMAGE_MAGIC && (bs != NULL || state->bootstrap_secondary_offset_set[ BOOT_CURR_IMG(state)] == false) && slot == BOOT_SECONDARY_SLOT) { state->bootstrap_secondary_offset_set[BOOT_CURR_IMG(state)] = true; #else if (out_hdr->ih_magic == IMAGE_MAGIC && bs != NULL && slot == BOOT_SECONDARY_SLOT) { #endif state->secondary_offset[BOOT_CURR_IMG(state)] = off; } /* We only know where the headers are located when bs is valid */ if (bs != NULL && out_hdr->ih_magic != IMAGE_MAGIC) { rc = -1; goto done; } rc = 0; done: flash_area_close(fap); return rc; } int swap_read_status_bytes(const struct flash_area *fap, struct boot_loader_state *state, struct boot_status *bs) { uint32_t off; uint8_t status; int max_entries; int found_idx; uint8_t write_sz; int rc; int last_rc; int erased_sections; int i; max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap); if (max_entries < 0) { return BOOT_EBADARGS; } erased_sections = 0; found_idx = -1; /* Skip erased sectors at the end */ last_rc = 1; write_sz = BOOT_WRITE_SZ(state); off = boot_status_off(fap); for (i = max_entries; i > 0; i--) { rc = flash_area_read(fap, off + (i - 1) * write_sz, &status, 1); if (rc < 0) { return BOOT_EFLASH; } if (bootutil_buffer_is_erased(fap, &status, 1)) { if (rc != last_rc) { erased_sections++; } } else { if (found_idx == -1) { found_idx = i; } } last_rc = rc; } if (erased_sections > 1) { /* This means there was an error writing status on the last swap. Tell user and move on * to validation! */ #if !defined(__BOOTSIM__) BOOT_LOG_ERR("Detected inconsistent status!"); #endif #if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) /* With validation of the primary slot disabled, there is no way to be sure the swapped * primary slot is OK, so abort! */ assert(0); #endif } if (found_idx == -1) { /* no swap status found; nothing to do */ } else { bs->op = BOOT_STATUS_OP_SWAP; bs->idx = (found_idx / BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_IDX_0; bs->state = (found_idx % BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_STATE_0; } return 0; } uint32_t boot_status_internal_off(const struct boot_status *bs, int elem_sz) { uint32_t off; int idx_sz; idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT; off = (bs->idx - BOOT_STATUS_IDX_0) * idx_sz + (bs->state - BOOT_STATUS_STATE_0) * elem_sz; return off; } static int app_max_sectors(struct boot_loader_state *state) { uint32_t sz = 0; uint32_t sector_sz; uint32_t trailer_sz; uint32_t first_trailer_idx; sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state)); first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT); while (1) { sz += sector_sz; if (sz >= trailer_sz) { break; } first_trailer_idx--; } return first_trailer_idx; } int boot_slots_compatible(struct boot_loader_state *state) { size_t num_sectors_pri; size_t num_sectors_sec; size_t sector_sz_pri = 0; size_t sector_sz_sec = 0; size_t i; size_t num_usable_sectors_pri; num_sectors_pri = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT); num_sectors_sec = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT); num_usable_sectors_pri = app_max_sectors(state); if ((num_sectors_pri != num_sectors_sec) && ((num_sectors_pri + 1) != num_sectors_sec) && ((num_usable_sectors_pri + 1) != (num_sectors_sec))) { BOOT_LOG_WRN("Cannot upgrade: not a compatible amount of sectors"); BOOT_LOG_DBG("slot0 sectors: %d, slot1 sectors: %d, usable slot0 sectors: %d", (int)num_sectors_pri, (int)num_sectors_sec, (int)(num_usable_sectors_pri - 1)); return 0; } else if (num_sectors_pri > BOOT_MAX_IMG_SECTORS) { BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed"); return 0; } if ((num_usable_sectors_pri + 1) != num_sectors_sec) { BOOT_LOG_DBG("Non-optimal sector distribution, slot0 has %d usable sectors " "but slot1 has %d usable sectors", (int)(num_usable_sectors_pri), ((int)num_sectors_sec - 1)); } for (i = 0; i < num_sectors_pri; i++) { sector_sz_pri = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i); sector_sz_sec = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, i); if (sector_sz_pri != sector_sz_sec) { BOOT_LOG_WRN("Cannot upgrade: not same sector layout"); return 0; } } #ifdef MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE if (sector_sz_pri != MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE) { BOOT_LOG_DBG("Discrepancy, slot0 expected erase size: %d, actual: %d", MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE, sector_sz_pri); } #endif #ifdef MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE if (sector_sz_sec != MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE) { BOOT_LOG_DBG("Discrepancy, slot1 expected erase size: %d, actual: %d", MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE, sector_sz_sec); } #endif #if defined(MCUBOOT_SLOT0_EXPECTED_WRITE_SIZE) || defined(MCUBOOT_SLOT1_EXPECTED_WRITE_SIZE) if (!swap_write_block_size_check(state)) { BOOT_LOG_WRN("Cannot upgrade: slot write sizes are not compatible"); return 0; } #endif if (num_sectors_pri > num_sectors_sec) { if (sector_sz_pri != boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i)) { BOOT_LOG_WRN("Cannot upgrade: not same sector layout"); return 0; } } return 1; } #define BOOT_LOG_SWAP_STATE(area, state) \ BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, " \ "image_ok=0x%x", \ (area), \ ((state)->magic == BOOT_MAGIC_GOOD ? "good" : \ (state)->magic == BOOT_MAGIC_UNSET ? "unset" : \ "bad"), \ (state)->swap_type, \ (state)->copy_done, \ (state)->image_ok) int swap_status_source(struct boot_loader_state *state) { struct boot_swap_state state_primary_slot; struct boot_swap_state state_secondary_slot; int rc; uint8_t source; uint8_t image_index; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif image_index = BOOT_CURR_IMG(state); rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index), &state_primary_slot); assert(rc == 0); BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot); rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index), &state_secondary_slot); assert(rc == 0); BOOT_LOG_SWAP_STATE("Secondary image", &state_secondary_slot); if (state_primary_slot.magic == BOOT_MAGIC_GOOD && state_primary_slot.copy_done == BOOT_FLAG_UNSET && state_secondary_slot.magic != BOOT_MAGIC_GOOD) { source = BOOT_STATUS_SOURCE_PRIMARY_SLOT; BOOT_LOG_INF("Boot source: primary slot"); return source; } BOOT_LOG_INF("Boot source: none"); return BOOT_STATUS_SOURCE_NONE; } static void boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_pri, const struct flash_area *fap_sec, bool skip_primary, bool skip_secondary) { uint32_t pri_off; uint32_t sec_off; uint32_t sec_up_off; int rc = 0; pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx); sec_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, (idx + 1)); if (bs->state == BOOT_STATUS_STATE_0) { if (skip_primary == true) { BOOT_LOG_DBG("Skipping erase of secondary 0x%x and copy from primary 0x%x", sec_off, pri_off); } else { /* Copy from slot 0 X to slot 1 X */ BOOT_LOG_DBG("Erasing secondary 0x%x of 0x%x", sec_off, sz); rc = boot_erase_region(fap_sec, sec_off, sz); assert(rc == 0); BOOT_LOG_DBG("Copying primary 0x%x -> secondary 0x%x of 0x%x", pri_off, sec_off, sz); rc = BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, 0); assert(rc == 0); } rc = boot_write_status(state, bs); bs->state = BOOT_STATUS_STATE_1; BOOT_STATUS_ASSERT(rc == 0); } if (bs->state == BOOT_STATUS_STATE_1) { if (skip_secondary == true) { BOOT_LOG_DBG("Skipping erase of primary 0x%x and copy from secondary 0x%x", pri_off, sec_up_off); } else { /* Erase slot 0 X */ BOOT_LOG_DBG("Erasing primary 0x%x of 0x%x", pri_off, sz); rc = boot_erase_region(fap_pri, pri_off, sz); assert(rc == 0); /* Copy from slot 1 (X + 1) to slot 0 X */ BOOT_LOG_DBG("Copying secondary 0x%x -> primary 0x%x of 0x%x", sec_up_off, pri_off, sz); rc = BOOT_COPY_REGION(state, fap_sec, fap_pri, sec_up_off, pri_off, sz, 0); assert(rc == 0); } rc = boot_write_status(state, bs); bs->idx++; bs->state = BOOT_STATUS_STATE_0; BOOT_STATUS_ASSERT(rc == 0); } } static void boot_swap_sectors_revert(int idx, uint32_t