# # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import lc3 import tables as T, appendix_c as C ### ------------------------------------------------------------------------ ### class Tns: SUB_LIM_2M5_NB = [ [ 3, 10, 20 ] ] SUB_LIM_2M5_WB = [ [ 3, 20, 40 ] ] SUB_LIM_2M5_SSWB = [ [ 3, 30, 60 ] ] SUB_LIM_2M5_SWB = [ [ 3, 40, 80 ] ] SUB_LIM_2M5_FB = [ [ 3, 51, 100 ] ] SUB_LIM_2M5 = [ SUB_LIM_2M5_NB , SUB_LIM_2M5_WB, SUB_LIM_2M5_SSWB, SUB_LIM_2M5_SWB, SUB_LIM_2M5_FB, SUB_LIM_2M5_FB, SUB_LIM_2M5_FB ] SUB_LIM_5M_NB = [ [ 6, 23, 40 ] ] SUB_LIM_5M_WB = [ [ 6, 43, 80 ] ] SUB_LIM_5M_SSWB = [ [ 6, 63, 120 ] ] SUB_LIM_5M_SWB = [ [ 6, 43, 80 ], [ 80, 120, 160 ] ] SUB_LIM_5M_FB = [ [ 6, 53, 100 ], [ 100, 150, 200 ] ] SUB_LIM_5M = [ SUB_LIM_5M_NB , SUB_LIM_5M_WB, SUB_LIM_5M_SSWB, SUB_LIM_5M_SWB, SUB_LIM_5M_FB, SUB_LIM_5M_FB, SUB_LIM_5M_FB ] SUB_LIM_7M5_NB = [ [ 9, 26, 43, 60 ] ] SUB_LIM_7M5_WB = [ [ 9, 46, 83, 120 ] ] SUB_LIM_7M5_SSWB = [ [ 9, 66, 123, 180 ] ] SUB_LIM_7M5_SWB = [ [ 9, 46, 82, 120 ], [ 120, 159, 200, 240 ] ] SUB_LIM_7M5_FB = [ [ 9, 56, 103, 150 ], [ 150, 200, 250, 300 ] ] SUB_LIM_7M5 = [ SUB_LIM_7M5_NB , SUB_LIM_7M5_WB, SUB_LIM_7M5_SSWB, SUB_LIM_7M5_SWB, SUB_LIM_7M5_FB, None, None ] SUB_LIM_10M_NB = [ [ 12, 34, 57, 80 ] ] SUB_LIM_10M_WB = [ [ 12, 61, 110, 160 ] ] SUB_LIM_10M_SSWB = [ [ 12, 88, 164, 240 ] ] SUB_LIM_10M_SWB = [ [ 12, 61, 110, 160 ], [ 160, 213, 266, 320 ] ] SUB_LIM_10M_FB = [ [ 12, 74, 137, 200 ], [ 200, 266, 333, 400 ] ] SUB_LIM_10M = [ SUB_LIM_10M_NB , SUB_LIM_10M_WB, SUB_LIM_10M_SSWB, SUB_LIM_10M_SWB, SUB_LIM_10M_FB, SUB_LIM_10M_FB, SUB_LIM_10M_FB ] SUB_LIM = [ SUB_LIM_2M5, SUB_LIM_5M, SUB_LIM_7M5, SUB_LIM_10M ] FREQ_LIM_2M5_NB = [ 3, 20 ] FREQ_LIM_2M5_WB = [ 3, 40 ] FREQ_LIM_2M5_SSWB = [ 3, 60 ] FREQ_LIM_2M5_SWB = [ 3, 80 ] FREQ_LIM_2M5_FB = [ 3, 100 ] FREQ_LIM_2M5 = [ FREQ_LIM_2M5_NB , FREQ_LIM_2M5_WB, FREQ_LIM_2M5_SSWB, FREQ_LIM_2M5_SWB, FREQ_LIM_2M5_FB, FREQ_LIM_2M5_FB, FREQ_LIM_2M5_FB ] FREQ_LIM_5M_NB = [ 6, 40 ] FREQ_LIM_5M_WB = [ 6, 80 ] FREQ_LIM_5M_SSWB = [ 6, 120 ] FREQ_LIM_5M_SWB = [ 6, 80, 160 ] FREQ_LIM_5M_FB = [ 6, 100, 200 ] FREQ_LIM_5M = [ FREQ_LIM_5M_NB , FREQ_LIM_5M_WB, FREQ_LIM_5M_SSWB, FREQ_LIM_5M_SWB, FREQ_LIM_5M_FB, FREQ_LIM_5M_FB, FREQ_LIM_5M_FB ] FREQ_LIM_7M5_NB = [ 9, 60 ] FREQ_LIM_7M5_WB = [ 9, 120 ] FREQ_LIM_7M5_SSWB = [ 9, 180 ] FREQ_LIM_7M5_SWB = [ 9, 120, 240 ] FREQ_LIM_7M5_FB = [ 9, 150, 300 ] FREQ_LIM_7M5 = [ FREQ_LIM_7M5_NB , FREQ_LIM_7M5_WB, FREQ_LIM_7M5_SSWB, FREQ_LIM_7M5_SWB, FREQ_LIM_7M5_FB, None, None ] FREQ_LIM_10M_NB = [ 12, 80 ] FREQ_LIM_10M_WB = [ 12, 160 ] FREQ_LIM_10M_SSWB = [ 12, 240 ] FREQ_LIM_10M_SWB = [ 12, 160, 320 ] FREQ_LIM_10M_FB = [ 12, 200, 400 ] FREQ_LIM_10M = [ FREQ_LIM_10M_NB , FREQ_LIM_10M_WB, FREQ_LIM_10M_SSWB, FREQ_LIM_10M_SWB, FREQ_LIM_10M_FB, FREQ_LIM_10M_FB, FREQ_LIM_10M_FB ] FREQ_LIM = [ FREQ_LIM_2M5, FREQ_LIM_5M, FREQ_LIM_7M5, FREQ_LIM_10M ] def __init__(self, dt): self.dt = dt (self.nfilters, self.lpc_weighting, self.rc_order, self.rc) = \ (0, False, np.array([ 0, 0 ]), np.array([ 0, 0 ])) def get_data(self): rc = np.append(self.rc - 8, np.zeros((2, 8 - len(self.rc[0]))), axis=1) return { 'nfilters' : self.nfilters, 'lpc_weighting' : self.lpc_weighting, 'rc_order' : self.rc_order, 'rc' : rc } def get_nbits(self): lpc_weighting = self.lpc_weighting nbits = 0 for f in range(self.nfilters): rc_order = self.rc_order[f] rc = self.rc[f] nbits_order = T.TNS_ORDER_BITS[int(lpc_weighting)][rc_order] nbits_coef = sum([ T.TNS_COEF_BITS[k][rc[k]] for k in range(rc_order) ]) nbits += ((2048 + nbits_order + nbits_coef) + 2047) >> 11 return nbits class TnsAnalysis(Tns): def __init__(self, dt): super().__init__(dt) def compute_lpc_coeffs(self, bw, f, x): ### Normalized autocorrelation function S = Tns.SUB_LIM[self.dt][bw][f] maxorder = [ 4, 8 ][self.dt > T.DT_5M] r = np.append([ 3 ], np.zeros(maxorder)) e = [ sum(x[S[s]:S[s+1]] ** 2) for s in range(len(S)-1) ] for k in range(len(r) if sum(e) > 0 else 0): c = [ np.dot(x[S[s]:S[s+1]-k], x[S[s]+k:S[s+1]]) for s in range(len(S)-1) ] r[k] = np.sum( np.array(c) / np.array(e) ) r *= np.exp(-0.5 * (0.02 * np.pi * np.arange(1+maxorder)) ** 2) ### Levinson-Durbin recursion err = r[0] a = np.ones(len(r)) for k in range(1, len(a)): rc = -sum(a[:k] * r[k:0:-1]) / err a[1:k] += rc * a[k-1:0:-1] a[k] = rc err *= 1 - rc ** 2 return (r[0] / err, a) def lpc_weight(self, pred_gain, a): gamma = 1 - (1 - 0.85) * (2 - pred_gain) / (2 - 1.5) return a * np.power(gamma, np.arange(len(a))) def coeffs_reflexion(self, a): rc = np.zeros(len(a)-1) b = a.copy() for k in range(len(rc), 0, -1): rc[k-1] = b[k] e = 1 - rc[k-1] ** 2 b[1:k] = (b[1:k] - rc[k-1] * b[k-1:0:-1]) / e return rc def quantization(self, rc, lpc_weighting): delta = np.pi / 17 rc_i = np.rint(np.arcsin(rc) / delta).astype(int) + 8 rc_q = np.sin(delta * (rc_i - 8)) rc_q = np.rint(rc_q * 2**15) / 2**15 rc_order = len(rc_i) - np.argmin(rc_i[::-1] == 8) return (rc_order, rc_q, rc_i) def filtering(self, st, x, rc_order, rc): y = np.empty(len(x)) for i in range(len(x)): xi = x[i] s1 = xi for k in range(rc_order): s0 = st[k] st[k] = s1 s1 = rc[k] * xi + s0 xi += rc[k] * s0 y[i] = xi return y def run(self, x, bw, nn_flag, nbytes): fstate = np.zeros(8) y = x.copy() self.nfilters = len(Tns.SUB_LIM[self.dt][bw]) maxorder = [ 4, 8 ][self.dt > T.DT_5M] self.lpc_weighting = nbytes < 120 * (1 + self.dt) / 8 self.rc_order = np.zeros(2, dtype=np.intc) self.rc = np.zeros((2, maxorder), dtype=np.intc) for f in range(self.nfilters): (pred_gain, a) = self.compute_lpc_coeffs(bw, f, x) tns_off = pred_gain <= 1.5 or nn_flag if tns_off: continue if self.lpc_weighting and