/*----------------------------------------------------------------------------/ / TJpgDec - Tiny JPEG Decompressor R0.03 (C)ChaN, 2021 /-----------------------------------------------------------------------------/ / The TJpgDec is a generic JPEG decompressor module for tiny embedded systems. / This is a free software that opened for education, research and commercial / developments under license policy of following terms. / / Copyright (C) 2021, ChaN, all right reserved. / / * The TJpgDec module is a free software and there is NO WARRANTY. / * No restriction on use. You can use, modify and redistribute it for / personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY. / * Redistributions of source code must retain the above copyright notice. / /-----------------------------------------------------------------------------/ / Oct 04, 2011 R0.01 First release. / Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq. / Sep 03, 2012 R0.01b Added JD_TBLCLIP option. / Mar 16, 2019 R0.01c Supprted stdint.h. / Jul 01, 2020 R0.01d Fixed wrong integer type usage. / May 08, 2021 R0.02 Supprted grayscale image. Separated configuration options. / Jun 11, 2021 R0.02a Some performance improvement. / Jul 01, 2021 R0.03 Added JD_FASTDECODE option. / Some performance improvement. /----------------------------------------------------------------------------*/ #include "tjpgd.h" #if LV_USE_SJPG #if JD_FASTDECODE == 2 #define HUFF_BIT 10 /* Bit length to apply fast huffman decode */ #define HUFF_LEN (1 << HUFF_BIT) #define HUFF_MASK (HUFF_LEN - 1) #endif /*-----------------------------------------------*/ /* Zigzag-order to raster-order conversion table */ /*-----------------------------------------------*/ static const uint8_t Zig[64] = { /* Zigzag-order to raster-order conversion table */ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; /*-------------------------------------------------*/ /* Input scale factor of Arai algorithm */ /* (scaled up 16 bits for fixed point operations) */ /*-------------------------------------------------*/ static const uint16_t Ipsf[64] = { /* See also aa_idct.png */ (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192), (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192) }; /*---------------------------------------------*/ /* Conversion table for fast clipping process */ /*---------------------------------------------*/ #if JD_TBLCLIP #define BYTECLIP(v) Clip8[(unsigned int)(v) & 0x3FF] static const uint8_t Clip8[1024] = { /* 0..255 */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, /* 256..511 */ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, /* -512..-257 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* -256..-1 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #else /* JD_TBLCLIP */ static uint8_t BYTECLIP (int val) { if (val < 0) return 0; if (val > 255) return 255; return (uint8_t)val; } #endif /*-----------------------------------------------------------------------*/ /* Allocate a memory block from memory pool */ /*-----------------------------------------------------------------------*/ static void* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */ JDEC* jd, /* Pointer to the decompressor object */ size_t ndata /* Number of bytes to allocate */ ) { char *rp = 0; ndata = (ndata + 3) & ~3; /* Align block size to the word boundary */ if (jd->sz_pool >= ndata) { jd->sz_pool -= ndata; rp = (char*)jd->pool; /* Get start of available memory pool */ jd->pool = (void*)(rp + ndata); /* Allocate requierd bytes */ } return (void*)rp; /* Return allocated memory block (NULL:no memory to allocate) */ } /*-----------------------------------------------------------------------*/ /* Create de-quantization and prescaling tables with a DQT segment */ /*-----------------------------------------------------------------------*/ static JRESULT create_qt_tbl ( /* 0:OK, !0:Failed */ JDEC* jd, /* Pointer to the decompressor object */ const uint8_t* data, /* Pointer to the quantizer tables */ size_t ndata /* Size of input data */ ) { unsigned int i, zi; uint8_t d; int32_t *pb; while (ndata) { /* Process all tables in the segment */ if (ndata < 65) return JDR_FMT1; /* Err: table size is unaligned */ ndata -= 65; d = *data++; /* Get