/** * @file lv_area.c * */ /********************* * INCLUDES *********************/ #include "../lv_conf_internal.h" #include "lv_area.h" #include "lv_math.h" /********************* * DEFINES *********************/ /********************** * TYPEDEFS **********************/ /********************** * STATIC PROTOTYPES **********************/ static bool lv_point_within_circle(const lv_area_t * area, const lv_point_t * p); /********************** * STATIC VARIABLES **********************/ /********************** * MACROS **********************/ /********************** * GLOBAL FUNCTIONS **********************/ /** * Initialize an area * @param area_p pointer to an area * @param x1 left coordinate of the area * @param y1 top coordinate of the area * @param x2 right coordinate of the area * @param y2 bottom coordinate of the area */ void lv_area_set(lv_area_t * area_p, lv_coord_t x1, lv_coord_t y1, lv_coord_t x2, lv_coord_t y2) { area_p->x1 = x1; area_p->y1 = y1; area_p->x2 = x2; area_p->y2 = y2; } /** * Set the width of an area * @param area_p pointer to an area * @param w the new width of the area (w == 1 makes x1 == x2) */ void lv_area_set_width(lv_area_t * area_p, lv_coord_t w) { area_p->x2 = area_p->x1 + w - 1; } /** * Set the height of an area * @param area_p pointer to an area * @param h the new height of the area (h == 1 makes y1 == y2) */ void lv_area_set_height(lv_area_t * area_p, lv_coord_t h) { area_p->y2 = area_p->y1 + h - 1; } /** * Set the position of an area (width and height will be kept) * @param area_p pointer to an area * @param x the new x coordinate of the area * @param y the new y coordinate of the area */ void _lv_area_set_pos(lv_area_t * area_p, lv_coord_t x, lv_coord_t y) { lv_coord_t w = lv_area_get_width(area_p); lv_coord_t h = lv_area_get_height(area_p); area_p->x1 = x; area_p->y1 = y; lv_area_set_width(area_p, w); lv_area_set_height(area_p, h); } /** * Return with area of an area (x * y) * @param area_p pointer to an area * @return size of area */ uint32_t lv_area_get_size(const lv_area_t * area_p) { uint32_t size; size = (uint32_t)(area_p->x2 - area_p->x1 + 1) * (area_p->y2 - area_p->y1 + 1); return size; } /** * Get the common parts of two areas * @param res_p pointer to an area, the result will be stored here * @param a1_p pointer to the first area * @param a2_p pointer to the second area * @return false: the two area has NO common parts, res_p is invalid */ bool _lv_area_intersect(lv_area_t * res_p, const lv_area_t * a1_p, const lv_area_t * a2_p) { /* Get the smaller area from 'a1_p' and 'a2_p' */ res_p->x1 = LV_MATH_MAX(a1_p->x1, a2_p->x1); res_p->y1 = LV_MATH_MAX(a1_p->y1, a2_p->y1); res_p->x2 = LV_MATH_MIN(a1_p->x2, a2_p->x2); res_p->y2 = LV_MATH_MIN(a1_p->y2, a2_p->y2); /*If x1 or y1 greater then x2 or y2 then the areas union is empty*/ bool union_ok = true; if((res_p->x1 > res_p->x2) || (res_p->y1 > res_p->y2)) { union_ok = false; } return union_ok; } /** * Join two areas into a third which involves the other two * @param res_p pointer to an area, the result will be stored here * @param a1_p pointer to the first area * @param a2_p pointer to the second area */ void _lv_area_join(lv_area_t * a_res_p, const lv_area_t * a1_p, const lv_area_t * a2_p) { a_res_p->x1 = LV_MATH_MIN(a1_p->x1, a2_p->x1); a_res_p->y1 = LV_MATH_MIN(a1_p->y1, a2_p->y1); a_res_p->x2 = LV_MATH_MAX(a1_p->x2, a2_p->x2); a_res_p->y2 = LV_MATH_MAX(a1_p->y2, a2_p->y2); } /** * Check if a point is on an area * @param a_p pointer to an area * @param p_p pointer to a point * @param radius radius of area (e.g. for rounded rectangle) * @return false:the point is out of the area */ bool _lv_area_is_point_on(const lv_area_t * a_p, const lv_point_t * p_p, lv_coord_t radius) { /*First check the basic area*/ bool is_on_rect = false; if((p_p->x >= a_p->x1 && p_p->x <= a_p->x2) && ((p_p->y >= a_p->y1 && p_p->y <= a_p->y2))) { is_on_rect = true; } if(!is_on_rect) return false; /*Now handle potential rounded rectangles*/ if(radius <= 0) { /*No radius, it is within the rectangle*/ return true; } lv_coord_t w = lv_area_get_width(a_p) / 2; lv_coord_t h = lv_area_get_height(a_p) / 2; lv_coord_t max_radius = LV_MATH_MIN(w, h); if(radius > max_radius) radius = max_radius; /*Check if it's in one of the corners*/ lv_area_t corner_area; /*Top left*/ corner_area.x1 = a_p->x1; corner_area.x2 = a_p->x1 + radius; corner_area.y1 = a_p->y1; corner_area.y2 = a_p->y1 + radius; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x2 += radius; corner_area.y2 += radius; return lv_point_within_circle(&corner_area, p_p); } /*Bottom left*/ corner_area.y1 = a_p->y2 - radius; corner_area.y2 = a_p->y2; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x2 += radius; corner_area.y1 -= radius; return lv_point_within_circle(&corner_area, p_p); } /*Bottom right*/ corner_area.x1 = a_p->x2 - radius; corner_area.x2 = a_p->x2; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x1 -= radius; corner_area.y1 -= radius; return