/* * Common source code for SSL test programs. This file is included by * both ssl_client2.c and ssl_server2.c and is intended for source * code that is textually identical in both programs, but that cannot be * compiled separately because it refers to types or macros that are * different in the two programs, or because it would have an incomplete * type. * * This file is meant to be #include'd and cannot be compiled separately. * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ void eap_tls_key_derivation(void *p_expkey, mbedtls_ssl_key_export_type secret_type, const unsigned char *secret, size_t secret_len, const unsigned char client_random[32], const unsigned char server_random[32], mbedtls_tls_prf_types tls_prf_type) { eap_tls_keys *keys = (eap_tls_keys *) p_expkey; /* We're only interested in the TLS 1.2 master secret */ if (secret_type != MBEDTLS_SSL_KEY_EXPORT_TLS12_MASTER_SECRET) { return; } if (secret_len != sizeof(keys->master_secret)) { return; } memcpy(keys->master_secret, secret, sizeof(keys->master_secret)); memcpy(keys->randbytes, client_random, 32); memcpy(keys->randbytes + 32, server_random, 32); keys->tls_prf_type = tls_prf_type; } void nss_keylog_export(void *p_expkey, mbedtls_ssl_key_export_type secret_type, const unsigned char *secret, size_t secret_len, const unsigned char client_random[32], const unsigned char server_random[32], mbedtls_tls_prf_types tls_prf_type) { char nss_keylog_line[200]; size_t const client_random_len = 32; size_t len = 0; size_t j; /* We're only interested in the TLS 1.2 master secret */ if (secret_type != MBEDTLS_SSL_KEY_EXPORT_TLS12_MASTER_SECRET) { return; } ((void) p_expkey); ((void) server_random); ((void) tls_prf_type); len += sprintf(nss_keylog_line + len, "%s", "CLIENT_RANDOM "); for (j = 0; j < client_random_len; j++) { len += sprintf(nss_keylog_line + len, "%02x", client_random[j]); } len += sprintf(nss_keylog_line + len, " "); for (j = 0; j < secret_len; j++) { len += sprintf(nss_keylog_line + len, "%02x", secret[j]); } len += sprintf(nss_keylog_line + len, "\n"); nss_keylog_line[len] = '\0'; mbedtls_printf("\n"); mbedtls_printf("---------------- NSS KEYLOG -----------------\n"); mbedtls_printf("%s", nss_keylog_line); mbedtls_printf("---------------------------------------------\n"); if (opt.nss_keylog_file != NULL) { FILE *f; if ((f = fopen(opt.nss_keylog_file, "a")) == NULL) { goto exit; } /* Ensure no stdio buffering of secrets, as such buffers cannot be * wiped. */ mbedtls_setbuf(f, NULL); if (fwrite(nss_keylog_line, 1, len, f) != len) { fclose(f); goto exit; } fclose(f); } exit: mbedtls_platform_zeroize(nss_keylog_line, sizeof(nss_keylog_line)); } #if defined(MBEDTLS_SSL_DTLS_SRTP) void dtls_srtp_key_derivation(void *p_expkey, mbedtls_ssl_key_export_type secret_type, const unsigned char *secret, size_t secret_len, const unsigned char client_random[32], const unsigned char server_random[32], mbedtls_tls_prf_types tls_prf_type) { dtls_srtp_keys *keys = (dtls_srtp_keys *) p_expkey; /* We're only interested in the TLS 1.2 master secret */ if (secret_type != MBEDTLS_SSL_KEY_EXPORT_TLS12_MASTER_SECRET) { return; } if (secret_len != sizeof(keys->master_secret)) { return; } memcpy(keys->master_secret, secret, sizeof(keys->master_secret)); memcpy(keys->randbytes, client_random, 32); memcpy(keys->randbytes + 