table property */ if (d & 0xF0) return JDR_FMT1; /* Err: not 8-bit resolution */ i = d & 3; /* Get table ID */ pb = alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */ if (!pb) return JDR_MEM1; /* Err: not enough memory */ jd->qttbl[i] = pb; /* Register the table */ for (i = 0; i < 64; i++) { /* Load the table */ zi = Zig[i]; /* Zigzag-order to raster-order conversion */ pb[zi] = (int32_t)((uint32_t)*data++ * Ipsf[zi]); /* Apply scale factor of Arai algorithm to the de-quantizers */ } } return JDR_OK; } /*-----------------------------------------------------------------------*/ /* Create huffman code tables with a DHT segment */ /*-----------------------------------------------------------------------*/ static JRESULT create_huffman_tbl ( /* 0:OK, !0:Failed */ JDEC* jd, /* Pointer to the decompressor object */ const uint8_t* data, /* Pointer to the packed huffman tables */ size_t ndata /* Size of input data */ ) { unsigned int i, j, b, cls, num; size_t np; uint8_t d, *pb, *pd; uint16_t hc, *ph; while (ndata) { /* Process all tables in the segment */ if (ndata < 17) return JDR_FMT1; /* Err: wrong data size */ ndata -= 17; d = *data++; /* Get table number and class */ if (d & 0xEE) return JDR_FMT1; /* Err: invalid class/number */ cls = d >> 4; num = d & 0x0F; /* class = dc(0)/ac(1), table number = 0/1 */ pb = alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */ if (!pb) return JDR_MEM1; /* Err: not enough memory */ jd->huffbits[num][cls] = pb; for (np = i = 0; i < 16; i++) { /* Load number of patterns for 1 to 16-bit code */ np += (pb[i] = *data++); /* Get sum of code words for each code */ } ph = alloc_pool(jd, np * sizeof (uint16_t));/* Allocate a memory block for the code word table */ if (!ph) return JDR_MEM1; /* Err: not enough memory */ jd->huffcode[num][cls] = ph; hc = 0; for (j = i = 0; i < 16; i++) { /* Re-build huffman code word table */ b = pb[i]; while (b--) ph[j++] = hc++; hc <<= 1; } if (ndata < np) return JDR_FMT1; /* Err: wrong data size */ ndata -= np; pd = alloc_pool(jd, np); /* Allocate a memory block for the decoded data */ if (!pd) return JDR_MEM1; /* Err: not enough memory */ jd->huffdata[num][cls] = pd; for (i = 0; i < np; i++) { /* Load decoded data corresponds to each code word */ d = *data++; if (!cls && d > 11) return JDR_FMT1; pd[i] = d; } #if JD_FASTDECODE == 2 { /* Create fast huffman decode table */ unsigned int span, td, ti; uint16_t *tbl_ac = 0; uint8_t *tbl_dc = 0; if (cls) { tbl_ac = alloc_pool(jd, HUFF_LEN * sizeof (uint16_t)); /* LUT for AC elements */ if (!tbl_ac) return JDR_MEM1; /* Err: not enough memory */ jd->hufflut_ac[num] = tbl_ac; memset(tbl_ac, 0xFF, HUFF_LEN * sizeof (uint16_t)); /* Default value (0xFFFF: may be long code) */ } else { tbl_dc = alloc_pool(jd, HUFF_LEN * sizeof (uint8_t)); /* LUT for AC elements */ if (!tbl_dc) return JDR_MEM1; /* Err: not enough memory */ jd->hufflut_dc[num] = tbl_dc; memset(tbl_dc, 0xFF, HUFF_LEN * sizeof (uint8_t)); /* Default value (0xFF: may be long code) */ } for (i = b = 0; b < HUFF_BIT; b++) { /* Create LUT */ for (j = pb[b]; j; j--) { ti = ph[i] << (HUFF_BIT - 1 - b) & HUFF_MASK; /* Index of input pattern for the code */ if (cls) { td = pd[i++] | ((b + 1) << 8); /* b15..b8: code length, b7..b0: zero run and data length */ for (span = 1 << (HUFF_BIT - 1 - b); span; span--, tbl_ac[ti++] = (uint16_t)td) ; } else { td = pd[i++] | ((b + 1) << 4); /* b7..b4: code length, b3..b0: data length */ for (span = 1 << (HUFF_BIT - 1 - b); span; span--, tbl_dc[ti++] = (uint8_t)td) ; } } } jd->longofs[num][cls] = i; /* Code table offset for long code */ } #endif } return JDR_OK; } /*-----------------------------------------------------------------------*/ /* Extract a huffman decoded data from input stream */ /*-----------------------------------------------------------------------*/ static int huffext ( /* >=0: decoded data, <0: error code */ JDEC* jd, /* Pointer to the decompressor object */ unsigned int id, /* Table ID (0:Y, 1:C) */ unsigned int cls /* Table class (0:DC, 1:AC) */ ) { size_t dc = jd->dctr; uint8_t *dp = jd->dptr; unsigned int d, flg = 0; #if JD_FASTDECODE == 0 uint8_t bm, nd, bl; const uint8_t *hb = jd->huffbits[id][cls]; /* Bit distribution table */ const uint16_t *hc = jd->huffcode[id][cls]; /* Code word table */ const uint8_t *hd = jd->huffdata[id][cls]; /* Data table */ bm = jd->dbit; /* Bit mask to extract */ d = 0; bl = 16; /* Max code length */ do { if (!bm) { /* Next byte? */ if (!dc) { /* No input data is available, re-fill input buffer */ dp = jd->inbuf; /* Top of input buffer */ dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */ } else { dp++; /* Next data ptr */ } dc--; /* Decrement number of available bytes */ if (flg) { /* In flag sequence? */ flg = 0; /* Exit flag sequence */ if (*dp != 0) return 0 - (int)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */ *dp = 0xFF; /* The flag is a data 0xFF */ } else { if (*dp == 0xFF) { /* Is start of flag sequence? */ flg = 1; continue; /* Enter flag sequence, get trailing byte */ } } bm = 0x80; /* Read from MSB */ } d <<= 1; /* Get a bit */ if (*dp & bm) d++; bm >>= 1; for (nd = *hb++; nd; nd--) { /* Search the code word in this bit length */ if (d == *hc++) { /* Matched? */ jd->dbit = bm; jd->dctr = dc; jd->dptr = dp; return *hd; /* Return the decoded data */ } hd++; } bl--; } while (bl); #else const uint8_t *hb, *hd; const uint16_t *hc; unsigned int nc, bl, wbit = jd->dbit % 32; uint32_t w = jd->wreg & ((1UL << wbit) - 1); while (wbit < 16) { /* Prepare 16 bits into the working register */ if (jd->marker) { d = 0xFF; /* Input stream has stalled for a marker. Generate stuff bits */ } else { if (!dc) { /* Buffer empty, re-fill input buffer */ dp = jd->inbuf; /* Top of input buffer */ dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */ } d = *dp++; dc--; if (flg) { /* In flag sequence? */ flg = 0; /* Exit flag sequence */ if (d != 0) jd->marker = d; /* Not an escape of 0xFF but a marker */ d = 0xFF; } else { if (d == 0xFF) { /* Is start of flag sequence? */ flg = 1; continue; /* Enter flag sequence, get trailing byte */ } } } w = w << 8 | d; /* Shift 8 bits in the working register */ wbit += 8; } jd->dctr = dc; jd->dptr = dp; jd->wreg = w; #if JD_FASTDECODE == 2 /* Table serch for the short codes */ d = (unsigned int)(w >> (wbit - HUFF_BIT)); /* Short code as table index */ if (cls) { /* AC element */ d = jd->hufflut_ac[id][d]; /* Table decode */ if (d != 0xFFFF) { /* It is done if hit in short code */ jd->dbit = wbit - (d >> 8); /* Snip the code length */ return d & 0xFF; /* b7..0: zero run and following data bits */ } } else { /* DC element */ d = jd->hufflut_dc[id][d]; /* Table decode */ if (d != 0xFF) { /* It is done if hit in short code */ jd->dbit = wbit - (d >> 4); /* Snip the code length */ return d & 0xF; /* b3..0: following data bits */ } } /* Incremental serch for the codes longer than HUFF_BIT */ hb = jd->huffbits[id][cls] + HUFF_BIT; /* Bit distribution table */ hc = jd->huffcode[id][cls] + jd->longofs[id][cls]; /* Code word table */ hd = jd->huffdata[id][cls] + jd->longofs[id][cls]; /* Data table */ bl = HUFF_BIT + 1; #else /* Incremental serch for all codes */ hb = jd->huffbits[id][cls]; /* Bit distribution table */ hc = jd->huffcode[id][cls]; /* Code word table */ hd = jd->huffdata[id][cls]; /* Data table */ bl = 1; #endif for ( ; bl <= 16; bl++) { /* Incremental search */ nc = *hb++; if (nc) { d = w >> (wbit - bl); do { /* Search the code word in this bit length */ if (d == *hc++) { /* Matched? */ jd->dbit = wbit - bl; /* Snip the huffman code */ return *hd; /* Return the decoded data */ } hd++; } while (--nc); } } #endif return 0 - (int)JDR_FMT1; /* Err: code not found (may be collapted data) */ } /*-----------------------------------------------------------------------*/ /* Extract N bits from input stream */ /*-----------------------------------------------------------------------*/ static int bitext ( /* >=0: extracted data, <0: error code */ JDEC* jd, /* Pointer to the decompressor object */ unsigned int nbit /* Number of bits to extract (1 to 16) */ ) { size_t dc = jd->dctr; uint8_t *dp = jd->dptr; unsigned int d, flg = 0; #if JD_FASTDECODE == 0 uint8_t mbit = jd->dbit; d = 0; do { if (!mbit) { /* Next byte? */ if (!dc) { /* No input data is available, re-fill input buffer */ dp = jd->inbuf; /* Top of input buffer */ dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */ } else { dp++; /* Next data ptr */ } dc--; /* Decrement number