sz, struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_pri, const struct flash_area *fap_sec, uint32_t sector_sz, bool skip_primary, bool skip_secondary) { uint32_t pri_off; uint32_t sec_off; uint32_t sec_up_off; int rc = 0; #if !defined(MCUBOOT_ENC_IMAGES) (void)sector_sz; #endif pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx + 1); sec_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); if (bs->state == BOOT_STATUS_STATE_0) { if (skip_primary == true) { BOOT_LOG_DBG("Skipping erase of secondary 0x%x and copy from primary 0x%x", sec_off, pri_off); } else { /* Copy from slot 0 X to slot 1 X */ BOOT_LOG_DBG("Erasing secondary 0x%x of 0x%x", sec_off, sz); rc = boot_erase_region(fap_sec, sec_off, sz); assert(rc == 0); BOOT_LOG_DBG("Copying primary 0x%x -> secondary 0x%x of 0x%x", pri_off, sec_off, sz); rc = BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_sz); assert(rc == 0); } rc = boot_write_status(state, bs); bs->state = BOOT_STATUS_STATE_1; BOOT_STATUS_ASSERT(rc == 0); } if (bs->state == BOOT_STATUS_STATE_1) { if (skip_secondary == true) { BOOT_LOG_DBG("Skipping erase of primary 0x%x and copy from secondary 0x%x", pri_off, sec_up_off); } else { /* Erase slot 0 X */ BOOT_LOG_DBG("Erasing primary 0x%x of 0x%x", pri_off, sz); rc = boot_erase_region(fap_pri, pri_off, sz); assert(rc == 0); /* Copy from slot 1 (X + 1) to slot 0 X */ BOOT_LOG_DBG("Copying secondary 0x%x -> primary 0x%x of 0x%x", sec_up_off, pri_off, sz); rc = BOOT_COPY_REGION(state, fap_sec, fap_pri, sec_up_off, pri_off, sz, 0); assert(rc == 0); } rc = boot_write_status(state, bs); bs->idx++; bs->state = BOOT_STATUS_STATE_0; BOOT_STATUS_ASSERT(rc == 0); } } /* * When starting a revert the swap status exists in the primary slot, and * the status in the secondary slot is erased. To start the swap, the status * area in the primary slot must be re-initialized; if during the small * window of time between re-initializing it and writing the first metadata * a reset happens, the swap process is broken and cannot be resumed. * * This function handles the issue by making the revert look like a permanent * upgrade (by initializing the secondary slot). */ void fixup_revert(const struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_sec) { struct boot_swap_state swap_state; int rc; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif /* No fixup required */ if (bs->swap_type != BOOT_SWAP_TYPE_REVERT || bs->idx != BOOT_STATUS_IDX_0) { return; } rc = boot_read_swap_state(fap_sec, &swap_state); assert(rc == 0); BOOT_LOG_SWAP_STATE("Secondary image", &swap_state); if (swap_state.magic == BOOT_MAGIC_UNSET) { rc = swap_erase_trailer_sectors(state, fap_sec); assert(rc == 0); rc = boot_write_copy_done(fap_sec); assert(rc == 0); rc = swap_status_init(state, fap_sec, bs); assert(rc == 0); } } void swap_run(struct boot_loader_state *state, struct boot_status *bs, uint32_t copy_size) { uint32_t sz; uint32_t sector_sz; uint32_t idx; uint32_t trailer_sz; uint32_t first_trailer_idx; uint32_t last_idx; uint32_t used_sectors_pri; uint32_t used_sectors_sec; uint8_t image_index; const struct flash_area *fap_pri; const struct flash_area *fap_sec; int rc; BOOT_LOG_INF("Starting swap using offset algorithm."); last_idx = find_last_idx(state, copy_size); sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); /* When starting a new swap upgrade, check that there is enough space */ if (boot_status_is_reset(bs)) { sz = 0; trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state)); first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1; while (1) { sz += sector_sz; if (sz >= trailer_sz) { break; } first_trailer_idx--; } if (last_idx >= first_trailer_idx) { BOOT_LOG_WRN("Not enough free space to run swap upgrade"); BOOT_LOG_WRN("required %d bytes but only %d are available", (last_idx + 1) * sector_sz, first_trailer_idx * sector_sz); bs->swap_type = BOOT_SWAP_TYPE_NONE; return; } } image_index = BOOT_CURR_IMG(state); rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), &fap_pri); assert (rc == 0); rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), &fap_sec); assert (rc == 0); fixup_revert(state, bs, fap_sec); /* Init areas for storing swap status */ if (bs->idx == BOOT_STATUS_IDX_0) { int rc; if (bs->source != BOOT_STATUS_SOURCE_PRIMARY_SLOT) { rc = swap_erase_trailer_sectors(state, fap_pri); assert(rc == 0); rc = swap_status_init(state, fap_pri, bs); assert(rc == 0); } rc = swap_erase_trailer_sectors(state, fap_sec); assert(rc == 0); } bs->op = BOOT_STATUS_OP_SWAP; idx = 0; used_sectors_pri = ((state->imgs[BOOT_CURR_IMG(state)][BOOT_PRIMARY_SLOT].hdr.ih_hdr_size + state->imgs[BOOT_CURR_IMG(state)][BOOT_PRIMARY_SLOT].hdr.ih_protect_tlv_size + state->imgs[BOOT_CURR_IMG(state)][BOOT_PRIMARY_SLOT].hdr.ih_img_size) + sector_sz - 1) / sector_sz; used_sectors_sec = ((state->imgs[BOOT_CURR_IMG(state)][BOOT_SECONDARY_SLOT].hdr.ih_hdr_size + state->imgs[BOOT_CURR_IMG(state)][BOOT_SECONDARY_SLOT].hdr.ih_protect_tlv_size + state->imgs[BOOT_CURR_IMG(state)][BOOT_SECONDARY_SLOT].hdr.ih_img_size) + sector_sz - 1) / sector_sz; if (bs->swap_type == BOOT_SWAP_TYPE_REVERT || boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) { while (idx <= last_idx) { if (idx >= (bs->idx - BOOT_STATUS_IDX_0)) { uint32_t mirror_idx = last_idx - idx; boot_swap_sectors_revert(mirror_idx, sector_sz, state, bs, fap_pri, fap_sec, sector_sz, (mirror_idx > used_sectors_pri ? true : false), (mirror_idx > used_sectors_sec ? true : false)); } idx++; } /* Erase the first sector in the secondary slot before completing revert so that the * status is not wrongly used as a valid header. Also erase the trailer in the secondary * to allow for a future update to be loaded */ rc = boot_erase_region(fap_sec, boot_img_sector_off(state, BOOT_SECONDARY_SLOT, 0), sector_sz); assert(rc == 0); rc = swap_erase_trailer_sectors(state, fap_sec); assert(rc == 0); } else { while (idx <= last_idx) { if (idx >= (bs->idx - BOOT_STATUS_IDX_0)) { boot_swap_sectors(idx, sector_sz, state, bs, fap_pri, fap_sec, (idx > used_sectors_pri ? true : false), (idx > used_sectors_sec ? true : false)); } idx++; } } flash_area_close(fap_pri); flash_area_close(fap_sec); } int app_max_size(struct boot_loader_state *state) { uint32_t sector_sz_primary; uint32_t sector_sz_secondary; uint32_t sz_primary; uint32_t sz_secondary; sector_sz_primary = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); sector_sz_secondary = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0); /* Account for image flags and move sector */ sz_primary = app_max_sectors(state) * sector_sz_primary; sz_secondary = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) * sector_sz_secondary - sector_sz_primary; return (sz_primary <= sz_secondary ? sz_primary : sz_secondary); } /* Compute the total size of the given image. Includes the size of the TLVs. */ int boot_read_image_size(struct boot_loader_state *state, int slot, uint32_t *size) { const struct flash_area *fap; struct image_tlv_info info; uint32_t off; uint32_t secondary_slot_off = 0; uint32_t protect_tlv_size; int area_id; int rc; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); rc = flash_area_open(area_id, &fap); if (rc != 0) { rc = BOOT_EFLASH; goto done; } off = BOOT_TLV_OFF(boot_img_hdr(state, slot)); if (slot == BOOT_SECONDARY_SLOT) { /* Check in the secondary position in the upgrade slot */ secondary_slot_off = state->secondary_offset[BOOT_CURR_IMG(state)]; } if (flash_area_read(fap, (off + secondary_slot_off), &info, sizeof(info))) { rc = BOOT_EFLASH; goto done; } protect_tlv_size = boot_img_hdr(state, slot)->ih_protect_tlv_size; if (info.it_magic == IMAGE_TLV_PROT_INFO_MAGIC) { if (protect_tlv_size != info.it_tlv_tot) { rc = BOOT_EBADIMAGE; goto done; } if (flash_area_read(fap, (off + secondary_slot_off + info.it_tlv_tot), &info, sizeof(info))) { rc = BOOT_EFLASH; goto done; } } else if (protect_tlv_size != 0) { rc = BOOT_EBADIMAGE; goto done; } if (info.it_magic != IMAGE_TLV_INFO_MAGIC) { rc = BOOT_EBADIMAGE; goto done; } *size = off + protect_tlv_size + info.it_tlv_tot; rc = 0; done: flash_area_close(fap); return rc; } #endif