pred_gain < 2: a = self.lpc_weight(pred_gain, a) rc = self.coeffs_reflexion(a) (rc_order, rc_q, rc_i) = \ self.quantization(rc, self.lpc_weighting) self.rc_order[f] = rc_order self.rc[f] = rc_i if rc_order > 0: i0 = Tns.FREQ_LIM[self.dt][bw][f] i1 = Tns.FREQ_LIM[self.dt][bw][f+1] y[i0:i1] = self.filtering( fstate, x[i0:i1], rc_order, rc_q) return y def store(self, b): for f in range(self.nfilters): lpc_weighting = self.lpc_weighting rc_order = self.rc_order[f] rc = self.rc[f] b.write_bit(min(rc_order, 1)) if rc_order > 0: b.ac_encode( T.TNS_ORDER_CUMFREQ[int(lpc_weighting)][rc_order-1], T.TNS_ORDER_FREQ[int(lpc_weighting)][rc_order-1] ) for k in range(rc_order): b.ac_encode(T.TNS_COEF_CUMFREQ[k][rc[k]], T.TNS_COEF_FREQ[k][rc[k]] ) class TnsSynthesis(Tns): def filtering(self, st, x, rc_order, rc): y = x.copy() for i in range(len(x)): xi = x[i] - rc[rc_order-1] * st[rc_order-1] for k in range(rc_order-2, -1, -1): xi -= rc[k] * st[k] st[k+1] = xi * rc[k] + st[k] st[0] = xi y[i] = xi return y def load(self, b, bw, nbytes): self.nfilters = len(Tns.SUB_LIM[self.dt][bw]) self.lpc_weighting = nbytes < 120 * (1 + self.dt) / 8 self.rc_order = np.zeros(2, dtype=np.intc) self.rc = 8 * np.ones((2, 8), dtype=np.intc) for f in range(self.nfilters): if not b.read_bit(): continue rc_order = 1 + b.ac_decode( T.TNS_ORDER_CUMFREQ[int(self.lpc_weighting)], T.TNS_ORDER_FREQ[int(self.lpc_weighting)]) self.rc_order[f] = rc_order for k in range(rc_order): rc = b.ac_decode(T.TNS_COEF_CUMFREQ[k], T.TNS_COEF_FREQ[k]) self.rc[f][k] = rc def run(self, x, bw): fstate = np.zeros(8) y = x.copy() for f in range(self.nfilters): rc_order = self.rc_order[f] rc = np.sin((np.pi / 17) * (self.rc[f] - 8)) rc = np.rint(rc * 2**15) / 2**15 if rc_order > 0: i0 = Tns.FREQ_LIM[self.dt][bw][f] i1 = Tns.FREQ_LIM[self.dt][bw][f+1] y[i0:i1] = self.filtering( fstate, x[i0:i1], rc_order, rc) return y ### ------------------------------------------------------------------------ ### def check_analysis(rng, dt, bw): ok = True analysis = TnsAnalysis(dt) nbytes_lim = int((48 * T.DT_MS[dt]) // 8) for i in range(10): ne = T.I[dt][bw][-1] x = rng.random(ne) * 1e2 x = pow(x, .5 + i/5) for nn_flag in (True, False): for nbytes in (nbytes_lim, nbytes_lim + 1): y = analysis.run(x, bw, nn_flag, nbytes) (y_c, data_c) = lc3.tns_analyze(dt, bw, nn_flag, nbytes, x) ok = ok and data_c['lpc_weighting'] == analysis.lpc_weighting ok = ok and data_c['nfilters'] == analysis.nfilters for f in range(analysis.nfilters): rc_order = analysis.rc_order[f] rc_order_c = data_c['rc_order'][f] rc_c = 8 + data_c['rc'][f] ok = ok and rc_order_c == rc_order ok = ok and not np.any(rc_c[:rc_order] - analysis.rc[f][:rc_order]) ok = ok and lc3.tns_get_nbits(data_c) == analysis.get_nbits() ok = ok and np.amax(np.abs(y_c - y)) < 1e-2 return ok def