of available bytes */ if (flg) { /* In flag sequence? */ flg = 0; /* Exit flag sequence */ if (*dp != 0) return 0 - (int)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */ *dp = 0xFF; /* The flag is a data 0xFF */ } else { if (*dp == 0xFF) { /* Is start of flag sequence? */ flg = 1; continue; /* Enter flag sequence */ } } mbit = 0x80; /* Read from MSB */ } d <<= 1; /* Get a bit */ if (*dp & mbit) d |= 1; mbit >>= 1; nbit--; } while (nbit); jd->dbit = mbit; jd->dctr = dc; jd->dptr = dp; return (int)d; #else unsigned int wbit = jd->dbit % 32; uint32_t w = jd->wreg & ((1UL << wbit) - 1); while (wbit < nbit) { /* Prepare nbit bits into the working register */ if (jd->marker) { d = 0xFF; /* Input stream stalled, generate stuff bits */ } else { if (!dc) { /* Buffer empty, re-fill input buffer */ dp = jd->inbuf; /* Top of input buffer */ dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */ } d = *dp++; dc--; if (flg) { /* In flag sequence? */ flg = 0; /* Exit flag sequence */ if (d != 0) jd->marker = d; /* Not an escape of 0xFF but a marker */ d = 0xFF; } else { if (d == 0xFF) { /* Is start of flag sequence? */ flg = 1; continue; /* Enter flag sequence, get trailing byte */ } } } w = w << 8 | d; /* Get 8 bits into the working register */ wbit += 8; } jd->wreg = w; jd->dbit = wbit - nbit; jd->dctr = dc; jd->dptr = dp; return (int)(w >> ((wbit - nbit) % 32)); #endif } /*-----------------------------------------------------------------------*/ /* Process restart interval */ /*-----------------------------------------------------------------------*/ static JRESULT restart ( JDEC* jd, /* Pointer to the decompressor object */ uint16_t rstn /* Expected restert sequense number */ ) { unsigned int i; uint8_t *dp = jd->dptr; size_t dc = jd->dctr; #if JD_FASTDECODE == 0 uint16_t d = 0; /* Get two bytes from the input stream */ for (i = 0; i < 2; i++) { if (!dc) { /* No input data is available, re-fill input buffer */ dp = jd->inbuf; dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return JDR_INP; } else { dp++; } dc--; d = d << 8 | *dp; /* Get a byte */ } jd->dptr = dp; jd->dctr = dc; jd->dbit = 0; /* Check the marker */ if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) { return JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */ } #else uint16_t marker; if (jd->marker) { /* Generate a maker if it has been detected */ marker = 0xFF00 | jd->marker; jd->marker = 0; } else { marker = 0; for (i = 0; i < 2; i++) { /* Get a restart marker */ if (!dc) { /* No input data is available, re-fill input buffer */ dp = jd->inbuf; dc = jd->infunc(jd, dp, JD_SZBUF); if (!dc) return JDR_INP; } marker = (marker << 8) | *dp++; /* Get a byte */ dc--; } jd->dptr = dp; jd->dctr = dc; } /* Check the marker */ if ((marker & 0xFFD8) != 0xFFD0 || (marker & 7) != (rstn & 7)) { return JDR_FMT1; /* Err: expected RSTn marker was not detected (may be collapted data) */ } jd->dbit = 0; /* Discard stuff bits */ #endif jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Reset DC offset */ return JDR_OK; } /*-----------------------------------------------------------------------*/ /* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */ /*-----------------------------------------------------------------------*/ static void block_idct ( int32_t* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */ jd_yuv_t* dst /* Pointer to the destination to store the block as byte array */ ) { const int32_t M13 = (int32_t)(1.41421*4096), M2 = (int32_t)(1.08239*4096), M4 = (int32_t)(2.61313*4096), M5 = (int32_t)(1.84776*4096); int32_t v0, v1, v2, v3, v4, v5, v6, v7; int32_t t10, t11, t12, t13; int i; /* Process columns */ for (i = 0; i < 8; i++) { v0 = src[8 * 0]; /* Get even elements */ v1 = src[8 * 2]; v2 = src[8 * 4]; v3 = src[8 * 6]; t10 = v0 + v2; /* Process the even elements */ t12 = v0 - v2; t11 = (v1 - v3) * M13 >> 12; v3 += v1; t11 -= v3; v0 = t10 + v3; v3 = t10 - v3; v1 = t11 + t12; v2 = t12 - t11; v4 = src[8 * 7]; /* Get odd elements */ v5 = src[8 * 1]; v6 = src[8 * 5]; v7 = src[8 * 3]; t10 = v5 - v4; /* Process the odd elements */ t11 = v5 + v4; t12 = v6 - v7; v7 += v6; v5 = (t11 - v7) * M13 >> 12; v7 += t11; t13 = (t10 + t12) * M5 >> 12; v4 = t13 - (t10 * M2 >> 12); v6 = t13 - (t12 * M4 >> 