/** * @file lv_area.c * */ /********************* * INCLUDES *********************/ #include "../lv_conf_internal.h" #include "lv_area.h" #include "lv_math.h" /********************* * DEFINES *********************/ /********************** * TYPEDEFS **********************/ /********************** * STATIC PROTOTYPES **********************/ static bool lv_point_within_circle(const lv_area_t * area, const lv_point_t * p); /********************** * STATIC VARIABLES **********************/ /********************** * MACROS **********************/ /********************** * GLOBAL FUNCTIONS **********************/ /** * Initialize an area * @param area_p pointer to an area * @param x1 left coordinate of the area * @param y1 top coordinate of the area * @param x2 right coordinate of the area * @param y2 bottom coordinate of the area */ void lv_area_set(lv_area_t * area_p, lv_coord_t x1, lv_coord_t y1, lv_coord_t x2, lv_coord_t y2) { area_p->x1 = x1; area_p->y1 = y1; area_p->x2 = x2; area_p->y2 = y2; } /** * Set the width of an area * @param area_p pointer to an area * @param w the new width of the area (w == 1 makes x1 == x2) */ void lv_area_set_width(lv_area_t * area_p, lv_coord_t w) { area_p->x2 = area_p->x1 + w - 1; } /** * Set the height of an area * @param area_p pointer to an area * @param h the new height of the area (h == 1 makes y1 == y2) */ void lv_area_set_height(lv_area_t * area_p, lv_coord_t h) { area_p->y2 = area_p->y1 + h - 1; } /** * Set the position of an area (width and height will be kept) * @param area_p pointer to an area * @param x the new x coordinate of the area * @param y the new y coordinate of the area */ void _lv_area_set_pos(lv_area_t * area_p, lv_coord_t x, lv_coord_t y) { lv_coord_t w = lv_area_get_width(area_p); lv_coord_t h = lv_area_get_height(area_p); area_p->x1 = x; area_p->y1 = y; lv_area_set_width(area_p, w); lv_area_set_height(area_p, h); } /** * Return with area of an area (x * y) * @param area_p pointer to an area * @return size of area */ uint32_t lv_area_get_size(const lv_area_t * area_p) { uint32_t size; size = (uint32_t)(area_p->x2 - area_p->x1 + 1) * (area_p->y2 - area_p->y1 + 1); return size; } void lv_area_increase(lv_area_t * area, lv_coord_t w_extra, lv_coord_t h_extra) { area->x1 -= w_extra; area->x2 += w_extra; area->y1 -= h_extra; area->y2 += h_extra; } void lv_area_move(lv_area_t * area, lv_coord_t x_ofs, lv_coord_t y_ofs) { area->x1 += x_ofs; area->x2 += x_ofs; area->y1 += y_ofs; area->y2 += y_ofs; } /** * Get the common parts of two areas * @param res_p pointer to an area, the result will be stored here * @param a1_p pointer to the first area * @param a2_p pointer to the second area * @return false: the two area has NO common parts, res_p is invalid */ bool _lv_area_intersect(lv_area_t * res_p, const lv_area_t * a1_p, const lv_area_t * a2_p) { /*Get the smaller area from 'a1_p' and 'a2_p'*/ res_p->x1 = LV_MAX(a1_p->x1, a2_p->x1); res_p->y1 = LV_MAX(a1_p->y1, a2_p->y1); res_p->x2 = LV_MIN(a1_p->x2, a2_p->x2); res_p->y2 = LV_MIN(a1_p->y2, a2_p->y2); /*If x1 or y1 greater than x2 or y2 then the areas union is empty*/ bool union_ok = true; if((res_p->x1 > res_p->x2) || (res_p->y1 > res_p->y2)) { union_ok = false; } return union_ok; } /** * Get resulting sub areas after removing the common parts of two areas from the first area * @param res_p pointer to an array of areas with a count of 4, the resulting areas will be stored here * @param a1_p pointer to the first area * @param a2_p pointer to the second area * @return number of results or -1 if no intersect */ int8_t _lv_area_diff(lv_area_t * res_p, const lv_area_t * a1_p, const lv_area_t * a2_p) { /*Areas have no common parts*/ if(!