32, server_random, 32); keys->tls_prf_type = tls_prf_type; } #endif /* MBEDTLS_SSL_DTLS_SRTP */ int ssl_check_record(mbedtls_ssl_context const *ssl, unsigned char const *buf, size_t len) { int my_ret = 0, ret_cr1, ret_cr2; unsigned char *tmp_buf; /* Record checking may modify the input buffer, * so make a copy. */ tmp_buf = mbedtls_calloc(1, len); if (tmp_buf == NULL) { return MBEDTLS_ERR_SSL_ALLOC_FAILED; } memcpy(tmp_buf, buf, len); ret_cr1 = mbedtls_ssl_check_record(ssl, tmp_buf, len); if (ret_cr1 != MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE) { /* Test-only: Make sure that mbedtls_ssl_check_record() * doesn't alter state. */ memcpy(tmp_buf, buf, len); /* Restore buffer */ ret_cr2 = mbedtls_ssl_check_record(ssl, tmp_buf, len); if (ret_cr2 != ret_cr1) { mbedtls_printf("mbedtls_ssl_check_record() returned inconsistent results.\n"); my_ret = -1; goto cleanup; } switch (ret_cr1) { case 0: break; case MBEDTLS_ERR_SSL_INVALID_RECORD: if (opt.debug_level > 1) { mbedtls_printf("mbedtls_ssl_check_record() detected invalid record.\n"); } break; case MBEDTLS_ERR_SSL_INVALID_MAC: if (opt.debug_level > 1) { mbedtls_printf("mbedtls_ssl_check_record() detected unauthentic record.\n"); } break; case MBEDTLS_ERR_SSL_UNEXPECTED_RECORD: if (opt.debug_level > 1) { mbedtls_printf("mbedtls_ssl_check_record() detected unexpected record.\n"); } break; default: mbedtls_printf("mbedtls_ssl_check_record() failed fatally with -%#04x.\n", (unsigned int) -ret_cr1); my_ret = -1; goto cleanup; } /* Regardless of the outcome, forward the record to the stack. */ } cleanup: mbedtls_free(tmp_buf); return my_ret; } int recv_cb(void *ctx, unsigned char *buf, size_t len) { io_ctx_t *io_ctx = (io_ctx_t *) ctx; size_t recv_len; int ret; if (opt.nbio == 2) { ret = delayed_recv(io_ctx->net, buf, len); } else { ret = mbedtls_net_recv(io_ctx->net, buf, len); } if (ret < 0) { return ret; } recv_len = (size_t) ret; if (opt.transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM) { /* Here's the place to do any datagram/record checking * in between receiving the packet from the underlying * transport and passing it on to the TLS stack. */ if (ssl_check_record(io_ctx->ssl, buf, recv_len) != 0) { return -1; } } return (int) recv_len; } int recv_timeout_cb(void *ctx, unsigned char *buf, size_t len, uint32_t timeout) { io_ctx_t *io_ctx = (io_ctx_t *) ctx; int ret; size_t recv_len; ret = mbedtls_net_recv_timeout(io_ctx->net, buf, len, timeout); if (ret < 0) { return ret; } recv_len = (size_t) ret; if (opt.transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM) { /* Here's the place to do any datagram/record checking * in between receiving the packet from the underlying * transport and passing it on to the TLS stack. */ if (ssl_check_record(io_ctx->ssl, buf, recv_len) != 0) { return -1; } } return (int) recv_len; } int send_cb(void *ctx, unsigned char const *buf, size_t len) { io_ctx_t *io_ctx = (io_ctx_t *) ctx; if (opt.nbio == 2) { return delayed_send(io_ctx->net, buf, len); } return mbedtls_net_send(io_ctx->net, buf, len); } #if defined(MBEDTLS_X509_CRT_PARSE_C) #if defined(MBEDTLS_PK_CAN_ECDSA_SOME) && defined(MBEDTLS_RSA_C) #if defined(MBEDTLS_SSL_PROTO_TLS1_3) /* * When GnuTLS/Openssl server is configured in TLS 1.2 mode with a certificate * declaring an RSA public key and Mbed TLS is configured