check_synthesis(rng, dt, bw): ok = True synthesis = TnsSynthesis(dt) for i in range(100): ne = T.I[dt][bw][-1] x = rng.random(ne) * 1e2 maxorder = [ 4, 8 ][dt > T.DT_5M] synthesis.nfilters = 1 + int(dt >= T.DT_5M and bw >= T.SRATE_32K) synthesis.rc_order = rng.integers(0, 1+maxorder, 2) synthesis.rc = rng.integers(0, 17, 16).reshape(2, 8) y = synthesis.run(x, bw) y_c = lc3.tns_synthesize(dt, bw, synthesis.get_data(), x) ok = ok and np.amax(np.abs(y_c - y) < 1e-4) return ok def check_analysis_appendix_c(dt): i0 = dt - T.DT_7M5 sr = T.SRATE_16K ok = True fs = Tns.FREQ_LIM[i0][sr][0] fe = Tns.FREQ_LIM[i0][sr][1] st = np.zeros(8) for i in range(len(C.X_S[i0])): (_, a) = lc3.tns_compute_lpc_coeffs(dt, sr, C.X_S[i0][i]) ok = ok and np.amax(np.abs(a[0] - C.TNS_LEV_A[i0][i])) < 1e-5 rc = lc3.tns_lpc_reflection(dt, a[0]) ok = ok and np.amax(np.abs(rc - C.TNS_LEV_RC[i0][i])) < 1e-5 (rc_order, rc_i) = lc3.tns_quantize_rc(dt, C.TNS_LEV_RC[i0][i]) ok = ok and rc_order == C.RC_ORDER[i0][i][0] ok = ok and np.any((rc_i + 8) - C.RC_I_1[i0][i] == 0) rc_q = lc3.tns_unquantize_rc(rc_i, rc_order) ok = ok and np.amax(np.abs(rc_q - C.RC_Q_1[i0][i])) < 1e-6 (x, side) = lc3.tns_analyze(dt, sr, False, C.NBYTES[i0], C.X_S[i0][i]) ok = ok and side['nfilters'] == 1 ok = ok and side['rc_order'][0] == C.RC_ORDER[i0][i][0] ok = ok and not np.any((side['rc'][0] + 8) - C.RC_I_1[i0][i]) ok = ok and lc3.tns_get_nbits(side) == C.NBITS_TNS[i0][i] ok = ok and np.amax(np.abs(x - C.X_F[i0][i])) < 1e-3 return ok def check_synthesis_appendix_c(dt): i0 = dt - T.DT_7M5 sr = T.SRATE_16K ok = True for i in range(len(C.X_HAT_Q[i0])): side = { 'nfilters' : 1, 'lpc_weighting' : C.NBYTES[i0] < 120 * (1 + dt) / 8, 'rc_order': C.RC_ORDER[i0][i], 'rc': [ C.RC_I_1[i0][i] - 8, C.RC_I_2[i0][i] - 8 ] } g_int = C.GG_IND_ADJ[i0][i] + C.GG_OFF[i0][i] x = C.X_HAT_Q[i0][i] * (10 ** (g_int / 28)) x = lc3.tns_synthesize(dt, sr, side, x) ok = ok and np.amax(np.abs(x - C.X_HAT_TNS[i0][i])) < 1e-3 sr = T.SRATE_48K if dt != T.DT_10M: return ok side = { 'nfilters' : 2, 'lpc_weighting' : False, 'rc_order': C.RC_ORDER_48K_10M, 'rc': [ C.RC_I_1_48K_10M - 8, C.RC_I_2_48K_10M - 8 ] } x = C.X_HAT_F_48K_10M x = lc3.tns_synthesize(dt, sr, side, x) ok = ok and np.amax(np.abs(x - C.X_HAT_TNS_48K_10M)) < 1e-3 return ok def check(): rng = np.random.default_rng(1234) ok = True for dt in range(T.NUM_DT): for sr in range(T.SRATE_8K, T.SRATE_48K + 1): ok = ok and check_analysis(rng, dt, sr) ok = ok and check_synthesis(rng, dt, sr) for dt in ( T.DT_2M5, T.DT_5M, T.DT_10M ): for sr in ( T.SRATE_48K_HR, T.SRATE_96K_HR ): ok = ok and check_analysis(rng, dt, sr) for dt in ( T.DT_7M5, T.DT_10M ): check_analysis_appendix_c(dt) check_synthesis_appendix_c(dt) return ok ### ------------------------------------------------------------------------ ###