12) - v7; v5 -= v6; v4 -= v5; src[8 * 0] = v0 + v7; /* Write-back transformed values */ src[8 * 7] = v0 - v7; src[8 * 1] = v1 + v6; src[8 * 6] = v1 - v6; src[8 * 2] = v2 + v5; src[8 * 5] = v2 - v5; src[8 * 3] = v3 + v4; src[8 * 4] = v3 - v4; src++; /* Next column */ } /* Process rows */ src -= 8; for (i = 0; i < 8; i++) { v0 = src[0] + (128L << 8); /* Get even elements (remove DC offset (-128) here) */ v1 = src[2]; v2 = src[4]; v3 = src[6]; t10 = v0 + v2; /* Process the even elements */ t12 = v0 - v2; t11 = (v1 - v3) * M13 >> 12; v3 += v1; t11 -= v3; v0 = t10 + v3; v3 = t10 - v3; v1 = t11 + t12; v2 = t12 - t11; v4 = src[7]; /* Get odd elements */ v5 = src[1]; v6 = src[5]; v7 = src[3]; t10 = v5 - v4; /* Process the odd elements */ t11 = v5 + v4; t12 = v6 - v7; v7 += v6; v5 = (t11 - v7) * M13 >> 12; v7 += t11; t13 = (t10 + t12) * M5 >> 12; v4 = t13 - (t10 * M2 >> 12); v6 = t13 - (t12 * M4 >> 12) - v7; v5 -= v6; v4 -= v5; /* Descale the transformed values 8 bits and output a row */ #if JD_FASTDECODE >= 1 dst[0] = (int16_t)((v0 + v7) >> 8); dst[7] = (int16_t)((v0 - v7) >> 8); dst[1] = (int16_t)((v1 + v6) >> 8); dst[6] = (int16_t)((v1 - v6) >> 8); dst[2] = (int16_t)((v2 + v5) >> 8); dst[5] = (int16_t)((v2 - v5) >> 8); dst[3] = (int16_t)((v3 + v4) >> 8); dst[4] = (int16_t)((v3 - v4) >> 8); #else dst[0] = BYTECLIP((v0 + v7) >> 8); dst[7] = BYTECLIP((v0 - v7) >> 8); dst[1] = BYTECLIP((v1 + v6) >> 8); dst[6] = BYTECLIP((v1 - v6) >> 8); dst[2] = BYTECLIP((v2 + v5) >> 8); dst[5] = BYTECLIP((v2 - v5) >> 8); dst[3] = BYTECLIP((v3 + v4) >> 8); dst[4] = BYTECLIP((v3 - v4) >> 8); #endif dst += 8; src += 8; /* Next row */ } } /*-----------------------------------------------------------------------*/ /* Load all blocks in an MCU into working buffer */ /*-----------------------------------------------------------------------*/ static JRESULT mcu_load ( JDEC* jd /* Pointer to the decompressor object */ ) { int32_t *tmp = (int32_t*)jd->workbuf; /* Block working buffer for de-quantize and IDCT */ int d, e; unsigned int blk, nby, i, bc, z, id, cmp; jd_yuv_t *bp; const int32_t *dqf; nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */ bp = jd->mcubuf; /* Pointer to the first block of MCU */ for (blk = 0; blk < nby + 2; blk++) { /* Get nby Y blocks and two C blocks */ cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */ if (cmp && jd->ncomp != 3) { /* Clear C blocks if not exist (monochrome image) */ for (i = 0; i < 64; bp[i++] = 128) ; } else { /* Load Y/C blocks from input stream */ id = cmp ? 1 : 0; /* Huffman table ID of this component */ /* Extract a DC element from input stream */ d = huffext(jd, id, 0); /* Extract a huffman coded data (bit length) */ if (d < 0) return (JRESULT)(0 - d); /* Err: invalid code or input */ bc = (unsigned int)d; d = jd->dcv[cmp]; /* DC value of previous block */ if (bc) { /* If there is any difference from previous block */ e = bitext(jd, bc); /* Extract data bits */ if (e < 0) return (JRESULT)(0 - e); /* Err: input */ bc = 1 << (bc - 1); /* MSB position */ if (!(e & bc)) e -= (bc << 1) - 1; /* Restore negative value if needed */ d += e; /* Get current value */ jd->dcv[cmp] = (int16_t)d; /* Save current DC value for next block */ } dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */ tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */ /* Extract following 63 AC elements from input stream */ memset(&tmp[1], 0, 63 * sizeof (int32_t)); /* Initialize all AC elements */ z = 1; /* Top of the AC elements (in zigzag-order) */ do { d = huffext(jd, id, 1); /* Extract a huffman coded value (zero runs and bit length) */ if (d == 0) break; /* EOB? */ if (d < 0) return (JRESULT)(0 - d); /* Err: invalid code or input error */ bc = (unsigned int)d; z += bc >> 4; /* Skip leading zero run */ if (z >= 64) return JDR_FMT1; /* Too long zero run */ if (bc &= 0x0F) { /* Bit length? */ d = bitext(jd, bc); /* Extract data bits */ if (d < 0) return (JRESULT)(0 - d); /* Err: input device */ bc = 1 << (bc - 1); /* MSB position */ if (!