in hybrid mode, if * `rsa_pss_rsae_*` algorithms are before `rsa_pkcs1_*` ones in this list then * the GnuTLS/Openssl server chooses an `rsa_pss_rsae_*` signature algorithm * for its signature in the key exchange message. As Mbed TLS 1.2 does not * support them, the handshake fails. */ #define MBEDTLS_SSL_SIG_ALG(hash) ((hash << 8) | MBEDTLS_SSL_SIG_ECDSA), \ ((hash << 8) | MBEDTLS_SSL_SIG_RSA), \ (0x800 | hash), #else #define MBEDTLS_SSL_SIG_ALG(hash) ((hash << 8) | MBEDTLS_SSL_SIG_ECDSA), \ ((hash << 8) | MBEDTLS_SSL_SIG_RSA), #endif #elif defined(MBEDTLS_PK_CAN_ECDSA_SOME) #define MBEDTLS_SSL_SIG_ALG(hash) ((hash << 8) | MBEDTLS_SSL_SIG_ECDSA), #elif defined(MBEDTLS_RSA_C) #if defined(MBEDTLS_SSL_PROTO_TLS1_3) /* See above */ #define MBEDTLS_SSL_SIG_ALG(hash) ((hash << 8) | MBEDTLS_SSL_SIG_RSA), \ (0x800 | hash), #else #define MBEDTLS_SSL_SIG_ALG(hash) ((hash << 8) | MBEDTLS_SSL_SIG_RSA), #endif #else #define MBEDTLS_SSL_SIG_ALG(hash) #endif uint16_t ssl_sig_algs_for_test[] = { #if defined(MBEDTLS_MD_CAN_SHA512) MBEDTLS_SSL_SIG_ALG(MBEDTLS_SSL_HASH_SHA512) #endif #if defined(MBEDTLS_MD_CAN_SHA384) MBEDTLS_SSL_SIG_ALG(MBEDTLS_SSL_HASH_SHA384) #endif #if defined(MBEDTLS_MD_CAN_SHA256) MBEDTLS_SSL_SIG_ALG(MBEDTLS_SSL_HASH_SHA256) #endif #if defined(MBEDTLS_MD_CAN_SHA224) MBEDTLS_SSL_SIG_ALG(MBEDTLS_SSL_HASH_SHA224) #endif #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_MD_CAN_SHA256) MBEDTLS_TLS1_3_SIG_RSA_PSS_RSAE_SHA256, #endif /* MBEDTLS_RSA_C && MBEDTLS_MD_CAN_SHA256 */ #if defined(MBEDTLS_MD_CAN_SHA1) /* Allow SHA-1 as we use it extensively in tests. */ MBEDTLS_SSL_SIG_ALG(MBEDTLS_SSL_HASH_SHA1) #endif MBEDTLS_TLS1_3_SIG_NONE }; #endif /* MBEDTLS_X509_CRT_PARSE_C */ #if defined(MBEDTLS_X509_CRT_PARSE_C) /** Functionally equivalent to mbedtls_x509_crt_verify_info, see that function * for more info. */ int x509_crt_verify_info(char *buf, size_t size, const char *prefix, uint32_t flags) { #if !defined(MBEDTLS_X509_REMOVE_INFO) return mbedtls_x509_crt_verify_info(buf, size, prefix, flags); #else /* !MBEDTLS_X509_REMOVE_INFO */ int ret; char *p = buf; size_t n = size; #define X509_CRT_ERROR_INFO(err, err_str, info) \ if ((flags & err) != 0) \ { \ ret = mbedtls_snprintf(p, n, "%s%s\n", prefix, info); \ MBEDTLS_X509_SAFE_SNPRINTF; \ flags ^= err; \ } MBEDTLS_X509_CRT_ERROR_INFO_LIST #undef X509_CRT_ERROR_INFO if (flags != 0) { ret = mbedtls_snprintf(p, n, "%sUnknown reason " "(this should not happen)\n", prefix); MBEDTLS_X509_SAFE_SNPRINTF; } return (int) (size - n); #endif /* MBEDTLS_X509_REMOVE_INFO */ } #endif /* MBEDTLS_X509_CRT_PARSE_C */ void mbedtls_print_supported_sig_algs(void) { mbedtls_printf("supported signature algorithms:\n"); mbedtls_printf("\trsa_pkcs1_sha256 "); mbedtls_printf("rsa_pkcs1_sha384 "); mbedtls_printf("rsa_pkcs1_sha512\n"); mbedtls_printf("\tecdsa_secp256r1_sha256 "); mbedtls_printf("ecdsa_secp384r1_sha384 "); mbedtls_printf("ecdsa_secp521r1_sha512\n"); mbedtls_printf("\trsa_pss_rsae_sha256 "); mbedtls_printf("rsa_pss_rsae_sha384 "); mbedtls_printf("rsa_pss_rsae_sha512\n"); mbedtls_printf("\trsa_pss_pss_sha256 "); mbedtls_printf("rsa_pss_pss_sha384 "); mbedtls_printf("rsa_pss_pss_sha512\n"); mbedtls_printf("\ted25519 "); mbedtls_printf("ed448 "); mbedtls_printf("rsa_pkcs1_sha1 "); mbedtls_printf("ecdsa_sha1\n"); mbedtls_printf("\n"); }