/*! * \file board.c * * \brief Target board general functions implementation * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) * * \author Andreas Pella ( IMST GmbH ) */ #include "stm32l1xx.h" #include "utilities.h" #include "gpio.h" #include "adc.h" #include "spi.h" #include "i2c.h" #include "uart.h" #include "timer.h" #include "sysIrqHandlers.h" #include "board-config.h" #include "lpm-board.h" #include "rtc-board.h" #include "sx1272-board.h" #include "board.h" /*! * Unique Devices IDs register set ( STM32L1xxx ) */ #define ID1 ( 0x1FF80050 ) #define ID2 ( 0x1FF80054 ) #define ID3 ( 0x1FF80064 ) /*! * LED GPIO pins objects */ #if ( USE_POTENTIOMETER == 0 ) Gpio_t Led1; #endif Gpio_t Led2; Gpio_t Led3; Gpio_t Led4; /* * MCU objects */ Adc_t Adc; I2c_t I2c; Uart_t Uart1; /*! * Initializes the unused GPIO to a know status */ static void BoardUnusedIoInit( void ); /*! * System Clock Configuration */ static void SystemClockConfig( void ); /*! * System Clock Re-Configuration when waking up from STOP mode */ static void SystemClockReConfig( void ); /*! * Flag to indicate if the MCU is Initialized */ static bool McuInitialized = false; /*! * UART2 FIFO buffers size */ #define UART1_FIFO_TX_SIZE 1024 #define UART1_FIFO_RX_SIZE 1024 uint8_t Uart1TxBuffer[UART1_FIFO_TX_SIZE]; uint8_t Uart1RxBuffer[UART1_FIFO_RX_SIZE]; void BoardCriticalSectionBegin( uint32_t *mask ) { *mask = __get_PRIMASK( ); __disable_irq( ); } void BoardCriticalSectionEnd( uint32_t *mask ) { __set_PRIMASK( *mask ); } void BoardInitPeriph( void ) { } void BoardInitMcu( void ) { if( McuInitialized == false ) { HAL_Init( ); // LEDs #if ( USE_POTENTIOMETER == 0 ) GpioInit( &Led1, LED_1, PIN_OUTPUT, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); #endif GpioInit( &Led2, LED_2, PIN_OUTPUT, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); GpioInit( &Led3, LED_3, PIN_OUTPUT, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); GpioInit( &Led4, LED_4, PIN_OUTPUT, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); SystemClockConfig( ); FifoInit( &Uart1.FifoTx, Uart1TxBuffer, UART1_FIFO_TX_SIZE ); FifoInit( &Uart1.FifoRx, Uart1RxBuffer, UART1_FIFO_RX_SIZE ); // Configure your terminal for 8 Bits data (7 data bit + 1 parity bit), no parity and no flow ctrl UartInit( &Uart1, UART_1, UART_TX, UART_RX ); UartConfig( &Uart1, RX_TX, 921600, UART_8_BIT, UART_1_STOP_BIT, NO_PARITY, NO_FLOW_CTRL ); RtcInit( ); // Switch LED 1, 2, 3, 4 OFF #if ( USE_POTENTIOMETER == 0 ) GpioWrite( &Led1, 0 ); #endif GpioWrite( &Led2, 0 ); GpioWrite( &Led3, 0 ); GpioWrite( &Led4, 0 ); BoardUnusedIoInit( ); if( GetBoardPowerSource( ) == BATTERY_POWER ) { // Disables OFF mode - Enables lowest power mode (STOP) LpmSetOffMode( LPM_APPLI_ID, LPM_DISABLE ); } } else { SystemClockReConfig( ); } AdcInit( &Adc, POTI ); SpiInit( &SX1272.Spi, SPI_1, RADIO_MOSI, RADIO_MISO, RADIO_SCLK, NC ); SX1272IoInit( ); if( McuInitialized == false ) { McuInitialized = true; SX1272IoDbgInit( ); SX1272IoTcxoInit( ); } } void BoardResetMcu( void ) { CRITICAL_SECTION_BEGIN( ); //Restart system NVIC_SystemReset( ); } void BoardDeInitMcu( void ) { Gpio_t ioPin; AdcDeInit( &Adc ); SpiDeInit( &SX1272.Spi ); SX1272IoDeInit( ); GpioInit( &ioPin, OSC_HSE_IN, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); GpioInit( &ioPin, OSC_HSE_OUT, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 1 ); GpioInit( &ioPin, OSC_LSE_IN, PIN_INPUT, PIN_PUSH_PULL, PIN_PULL_DOWN, 1 ); GpioInit( &ioPin, OSC_LSE_OUT, PIN_INPUT, PIN_PUSH_PULL, PIN_PULL_DOWN, 1 ); } uint32_t BoardGetRandomSeed( void ) { return ( ( *( uint32_t* )ID1 ) ^ ( *( uint32_t* )ID2 ) ^ ( *( uint32_t* )ID3 ) ); } void BoardGetUniqueId( uint8_t *id ) { id[7] = ( ( *( uint32_t* )ID1 )+ ( *( uint32_t* )ID3 ) ) >> 24; id[6] = ( ( *( uint32_t* )ID1 )+ ( *( uint32_t* )ID3 ) ) >> 