(d & bc)) d -= (bc << 1) - 1; /* Restore negative value if needed */ i = Zig[z]; /* Get raster-order index */ tmp[i] = d * dqf[i] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */ } } while (++z < 64); /* Next AC element */ if (JD_FORMAT != 2 || !cmp) { /* C components may not be processed if in grayscale output */ if (z == 1 || (JD_USE_SCALE && jd->scale == 3)) { /* If no AC element or scale ratio is 1/8, IDCT can be ommited and the block is filled with DC value */ d = (jd_yuv_t)((*tmp / 256) + 128); if (JD_FASTDECODE >= 1) { for (i = 0; i < 64; bp[i++] = d) ; } else { memset(bp, d, 64); } } else { block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */ } } } bp += 64; /* Next block */ } return JDR_OK; /* All blocks have been loaded successfully */ } /*-----------------------------------------------------------------------*/ /* Output an MCU: Convert YCrCb to RGB and output it in RGB form */ /*-----------------------------------------------------------------------*/ static JRESULT mcu_output ( JDEC* jd, /* Pointer to the decompressor object */ int (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */ unsigned int img_x, /* MCU location in the image */ unsigned int img_y /* MCU location in the image */ ) { const int CVACC = (sizeof (int) > 2) ? 1024 : 128; /* Adaptive accuracy for both 16-/32-bit systems */ unsigned int ix, iy, mx, my, rx, ry; int yy, cb, cr; jd_yuv_t *py, *pc; uint8_t *pix; JRECT rect; mx = jd->msx * 8; my = jd->msy * 8; /* MCU size (pixel) */ rx = (img_x + mx <= jd->width) ? mx : jd->width - img_x; /* Output rectangular size (it may be clipped at right/bottom end of image) */ ry = (img_y + my <= jd->height) ? my : jd->height - img_y; if (JD_USE_SCALE) { rx >>= jd->scale; ry >>= jd->scale; if (!rx || !ry) return JDR_OK; /* Skip this MCU if all pixel is to be rounded off */ img_x >>= jd->scale; img_y >>= jd->scale; } rect.left = img_x; rect.right = img_x + rx - 1; /* Rectangular area in the frame buffer */ rect.top = img_y; rect.bottom = img_y + ry - 1; if (!JD_USE_SCALE || jd->scale != 3) { /* Not for 1/8 scaling */ pix = (uint8_t*)jd->workbuf; if (JD_FORMAT != 2) { /* RGB output (build an RGB MCU from Y/C component) */ for (iy = 0; iy < my; iy++) { pc = py = jd->mcubuf; if (my == 16) { /* Double block height? */ pc += 64 * 4 + (iy >> 1) * 8; if (iy >= 8) py += 64; } else { /* Single block height */ pc += mx * 8 + iy * 8; } py += iy * 8; for (ix = 0; ix < mx; ix++) { cb = pc[0] - 128; /* Get Cb/Cr component and remove offset */ cr = pc[64] - 128; if (mx == 16) { /* Double block width? */ if (ix == 8) py += 64 - 8; /* Jump to next block if double block heigt */ pc += ix & 1; /* Step forward chroma pointer every two pixels */ } else { /* Single block width */ pc++; /* Step forward chroma pointer every pixel */ } yy = *py++; /* Get Y component */ *pix++ = /*R*/ BYTECLIP(yy + ((int)(1.402 * CVACC) * cr) / CVACC); *pix++ = /*G*/ BYTECLIP(yy - ((int)(0.344 * CVACC) * cb + (int)(0.714 * CVACC) * cr) / CVACC); *pix++ = /*B*/ BYTECLIP(yy + ((int)(1.772 * CVACC) * cb) / CVACC); } } } else { /* Monochrome output (build a grayscale MCU from Y comopnent) */ for (iy = 0; iy < my; iy++) { py = jd->mcubuf + iy * 8; if (my == 16) { /* Double block height? */ if (iy >= 8) py += 64; } for (ix = 0; ix < mx; ix++) { if (mx == 16) { /* Double block width? */ if (ix == 8) py += 64 - 8; /* Jump to next block if double block height */ } *pix++ = (uint8_t)*py++; /* Get and store a Y value as grayscale */ } } } /* Descale the MCU rectangular if needed */ if (JD_USE_SCALE && jd->scale) { unsigned int x, y, r, g, b, s, w, a; uint8_t *op; /* Get averaged RGB value of each square correcponds to a pixel */ s = jd->scale * 2; /* Number of shifts for averaging */ w = 1 << jd->scale; /* Width of square */ a = (mx - w) * (JD_FORMAT != 2 ? 3 : 1); /* Bytes to skip for next line in the square */ op = (uint8_t*)jd->workbuf; for (iy = 0; iy < my; iy += w) { for (ix = 0; ix < mx; ix += w) { pix = (uint8_t*)jd->workbuf + (iy * mx + ix) * (JD_FORMAT != 2 ? 