_lv_area_is_on(a1_p, a2_p)) return -1; /*No remaining areas after removing common parts*/ if(_lv_area_is_in(a1_p, a2_p, 0)) return 0; /*Result counter*/ int8_t res_c = 0; /*Get required information*/ lv_area_t n; lv_coord_t a1_w = lv_area_get_width(a1_p) - 1; lv_coord_t a1_h = lv_area_get_height(a1_p) - 1; /*Compute top rectangle*/ lv_coord_t th = a2_p->y1 - a1_p->y1; if(th > 0) { n.x1 = a1_p->x1; n.y1 = a1_p->y1; n.x2 = a1_p->x2; n.y2 = a1_p->y1 + th; res_p[res_c++] = n; } /*Compute the bottom rectangle*/ lv_coord_t bh = a1_h - (a2_p->y2 - a1_p->y1); if(bh > 0 && a2_p->y2 < a1_p->y2) { n.x1 = a1_p->x1; n.y1 = a2_p->y2; n.x2 = a1_p->x2; n.y2 = a2_p->y2 + bh; res_p[res_c++] = n; } /*Compute side height*/ lv_coord_t y1 = a2_p->y1 > a1_p->y1 ? a2_p->y1 : a1_p->y1; lv_coord_t y2 = a2_p->y2 < a1_p->y2 ? a2_p->y2 : a1_p->y2; lv_coord_t sh = y2 - y1; /*Compute the left rectangle*/ lv_coord_t lw = a2_p->x1 - a1_p->x1; if(lw > 0 && sh > 0) { n.x1 = a1_p->x1; n.y1 = y1; n.x2 = a1_p->x1 + lw; n.y2 = y1 + sh; res_p[res_c++] = n; } /*Compute the right rectangle*/ lv_coord_t rw = a1_w - (a2_p->x2 - a1_p->x1); if(rw > 0) { n.x1 = a2_p->x2; n.y1 = y1; n.x2 = a2_p->x2 + rw; n.y2 = y1 + sh; res_p[res_c++] = n; } //Return number of results return res_c; } /** * Join two areas into a third which involves the other two * @param res_p pointer to an area, the result will be stored here * @param a1_p pointer to the first area * @param a2_p pointer to the second area */ void _lv_area_join(lv_area_t * a_res_p, const lv_area_t * a1_p, const lv_area_t * a2_p) { a_res_p->x1 = LV_MIN(a1_p->x1, a2_p->x1); a_res_p->y1 = LV_MIN(a1_p->y1, a2_p->y1); a_res_p->x2 = LV_MAX(a1_p->x2, a2_p->x2); a_res_p->y2 = LV_MAX(a1_p->y2, a2_p->y2); } /** * Check if a point is on an area * @param a_p pointer to an area * @param p_p pointer to a point * @param radius radius of area (e.g. for rounded rectangle) * @return false:the point is out of the area */ bool _lv_area_is_point_on(const lv_area_t * a_p, const lv_point_t * p_p, lv_coord_t radius) { /*First check the basic area*/ bool is_on_rect = false; if((p_p->x >= a_p->x1 && p_p->x <= a_p->x2) && ((p_p->y >= a_p->y1 && p_p->y <= a_p->y2))) { is_on_rect = true; } if(!is_on_rect) return false; /*Now handle potential rounded rectangles*/ if(radius <= 0) { /*No radius, it is within the rectangle*/ return true; } lv_coord_t w = lv_area_get_width(a_p) / 2; lv_coord_t h = lv_area_get_height(a_p) / 2; lv_coord_t max_radius = LV_MIN(w, h); if(radius > max_radius) radius = max_radius; /*Check if it's in one of the corners*/ lv_area_t corner_area; /*Top left*/ corner_area.x1 = a_p->x1; corner_area.x2 = a_p->x1 + radius; corner_area.y1 = a_p->y1; corner_area.y2 = a_p->y1 + radius; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x2 += radius; corner_area.y2 += radius; return lv_point_within_circle(&corner_area, p_p); } /*Bottom left*/ corner_area.y1 = a_p->y2 - radius; corner_area.y2 = a_p->y2; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x2 += radius; corner_area.y1 -= radius; return lv_point_within_circle(&corner_area, p_p); } /*Bottom right*/ corner_area.x1 = a_p->x2 - radius; corner_area.x2 = a_p->x2; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x1 -= radius; corner_area.y1 -= radius; return lv_point_within_circle(&corner_area, p_p); } /*Top right*/ corner_area.y1 = a_p->y1; corner_area.y2 = a_p->y1 + radius; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x1 -= radius; corner_area.y2 += radius; return lv_point_within_circle(&corner_area, p_p); } /*Not