16; id[5] = ( ( *( uint32_t* )ID1 )+ ( *( uint32_t* )ID3 ) ) >> 8; id[4] = ( ( *( uint32_t* )ID1 )+ ( *( uint32_t* )ID3 ) ); id[3] = ( ( *( uint32_t* )ID2 ) ) >> 24; id[2] = ( ( *( uint32_t* )ID2 ) ) >> 16; id[1] = ( ( *( uint32_t* )ID2 ) ) >> 8; id[0] = ( ( *( uint32_t* )ID2 ) ); } /*! * Potentiometer max and min levels definition */ #define POTI_MAX_LEVEL 900 #define POTI_MIN_LEVEL 10 uint8_t BoardGetPotiLevel( void ) { uint8_t potiLevel = 0; uint16_t vpoti = 0; // Read the current potentiometer setting vpoti = AdcReadChannel( &Adc , ADC_CHANNEL_3 ); // check the limits if( vpoti >= POTI_MAX_LEVEL ) { potiLevel = 100; } else if( vpoti <= POTI_MIN_LEVEL ) { potiLevel = 0; } else { // if the value is in the area, calculate the percentage value potiLevel = ( ( vpoti - POTI_MIN_LEVEL ) * 100 ) / POTI_MAX_LEVEL; } return potiLevel; } /*! * Factory power supply */ #define FACTORY_POWER_SUPPLY 3300 // mV /*! * VREF calibration value */ #define VREFINT_CAL ( *( uint16_t* )0x1FF800F8U ) /*! * ADC maximum value */ #define ADC_MAX_VALUE 4095 /*! * VREF bandgap value */ #define ADC_VREF_BANDGAP 1224 // mV /*! * Battery thresholds */ #define BATTERY_MAX_LEVEL 3000 // mV #define BATTERY_MIN_LEVEL 2400 // mV #define BATTERY_SHUTDOWN_LEVEL 2300 // mV static uint16_t BatteryVoltage = BATTERY_MAX_LEVEL; uint16_t BoardBatteryMeasureVoltage( void ) { uint16_t vref = 0; uint32_t batteryVoltage = 0; // Read the current Voltage vref = AdcReadChannel( &Adc , ADC_CHANNEL_17 ); // We don't use the VREF from calibValues here. // calculate the Voltage in millivolt batteryVoltage = ( uint32_t )ADC_VREF_BANDGAP * ( uint32_t )ADC_MAX_VALUE; batteryVoltage = batteryVoltage / ( uint32_t )vref; return batteryVoltage; } uint32_t BoardGetBatteryVoltage( void ) { return BatteryVoltage; } uint8_t BoardGetBatteryLevel( void ) { uint8_t batteryLevel = 0; BatteryVoltage = BoardBatteryMeasureVoltage( ); if( GetBoardPowerSource( ) == USB_POWER ) { batteryLevel = 0; } else { if( BatteryVoltage >= BATTERY_MAX_LEVEL ) { batteryLevel = 254; } else if( ( BatteryVoltage > BATTERY_MIN_LEVEL ) && ( BatteryVoltage < BATTERY_MAX_LEVEL ) ) { batteryLevel = ( ( 253 * ( BatteryVoltage - BATTERY_MIN_LEVEL ) ) / ( BATTERY_MAX_LEVEL - BATTERY_MIN_LEVEL ) ) + 1; } else if( ( BatteryVoltage > BATTERY_SHUTDOWN_LEVEL ) && ( BatteryVoltage <= BATTERY_MIN_LEVEL ) ) { batteryLevel = 1; } else //if( BatteryVoltage <= BATTERY_SHUTDOWN_LEVEL ) { batteryLevel = 255; } } return batteryLevel; } static void BoardUnusedIoInit( void ) { Gpio_t ioPin; if( GetBoardPowerSource( ) == BATTERY_POWER ) { GpioInit( &ioPin, USB_DM, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); GpioInit( &ioPin, USB_DP, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); } #if defined( USE_DEBUGGER ) HAL_DBGMCU_EnableDBGSleepMode( ); HAL_DBGMCU_EnableDBGStopMode( ); HAL_DBGMCU_EnableDBGStandbyMode( ); #else HAL_DBGMCU_DisableDBGSleepMode( ); HAL_DBGMCU_DisableDBGStopMode( ); HAL_DBGMCU_DisableDBGStandbyMode( ); GpioInit( &ioPin, JTAG_TMS, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); GpioInit( &ioPin, JTAG_TCK, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); GpioInit( &ioPin, JTAG_TDI, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); GpioInit( &ioPin, JTAG_TDO, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); GpioInit( &ioPin, JTAG_NRST, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 ); #endif } void SystemClockConfig( void ) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; __HAL_RCC_PWR_CLK_ENABLE( ); __HAL_PWR_VOLTAGESCALING_CONFIG( PWR_REGULATOR_VOLTAGE_SCALE1 ); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3; if( HAL_RCC_OscConfig( &RCC_OscInitStruct ) != HAL_OK ) { assert_param( LMN_STATUS_ERROR ); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if( HAL_RCC_ClockConfig( &RCC_ClkInitStruct, FLASH_LATENCY_1 ) != HAL_OK ) { assert_param( LMN_STATUS_ERROR ); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; if( HAL_RCCEx_PeriphCLKConfig( &PeriphClkInit ) != HAL_OK ) { assert_param( LMN_STATUS_ERROR ); } HAL_SYSTICK_Config( HAL_RCC_GetHCLKFreq( ) / 1000 ); HAL_SYSTICK_CLKSourceConfig( SYSTICK_CLKSOURCE_HCLK ); // SysTick_IRQn interrupt configuration HAL_NVIC_SetPriority( SysTick_IRQn, 0, 0 ); } void SystemClockReConfig( void ) { __HAL_RCC_PWR_CLK_ENABLE( ); __HAL_PWR_VOLTAGESCALING_CONFIG( PWR_REGULATOR_VOLTAGE_SCALE1 ); // Enable HSE __HAL_RCC_HSE_CONFIG( RCC_HSE_ON ); // Wait till HSE is ready while( __HAL_RCC_GET_FLAG( RCC_FLAG_HSERDY ) == RESET ) { } // Enable PLL __HAL_RCC_PLL_ENABLE( ); // Wait till PLL is ready while( __HAL_RCC_GET_FLAG( RCC_FLAG_PLLRDY ) == RESET ) { } // Select PLL as system clock source __HAL_RCC_SYSCLK_CONFIG ( RCC_SYSCLKSOURCE_PLLCLK ); // Wait till PLL is used as system clock source while( __HAL_RCC_GET_SYSCLK_SOURCE( ) != RCC_SYSCLKSOURCE_STATUS_PLLCLK ) { } } void SysTick_Handler( void ) { HAL_IncTick( ); HAL_SYSTICK_IRQHandler( ); } uint8_t GetBoardPowerSource( void ) { return USB_POWER; } /** * \brief Enters Low Power Stop Mode * * \note ARM exists the function when waking up */ void LpmEnterStopMode( void) { CRITICAL_SECTION_BEGIN( ); BoardDeInitMcu( ); // Disable the Power Voltage Detector HAL_PWR_DisablePVD( ); // Clear wake up flag SET_BIT( PWR->CR, PWR_CR_CWUF ); // Enable Ultra low power mode HAL_PWREx_EnableUltraLowPower( ); // Enable the fast wake up from Ultra low power mode HAL_PWREx_EnableFastWakeUp( ); CRITICAL_SECTION_END( ); // Enter Stop Mode HAL_PWR_EnterSTOPMode( PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI ); } /*! * \brief Exists Low Power Stop Mode */ void LpmExitStopMode( void ) { // Disable IRQ while the MCU is not running on HSI CRITICAL_SECTION_BEGIN( ); // Initilizes the peripherals BoardInitMcu( ); CRITICAL_SECTION_END( ); } /*! * \brief Enters Low Power Sleep Mode * * \note ARM exits the function when waking up */ void LpmEnterSleepMode( void) { HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI); } void BoardLowPowerHandler( void ) { __disable_irq( ); /*! * If an interrupt has occurred after __disable_irq( ), it is kept pending * and cortex will not enter low power anyway */ LpmEnterLowPower( ); __enable_irq( ); } #if !defined ( __CC_ARM ) /* * Function to be used by stdout for printf etc */ int _write( int fd, const void *buf, size_t count ) { while( UartPutBuffer( &Uart1, ( uint8_t* )buf, ( uint16_t )count ) != 0 ){ }; return count; } /* * Function to be used by stdin for scanf etc */ int _read( int fd, const void *buf, size_t count ) { size_t bytesRead = 0; while( UartGetBuffer( &Uart1, ( uint8_t* )buf, count, ( uint16_t* )&bytesRead ) != 0 ){ }; // Echo back the character while( UartPutBuffer( &Uart1, ( uint8_t* )buf, ( uint16_t )bytesRead ) != 0 ){ }; return bytesRead; } #else #include // Keil compiler int fputc( int c, FILE *stream ) { while( UartPutChar( &Uart1, ( uint8_t )c ) != 0 ); return c; } int fgetc( FILE *stream ) { uint8_t c = 0; while( UartGetChar( &Uart1, &c ) != 0 ); // Echo back the character while( UartPutChar( &Uart1, c ) != 0 ); return ( int )c; } #endif #ifdef USE_FULL_ASSERT #include /* * Function Name : assert_failed * Description : Reports the name of the source file and the source line number * where the assert_param error has occurred. * Input : - file: pointer to the source file name * - line: assert_param error line source number * Output : None * Return : None */ void assert_failed( uint8_t* file, uint32_t line ) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %lu\n", file, line) */ printf( "Wrong parameters value: file %s on line %lu\n", ( const char* )file, line ); /* Infinite loop */ while( 1 ) { } } #endif