3 : 1); r = g = b = 0; for (y = 0; y < w; y++) { /* Accumulate RGB value in the square */ for (x = 0; x < w; x++) { r += *pix++; /* Accumulate R or Y (monochrome output) */ if (JD_FORMAT != 2) { /* RGB output? */ g += *pix++; /* Accumulate G */ b += *pix++; /* Accumulate B */ } } pix += a; } /* Put the averaged pixel value */ *op++ = (uint8_t)(r >> s); /* Put R or Y (monochrome output) */ if (JD_FORMAT != 2) { /* RGB output? */ *op++ = (uint8_t)(g >> s); /* Put G */ *op++ = (uint8_t)(b >> s); /* Put B */ } } } } } else { /* For only 1/8 scaling (left-top pixel in each block are the DC value of the block) */ /* Build a 1/8 descaled RGB MCU from discrete comopnents */ pix = (uint8_t*)jd->workbuf; pc = jd->mcubuf + mx * my; cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */ cr = pc[64] - 128; for (iy = 0; iy < my; iy += 8) { py = jd->mcubuf; if (iy == 8) py += 64 * 2; for (ix = 0; ix < mx; ix += 8) { yy = *py; /* Get Y component */ py += 64; if (JD_FORMAT != 2) { *pix++ = /*R*/ BYTECLIP(yy + ((int)(1.402 * CVACC) * cr / CVACC)); *pix++ = /*G*/ BYTECLIP(yy - ((int)(0.344 * CVACC) * cb + (int)(0.714 * CVACC) * cr) / CVACC); *pix++ = /*B*/ BYTECLIP(yy + ((int)(1.772 * CVACC) * cb / CVACC)); } else { *pix++ = yy; } } } } /* Squeeze up pixel table if a part of MCU is to be truncated */ mx >>= jd->scale; if (rx < mx) { /* Is the MCU spans rigit edge? */ uint8_t *s, *d; unsigned int x, y; s = d = (uint8_t*)jd->workbuf; for (y = 0; y < ry; y++) { for (x = 0; x < rx; x++) { /* Copy effective pixels */ *d++ = *s++; if (JD_FORMAT != 2) { *d++ = *s++; *d++ = *s++; } } s += (mx - rx) * (JD_FORMAT != 2 ? 3 : 1); /* Skip truncated pixels */ } } /* Convert RGB888 to RGB565 if needed */ if (JD_FORMAT == 1) { uint8_t *s = (uint8_t*)jd->workbuf; uint16_t w, *d = (uint16_t*)s; unsigned int n = rx * ry; do { w = (*s++ & 0xF8) << 8; /* RRRRR----------- */ w |= (*s++ & 0xFC) << 3; /* -----GGGGGG----- */ w |= *s++ >> 3; /* -----------BBBBB */ *d++ = w; } while (--n); } /* Output the rectangular */ return outfunc(jd, jd->workbuf, &rect) ? JDR_OK : JDR_INTR; } /*-----------------------------------------------------------------------*/ /* Analyze the JPEG image and Initialize decompressor object */ /*-----------------------------------------------------------------------*/ #define LDB_WORD(ptr) (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1)) JRESULT jd_prepare ( JDEC* jd, /* Blank decompressor object */ size_t (*infunc)(JDEC*, uint8_t*, size_t), /* JPEG strem input function */ void* pool, /* Working buffer for the decompression session */ size_t sz_pool, /* Size of working buffer */ void* dev /* I/O device identifier for the session */ ) { uint8_t *seg, b; uint16_t marker; unsigned int n, i, ofs; size_t len; JRESULT rc; memset(jd, 0, sizeof (JDEC)); /* Clear decompression object (this might be a problem if machine's null pointer is not all bits zero) */ jd->pool = pool; /* Work memroy */ jd->sz_pool = sz_pool; /* Size of given work memory */ jd->infunc = infunc; /* Stream input function */ jd->device = dev; /* I/O device identifier */ jd->inbuf = seg = alloc_pool(jd, JD_SZBUF); /* Allocate stream input buffer */ if (!seg) return JDR_MEM1; ofs = marker = 0; /* Find SOI marker */ do { if (jd->infunc(jd, seg, 1) != 1) return JDR_INP; /* Err: SOI was not detected */ ofs++; marker = marker << 8 | seg[0]; } while (marker != 0xFFD8); for (;;) { /* Parse JPEG segments */ /* Get a JPEG marker */ if (jd->infunc(jd, seg, 4) != 4) return JDR_INP; marker = LDB_WORD(seg); /* Marker */ len = LDB_WORD(seg + 2); /* Length field */ if (len <= 2 || (marker >> 8) != 0xFF) return JDR_FMT1; len -= 2; /* Segent content size */ ofs += 4 + len; /* Number of bytes loaded */ switch (marker & 0xFF) { case 0xC0: /* SOF0 (baseline JPEG) */ if (len > JD_SZBUF) return JDR_MEM2; if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */ jd->width = LDB_WORD(&seg[3]); /* Image width in unit of pixel */ jd->height = LDB_WORD(&seg[1]); /* Image height in unit of pixel */ jd->ncomp = seg[5]; /* Number of color components */ if (jd->ncomp != 3 && jd->ncomp != 1) return JDR_FMT3; /* Err: Supports only Grayscale and Y/Cb/Cr */ /* Check each image component */ for (i = 0; i < jd->ncomp; i++) { b = seg[7 + 3 * i]; /* Get sampling factor */ if (i == 0) { /* Y component */ if (b != 0x11 && b != 0x22 && b != 0x21) { /* Check sampling factor */ return JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */ } jd->msx = b >> 4; jd->msy = b & 15; /* Size of MCU [blocks] */ } else { /* Cb/Cr component */ if (b != 0x11) return JDR_FMT3; /* Err: Sampling factor of Cb/Cr must be 1 */ } jd->qtid[i] = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */ if (jd->qtid[i] > 3) return