within corners*/ return true; } /** * Check if two area has common parts * @param a1_p pointer to an area. * @param a2_p pointer to an other area * @return false: a1_p and a2_p has no common parts */ bool _lv_area_is_on(const lv_area_t * a1_p, const lv_area_t * a2_p) { if((a1_p->x1 <= a2_p->x2) && (a1_p->x2 >= a2_p->x1) && (a1_p->y1 <= a2_p->y2) && (a1_p->y2 >= a2_p->y1)) { return true; } else { return false; } } /** * Check if an area is fully on an other * @param ain_p pointer to an area which could be in 'aholder_p' * @param aholder_p pointer to an area which could involve 'ain_p' * @param radius radius of `aholder_p` (e.g. for rounded rectangle) * @return true: `ain_p` is fully inside `aholder_p` */ bool _lv_area_is_in(const lv_area_t * ain_p, const lv_area_t * aholder_p, lv_coord_t radius) { bool is_in = false; if(ain_p->x1 >= aholder_p->x1 && ain_p->y1 >= aholder_p->y1 && ain_p->x2 <= aholder_p->x2 && ain_p->y2 <= aholder_p->y2) { is_in = true; } if(!is_in) return false; if(radius == 0) return true; /*Check if the corner points are inside the radius or not*/ lv_point_t p; p.x = ain_p->x1; p.y = ain_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x2; p.y = ain_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x1; p.y = ain_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x2; p.y = ain_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; return true; } /** * Check if an area is fully out of an other * @param aout_p pointer to an area which could be in 'aholder_p' * @param aholder_p pointer to an area which could involve 'ain_p' * @param radius radius of `aholder_p` (e.g. for rounded rectangle) * @return true: `aout_p` is fully outside `aholder_p` */ bool _lv_area_is_out(const lv_area_t * aout_p, const lv_area_t * aholder_p, lv_coord_t radius) { if(aout_p->x2 < aholder_p->x1 || aout_p->y2 < aholder_p->y1 || aout_p->x1 > aholder_p->x2 || aout_p->y1 > aholder_p->y2) { return true; } if(radius == 0) return false; /*Check if the corner points are outside the radius or not*/ lv_point_t p; p.x = aout_p->x1; p.y = aout_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius)) return false; p.x = aout_p->x2; p.y = aout_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius)) return false; p.x = aout_p->x1; p.y = aout_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius)) return false; p.x = aout_p->x2; p.y = aout_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius)) return false; return true; } bool _lv_area_is_equal(const lv_area_t * a, const lv_area_t * b) { return a->x1 == b->x1 && a->x2 == b->x2 && a->y1 == b->y1 && a->y2 == b->y2; } /** * Align an area to an other * @param base an are where the other will be aligned * @param to_align the area to align * @param align `LV_ALIGN_...` * @param res x/y coordinates where `to_align` align area should be placed */ void lv_area_align(const lv_area_t * base, lv_area_t * to_align, lv_align_t align, lv_coord_t ofs_x, lv_coord_t ofs_y) { lv_coord_t x; lv_coord_t y; switch(align) { case LV_ALIGN_CENTER: x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_TOP_LEFT: x = 0; y = 0; break; case LV_ALIGN_TOP_MID: x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; y = 0; break; case LV_ALIGN_TOP_RIGHT: x = lv_area_get_width(base) - lv_area_get_width(to_align); y = 0; break; case LV_ALIGN_BOTTOM_LEFT: x = 0; y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_BOTTOM_MID: x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_BOTTOM_RIGHT: x = lv_area_get_width(base) - lv_area_get_width(to_align); y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_LEFT_MID: x = 