/*! * \file soft-se.c * * \brief Secure Element software implementation * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2020 Semtech * * ___ _____ _ ___ _ _____ ___ ___ ___ ___ * / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| * \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| * |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| * embedded.connectivity.solutions=============== * * \endcode * */ #include #include #include "utilities.h" #include "aes.h" #include "cmac.h" #include "LoRaMacHeaderTypes.h" #include "secure-element.h" #include "secure-element-nvm.h" #include "se-identity.h" #include "soft-se-hal.h" static SecureElementNvmData_t* SeNvm; /* * Local functions */ /* * Gets key item from key list. * * \param[IN] keyID - Key identifier * \param[OUT] keyItem - Key item reference * \retval - Status of the operation */ static SecureElementStatus_t GetKeyByID( KeyIdentifier_t keyID, Key_t** keyItem ) { for( uint8_t i = 0; i < NUM_OF_KEYS; i++ ) { if( SeNvm->KeyList[i].KeyID == keyID ) { *keyItem = &( SeNvm->KeyList[i] ); return SECURE_ELEMENT_SUCCESS; } } return SECURE_ELEMENT_ERROR_INVALID_KEY_ID; } /* * Computes a CMAC of a message using provided initial Bx block * * cmac = aes128_cmac(keyID, blocks[i].Buffer) * * \param[IN] micBxBuffer - Buffer containing the initial Bx block * \param[IN] buffer - Data buffer * \param[IN] size - Data buffer size * \param[IN] keyID - Key identifier to determine the AES key to be used * \param[OUT] cmac - Computed cmac * \retval - Status of the operation */ static SecureElementStatus_t ComputeCmac( uint8_t* micBxBuffer, uint8_t* buffer, uint16_t size, KeyIdentifier_t keyID, uint32_t* cmac ) { if( ( buffer == NULL ) || ( cmac == NULL ) ) { return SECURE_ELEMENT_ERROR_NPE; } uint8_t Cmac[16]; AES_CMAC_CTX aesCmacCtx[1]; AES_CMAC_Init( aesCmacCtx ); Key_t* keyItem; SecureElementStatus_t retval = GetKeyByID( keyID, &keyItem ); if( retval == SECURE_ELEMENT_SUCCESS ) { AES_CMAC_SetKey( aesCmacCtx, keyItem->KeyValue ); if( micBxBuffer != NULL ) { AES_CMAC_Update( aesCmacCtx, micBxBuffer, 16 ); } AES_CMAC_Update( aesCmacCtx, buffer, size ); AES_CMAC_Final( Cmac, aesCmacCtx ); // Bring into the required format *cmac = ( uint32_t )( ( uint32_t ) Cmac[3] << 24 | ( uint32_t ) Cmac[2] << 16 | ( uint32_t ) Cmac[1] << 8 | ( uint32_t ) Cmac[0] ); } return retval; } /* * API functions */ SecureElementStatus_t SecureElementInit( SecureElementNvmData_t* nvm ) { SecureElementNvmData_t seNvmInit = { /*! * end-device IEEE EUI (big endian) * * \remark In this application the value is automatically generated by * calling BoardGetUniqueId function */ .DevEui = LORAWAN_DEVICE_EUI, /*! * App/Join server IEEE EUI (big endian) */ .JoinEui = LORAWAN_JOIN_EUI, /*! * Secure-element pin (big endian) */ .Pin = SECURE_ELEMENT_PIN, /*! * LoRaWAN key list */ .KeyList = SOFT_SE_KEY_LIST }; if( nvm == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } // Initialize nvm pointer SeNvm = nvm; // Initialize data memcpy1( ( uint8_t* )SeNvm, ( uint8_t* )&seNvmInit, sizeof( seNvmInit ) ); #if !defined( SECURE_ELEMENT_PRE_PROVISIONED ) #if( STATIC_DEVICE_EUI == 0 ) // Get a DevEUI from MCU unique ID SoftSeHalGetUniqueId( SeNvm->DevEui ); #endif #endif return SECURE_ELEMENT_SUCCESS; } SecureElementStatus_t SecureElementSetKey( KeyIdentifier_t keyID, uint8_t* key ) { if( key == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } for( uint8_t i = 0; i < NUM_OF_KEYS; i++ ) { if( SeNvm->KeyList[i].KeyID == keyID ) { if( ( keyID == MC_KEY_0 ) || ( keyID == MC_KEY_1 ) || ( keyID == MC_KEY_2 ) || ( keyID == MC_KEY_3 ) ) { // Decrypt the key if its a Mckey SecureElementStatus_t retval = SECURE_ELEMENT_ERROR; uint8_t decryptedKey[16] = { 0 }; retval = SecureElementAesEncrypt( key, 16, MC_KE_KEY, decryptedKey ); memcpy1( SeNvm->KeyList[i].KeyValue, decryptedKey, SE_KEY_SIZE ); return retval; } else { memcpy1( SeNvm->KeyList[i].KeyValue, key, SE_KEY_SIZE ); return SECURE_ELEMENT_SUCCESS; } } } return SECURE_ELEMENT_ERROR_INVALID_KEY_ID; } SecureElementStatus_t SecureElementComputeAesCmac( uint8_t* micBxBuffer, uint8_t* buffer, uint16_t size, KeyIdentifier_t keyID, uint32_t* cmac ) { if( keyID >= LORAMAC_CRYPTO_MULTICAST_KEYS ) { // Never accept multicast key identifier for cmac computation return SECURE_ELEMENT_ERROR_INVALID_KEY_ID; } return ComputeCmac( micBxBuffer, buffer, size, keyID, cmac ); } SecureElementStatus_t SecureElementVerifyAesCmac( uint8_t* buffer, uint16_t size, uint32_t expectedCmac, KeyIdentifier_t keyID ) { if( buffer == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } SecureElementStatus_t retval = SECURE_ELEMENT_ERROR; uint32_t compCmac = 0; retval = ComputeCmac( NULL, buffer, size, keyID, &compCmac ); if( retval != SECURE_ELEMENT_SUCCESS ) { return retval; } if( expectedCmac != compCmac ) { retval = SECURE_ELEMENT_FAIL_CMAC; } return retval; } SecureElementStatus_t SecureElementAesEncrypt( uint8_t* buffer, uint16_t size, KeyIdentifier_t keyID, uint8_t* encBuffer ) { if( buffer == NULL || encBuffer == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } // Check if the size is divisible by 16, if( ( size % 16 ) != 0 ) { return SECURE_ELEMENT_ERROR_BUF_SIZE; } aes_context aesContext; memset1( aesContext.ksch, '\0', 240 ); Key_t* pItem; SecureElementStatus_t retval = GetKeyByID( keyID, &pItem ); if( retval == SECURE_ELEMENT_SUCCESS ) { aes_set_key( pItem->KeyValue, 16, &aesContext ); uint8_t block = 0; while( size != 0 ) { aes_encrypt( &buffer[block], &encBuffer[block], &aesContext ); block = block + 16; size = size - 16; } } return retval; } SecureElementStatus_t SecureElementDeriveAndStoreKey( uint8_t* input, KeyIdentifier_t rootKeyID, KeyIdentifier_t targetKeyID ) { if( input == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } SecureElementStatus_t retval = SECURE_ELEMENT_ERROR; uint8_t key[16] = { 0 }; // In case of MC_KE_KEY, only McRootKey can be used as root key if( targetKeyID == MC_KE_KEY ) { if( rootKeyID != MC_ROOT_KEY ) { return SECURE_ELEMENT_ERROR_INVALID_KEY_ID; } } // Derive key retval = SecureElementAesEncrypt( input, 16, rootKeyID, key ); if( retval != SECURE_ELEMENT_SUCCESS ) { return retval; } // Store key retval = SecureElementSetKey( targetKeyID, key ); if( retval != SECURE_ELEMENT_SUCCESS ) { return retval; } return SECURE_ELEMENT_SUCCESS; } SecureElementStatus_t SecureElementProcessJoinAccept( JoinReqIdentifier_t joinReqType, uint8_t* joinEui, uint16_t devNonce, uint8_t* encJoinAccept, uint8_t encJoinAcceptSize, uint8_t* decJoinAccept, uint8_t* versionMinor ) { if( ( encJoinAccept == NULL ) || ( decJoinAccept == NULL ) || ( versionMinor == NULL ) ) { return SECURE_ELEMENT_ERROR_NPE; } // Check that frame size isn't bigger than a JoinAccept with CFList size if( encJoinAcceptSize > LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE ) { return SECURE_ELEMENT_ERROR_BUF_SIZE; } // Determine decryption key KeyIdentifier_t encKeyID = NWK_KEY; if( joinReqType != JOIN_REQ ) { encKeyID = J_S_ENC_KEY; } memcpy1( decJoinAccept, encJoinAccept, encJoinAcceptSize ); // Decrypt JoinAccept, skip MHDR if( SecureElementAesEncrypt( encJoinAccept + LORAMAC_MHDR_FIELD_SIZE, encJoinAcceptSize - LORAMAC_MHDR_FIELD_SIZE, encKeyID, decJoinAccept + LORAMAC_MHDR_FIELD_SIZE ) != SECURE_ELEMENT_SUCCESS ) { return SECURE_ELEMENT_FAIL_ENCRYPT; } *versionMinor = ( ( decJoinAccept[11] & 0x80 ) == 0x80 ) ? 