JDR_FMT3; /* Err: Invalid ID */ } break; case 0xDD: /* DRI - Define Restart Interval */ if (len > JD_SZBUF) return JDR_MEM2; if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */ jd->nrst = LDB_WORD(seg); /* Get restart interval (MCUs) */ break; case 0xC4: /* DHT - Define Huffman Tables */ if (len > JD_SZBUF) return JDR_MEM2; if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */ rc = create_huffman_tbl(jd, seg, len); /* Create huffman tables */ if (rc) return rc; break; case 0xDB: /* DQT - Define Quaitizer Tables */ if (len > JD_SZBUF) return JDR_MEM2; if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */ rc = create_qt_tbl(jd, seg, len); /* Create de-quantizer tables */ if (rc) return rc; break; case 0xDA: /* SOS - Start of Scan */ if (len > JD_SZBUF) return JDR_MEM2; if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */ if (!jd->width || !jd->height) return JDR_FMT1; /* Err: Invalid image size */ if (seg[0] != jd->ncomp) return JDR_FMT3; /* Err: Wrong color components */ /* Check if all tables corresponding to each components have been loaded */ for (i = 0; i < jd->ncomp; i++) { b = seg[2 + 2 * i]; /* Get huffman table ID */ if (b != 0x00 && b != 0x11) return JDR_FMT3; /* Err: Different table number for DC/AC element */ n = i ? 1 : 0; /* Component class */ if (!jd->huffbits[n][0] || !jd->huffbits[n][1]) { /* Check huffman table for this component */ return JDR_FMT1; /* Err: Nnot loaded */ } if (!jd->qttbl[jd->qtid[i]]) { /* Check dequantizer table for this component */ return JDR_FMT1; /* Err: Not loaded */ } } /* Allocate working buffer for MCU and pixel output */ n = jd->msy * jd->msx; /* Number of Y blocks in the MCU */ if (!n) return JDR_FMT1; /* Err: SOF0 has not been loaded */ len = n * 64 * 2 + 64; /* Allocate buffer for IDCT and RGB output */ if (len < 256) len = 256; /* but at least 256 byte is required for IDCT */ jd->workbuf = alloc_pool(jd, len); /* and it may occupy a part of following MCU working buffer for RGB output */ if (!jd->workbuf) return JDR_MEM1; /* Err: not enough memory */ jd->mcubuf = alloc_pool(jd, (n + 2) * 64 * sizeof (jd_yuv_t)); /* Allocate MCU working buffer */ if (!jd->mcubuf) return JDR_MEM1; /* Err: not enough memory */ /* Align stream read offset to JD_SZBUF */ if (ofs %= JD_SZBUF) { jd->dctr = jd->infunc(jd, seg + ofs, (size_t)(JD_SZBUF - ofs)); } jd->dptr = seg + ofs - (JD_FASTDECODE ? 0 : 1); return JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */ case 0xC1: /* SOF1 */ case 0xC2: /* SOF2 */ case 0xC3: /* SOF3 */ case 0xC5: /* SOF5 */ case 0xC6: /* SOF6 */ case 0xC7: /* SOF7 */ case 0xC9: /* SOF9 */ case 0xCA: /* SOF10 */ case 0xCB: /* SOF11 */ case 0xCD: /* SOF13 */ case 0xCE: /* SOF14 */ case 0xCF: /* SOF15 */ case 0xD9: /* EOI */ return JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */ default: /* Unknown segment (comment, exif or etc..) */ /* Skip segment data (null pointer specifies to remove data from the stream) */ if (jd->infunc(jd, 0, len) != len) return JDR_INP; } } } /*-----------------------------------------------------------------------*/ /* Start to decompress the JPEG picture */ /*-----------------------------------------------------------------------*/ JRESULT jd_decomp ( JDEC* jd, /* Initialized decompression object */ int (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */ uint8_t scale /* Output de-scaling factor (0 to 3) */ ) { unsigned int x, y, mx, my; uint16_t rst, rsc; JRESULT rc; if (scale > (JD_USE_SCALE ? 3 : 0)) return JDR_PAR; jd->scale = scale; mx = jd->msx * 8; my = jd->msy * 8; /* Size of the MCU (pixel) */ jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Initialize DC values */ rst = rsc = 0; rc = JDR_OK; for (y = 0; y < jd->height; y += my) { /* Vertical loop of MCUs */ for (x = 0; x < jd->width; x += mx) { /* Horizontal loop of MCUs */ if (jd->nrst && rst++ == jd->nrst) { /* Process restart interval if enabled */ rc = restart(jd, rsc++); if (rc != JDR_OK) return rc; rst = 1; } rc = mcu_load(jd); /* Load an MCU (decompress huffman coded stream, dequantize and apply IDCT) */ if (rc != JDR_OK) return rc; rc = mcu_output(jd, outfunc, x, y); /* Output the MCU (YCbCr to RGB, scaling and output) */ if (rc != JDR_OK) return rc; } } return rc; } #endif /*LV_USE_SJPG*/