0; y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_RIGHT_MID: x = lv_area_get_width(base) - lv_area_get_width(to_align); y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_TOP_LEFT: x = 0; y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_TOP_MID: x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_TOP_RIGHT: x = lv_area_get_width(base) - lv_area_get_width(to_align); y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_BOTTOM_LEFT: x = 0; y = lv_area_get_height(base); break; case LV_ALIGN_OUT_BOTTOM_MID: x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; y = lv_area_get_height(base); break; case LV_ALIGN_OUT_BOTTOM_RIGHT: x = lv_area_get_width(base) - lv_area_get_width(to_align); y = lv_area_get_height(base); break; case LV_ALIGN_OUT_LEFT_TOP: x = -lv_area_get_width(to_align); y = 0; break; case LV_ALIGN_OUT_LEFT_MID: x = -lv_area_get_width(to_align); y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_LEFT_BOTTOM: x = -lv_area_get_width(to_align); y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_OUT_RIGHT_TOP: x = lv_area_get_width(base); y = 0; break; case LV_ALIGN_OUT_RIGHT_MID: x = lv_area_get_width(base); y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_RIGHT_BOTTOM: x = lv_area_get_width(base); y = lv_area_get_height(base) - lv_area_get_height(to_align); break; default: x = 0; y = 0; break; } x += base->x1; y += base->y1; lv_coord_t w = lv_area_get_width(to_align); lv_coord_t h = lv_area_get_height(to_align); to_align->x1 = x + ofs_x; to_align->y1 = y + ofs_y; to_align->x2 = to_align->x1 + w - 1; to_align->y2 = to_align->y1 + h - 1; } #define _LV_TRANSFORM_TRIGO_SHIFT 10 void lv_point_transform(lv_point_t * p, int32_t angle, int32_t zoom, const lv_point_t * pivot) { if(angle == 0 && zoom == 256) { return; } p->x -= pivot->x; p->y -= pivot->y; if(angle == 0) { p->x = (((int32_t)(p->x) * zoom) >> 8) + pivot->x; p->y = (((int32_t)(p->y) * zoom) >> 8) + pivot->y; return; } static int32_t angle_prev = INT32_MIN; static int32_t sinma; static int32_t cosma; if(angle_prev != angle) { int32_t angle_limited = angle; if(angle_limited > 3600) angle_limited -= 3600; if(angle_limited < 0) angle_limited += 3600; int32_t angle_low = angle_limited / 10; int32_t angle_high = angle_low + 1; int32_t angle_rem = angle_limited - (angle_low * 10); int32_t s1 = lv_trigo_sin(angle_low); int32_t s2 = lv_trigo_sin(angle_high); int32_t c1 = lv_trigo_sin(angle_low + 90); int32_t c2 = lv_trigo_sin(angle_high + 90); sinma = (s1 * (10 - angle_rem) + s2 * angle_rem) / 10; cosma = (c1 * (10 - angle_rem) + c2 * angle_rem) / 10; sinma = sinma >> (LV_TRIGO_SHIFT - _LV_TRANSFORM_TRIGO_SHIFT); cosma = cosma >> (LV_TRIGO_SHIFT - _LV_TRANSFORM_TRIGO_SHIFT); angle_prev = angle; } int32_t x = p->x; int32_t y = p->y; if(zoom == 256) { p->x = ((cosma * x - sinma * y) >> _LV_TRANSFORM_TRIGO_SHIFT) + pivot->x; p->y = ((sinma * x + cosma * y) >> _LV_TRANSFORM_TRIGO_SHIFT) + pivot->y; } else { p->x = (((cosma * x - sinma * y) * zoom) >> (_LV_TRANSFORM_TRIGO_SHIFT + 8)) + pivot->x; p->y = (((sinma * x + cosma * y) * zoom) >> (_LV_TRANSFORM_TRIGO_SHIFT + 8)) + pivot->y; } } /********************** * STATIC FUNCTIONS **********************/ static bool lv_point_within_circle(const lv_area_t * area, const lv_point_t * p) { lv_coord_t r = (area->x2 - area->x1) / 2; /*Circle center*/ lv_coord_t cx = area->x1 + r; lv_coord_t cy = area->y1 + r; /*Simplify the code by moving everything to (0, 0)*/ lv_coord_t px = p->x - cx; lv_coord_t py = p->y - cy; uint32_t r_sqrd = r * r; uint32_t dist = (px * px) + (py * py); if(dist <= r_sqrd) return true; else return false; }