1 : 0; uint32_t mic = 0; mic = ( ( uint32_t ) decJoinAccept[encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE] << 0 ); mic |= ( ( uint32_t ) decJoinAccept[encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE + 1] << 8 ); mic |= ( ( uint32_t ) decJoinAccept[encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE + 2] << 16 ); mic |= ( ( uint32_t ) decJoinAccept[encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE + 3] << 24 ); // - Header buffer to be used for MIC computation // - LoRaWAN 1.0.x : micHeader = [MHDR(1)] // - LoRaWAN 1.1.x : micHeader = [JoinReqType(1), JoinEUI(8), DevNonce(2), MHDR(1)] // Verify mic if( *versionMinor == 0 ) { // For LoRaWAN 1.0.x // cmac = aes128_cmac(NwkKey, MHDR | JoinNonce | NetID | DevAddr | DLSettings | RxDelay | CFList | // CFListType) if( SecureElementVerifyAesCmac( decJoinAccept, ( encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE ), mic, NWK_KEY ) != SECURE_ELEMENT_SUCCESS ) { return SECURE_ELEMENT_FAIL_CMAC; } } #if( USE_LRWAN_1_1_X_CRYPTO == 1 ) else if( *versionMinor == 1 ) { uint8_t micHeader11[JOIN_ACCEPT_MIC_COMPUTATION_OFFSET] = { 0 }; uint16_t bufItr = 0; micHeader11[bufItr++] = ( uint8_t ) joinReqType; memcpyr( micHeader11 + bufItr, joinEui, LORAMAC_JOIN_EUI_FIELD_SIZE ); bufItr += LORAMAC_JOIN_EUI_FIELD_SIZE; micHeader11[bufItr++] = devNonce & 0xFF; micHeader11[bufItr++] = ( devNonce >> 8 ) & 0xFF; // For LoRaWAN 1.1.x and later: // cmac = aes128_cmac(JSIntKey, JoinReqType | JoinEUI | DevNonce | MHDR | JoinNonce | NetID | DevAddr | // DLSettings | RxDelay | CFList | CFListType) // Prepare the msg for integrity check (adding JoinReqType, JoinEUI and DevNonce) uint8_t localBuffer[LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET] = { 0 }; memcpy1( localBuffer, micHeader11, JOIN_ACCEPT_MIC_COMPUTATION_OFFSET ); memcpy1( localBuffer + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET - 1, decJoinAccept, encJoinAcceptSize ); if( SecureElementVerifyAesCmac( localBuffer, encJoinAcceptSize + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET - LORAMAC_MHDR_FIELD_SIZE - LORAMAC_MIC_FIELD_SIZE, mic, J_S_INT_KEY ) != SECURE_ELEMENT_SUCCESS ) { return SECURE_ELEMENT_FAIL_CMAC; } } #endif else { return SECURE_ELEMENT_ERROR_INVALID_LORAWAM_SPEC_VERSION; } return SECURE_ELEMENT_SUCCESS; } SecureElementStatus_t SecureElementSetDevEui( uint8_t* devEui ) { if( devEui == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } memcpy1( SeNvm->DevEui, devEui, SE_EUI_SIZE ); return SECURE_ELEMENT_SUCCESS; } uint8_t* SecureElementGetDevEui( void ) { return SeNvm->DevEui; } SecureElementStatus_t SecureElementSetJoinEui( uint8_t* joinEui ) { if( joinEui == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } memcpy1( SeNvm->JoinEui, joinEui, SE_EUI_SIZE ); return SECURE_ELEMENT_SUCCESS; } uint8_t* SecureElementGetJoinEui( void ) { return SeNvm->JoinEui; } SecureElementStatus_t SecureElementSetPin( uint8_t* pin ) { if( pin == NULL ) { return SECURE_ELEMENT_ERROR_NPE; } memcpy1( SeNvm->Pin, pin, SE_PIN_SIZE ); return SECURE_ELEMENT_SUCCESS; } uint8_t* SecureElementGetPin( void ) { return SeNvm->Pin; }