lv_point_within_circle(&corner_area, p_p); } /*Top right*/ corner_area.y1 = a_p->y1; corner_area.y2 = a_p->y1 + radius; if(_lv_area_is_point_on(&corner_area, p_p, 0)) { corner_area.x1 -= radius; corner_area.y2 += radius; return lv_point_within_circle(&corner_area, p_p); } /*Not within corners*/ return true; } /** * Check if two area has common parts * @param a1_p pointer to an area. * @param a2_p pointer to an other area * @return false: a1_p and a2_p has no common parts */ bool _lv_area_is_on(const lv_area_t * a1_p, const lv_area_t * a2_p) { if((a1_p->x1 <= a2_p->x2) && (a1_p->x2 >= a2_p->x1) && (a1_p->y1 <= a2_p->y2) && (a1_p->y2 >= a2_p->y1)) { return true; } else { return false; } } /** * Check if an area is fully on an other * @param ain_p pointer to an area which could be in 'aholder_p' * @param aholder_p pointer to an area which could involve 'ain_p' * @param radius radius of `aholder_p` (e.g. for rounded rectangle) * @return true: `ain_p` is fully inside `aholder_p` */ bool _lv_area_is_in(const lv_area_t * ain_p, const lv_area_t * aholder_p, lv_coord_t radius) { bool is_in = false; if(ain_p->x1 >= aholder_p->x1 && ain_p->y1 >= aholder_p->y1 && ain_p->x2 <= aholder_p->x2 && ain_p->y2 <= aholder_p->y2) { is_in = true; } if(radius == 0) return is_in; /*Check if the corner points are inside the radius or not*/ lv_point_t p; p.x = ain_p->x1; p.y = ain_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x2; p.y = ain_p->y1; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x1; p.y = ain_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; p.x = ain_p->x2; p.y = ain_p->y2; if(_lv_area_is_point_on(aholder_p, &p, radius) == false) return false; return true; } /** * Align an area to an other * @param base an are where the other will be aligned * @param to_align the area to align * @param align `LV_ALIGN_...` * @param res x/y coordinates where `to_align` align area should be placed */ void _lv_area_align(const lv_area_t * base, const lv_area_t * to_align, lv_align_t align, lv_point_t * res) { switch(align) { case LV_ALIGN_CENTER: res->x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; res->y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_IN_TOP_LEFT: res->x = 0; res->y = 0; break; case LV_ALIGN_IN_TOP_MID: res->x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; res->y = 0; break; case LV_ALIGN_IN_TOP_RIGHT: res->x = lv_area_get_width(base) - lv_area_get_width(to_align); res->y = 0; break; case LV_ALIGN_IN_BOTTOM_LEFT: res->x = 0; res->y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_IN_BOTTOM_MID: res->x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; res->y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_IN_BOTTOM_RIGHT: res->x = lv_area_get_width(base) - lv_area_get_width(to_align); res->y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_IN_LEFT_MID: res->x = 0; res->y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_IN_RIGHT_MID: res->x = lv_area_get_width(base) - lv_area_get_width(to_align); res->y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_TOP_LEFT: res->x = 0; res->y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_TOP_MID: res->x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; res->y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_TOP_RIGHT: res->x = lv_area_get_width(base) - lv_area_get_width(to_align); res->y = -lv_area_get_height(to_align); break; case LV_ALIGN_OUT_BOTTOM_LEFT: res->x = 0; res->y = lv_area_get_height(base); break; case LV_ALIGN_OUT_BOTTOM_MID: res->x = lv_area_get_width(base) / 2 - lv_area_get_width(to_align) / 2; res->y = lv_area_get_height(base); break; case LV_ALIGN_OUT_BOTTOM_RIGHT: res->x = lv_area_get_width(base) - lv_area_get_width(to_align); res->y = lv_area_get_height(base); break; case LV_ALIGN_OUT_LEFT_TOP: res->x = -lv_area_get_width(to_align); res->y = 0; break; case LV_ALIGN_OUT_LEFT_MID: res->x = -lv_area_get_width(to_align); res->y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_LEFT_BOTTOM: res->x = -lv_area_get_width(to_align); res->y = lv_area_get_height(base) - lv_area_get_height(to_align); break; case LV_ALIGN_OUT_RIGHT_TOP: res->x = lv_area_get_width(base); res->y = 0; break; case LV_ALIGN_OUT_RIGHT_MID: res->x = lv_area_get_width(base); res->y = lv_area_get_height(base) / 2 - lv_area_get_height(to_align) / 2; break; case LV_ALIGN_OUT_RIGHT_BOTTOM: res->x = lv_area_get_width(base); res->y = lv_area_get_height(base) - lv_area_get_height(to_align); break; } res->x += base->x1; res->y += base->y1; } /********************** * STATIC FUNCTIONS **********************/ static bool lv_point_within_circle(const lv_area_t * area, const lv_point_t * p) { lv_coord_t r = (area->x2 - area->x1) / 2; /* Circle center */ lv_coord_t cx = area->x1 + r; lv_coord_t cy = area->y1 + r; /*Simplify the code by moving everything to (0, 0) */ lv_coord_t px = p->x - cx; lv_coord_t py = p->y - cy; int32_t r_sqrd = r * r; int32_t dist = (px * px) + (py * py); if(dist <= r_sqrd) return true; else return false; }