/****************************************************************************** * * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include "spec.h" #include "bits.h" #include "tables.h" /* ---------------------------------------------------------------------------- * Global Gain / Quantization * -------------------------------------------------------------------------- */ /** * Resolve quantized gain index offset * sr, nbytes Samplerate and size of the frame * return Gain index offset */ static int resolve_gain_offset(enum lc3_srate sr, int nbytes) { int sr_ind = lc3_hr(sr) ? 4 + (sr - LC3_SRATE_48K_HR) : sr; int g_off = (nbytes * 8) / (10 * (1 + sr_ind)); return LC3_MIN(sr >= LC3_SRATE_96K_HR ? 181 : 255, 105 + 5*(1 + sr_ind) + LC3_MIN(g_off, 115)); } /** * Unquantize gain * g_int Quantization gain value * return Unquantized gain value */ static float unquantize_gain(int g_int) { /* Unquantization gain table : * G[i] = 10 ^ (i / 28) , i = [0..27] */ static const float iq_table[] = { 1.00000000e+00, 1.08571112e+00, 1.17876863e+00, 1.27980221e+00, 1.38949549e+00, 1.50859071e+00, 1.63789371e+00, 1.77827941e+00, 1.93069773e+00, 2.09617999e+00, 2.27584593e+00, 2.47091123e+00, 2.68269580e+00, 2.91263265e+00, 3.16227766e+00, 3.43332002e+00, 3.72759372e+00, 4.04708995e+00, 4.39397056e+00, 4.77058270e+00, 5.17947468e+00, 5.62341325e+00, 6.10540230e+00, 6.62870316e+00, 7.19685673e+00, 7.81370738e+00, 8.48342898e+00, 9.21055318e+00 }; float g = 1.f; for ( ; g_int < 0; g_int += 28, g *= 0.1f); for ( ; g_int >= 28; g_int -= 28, g *= 10.f); return g * iq_table[g_int]; } /** * Global Gain Estimation * dt, sr Duration and samplerate of the frame * x Spectral coefficients * nbytes Size of the frame * nbits_budget Number of bits available coding the spectrum * nbits_off Offset on the available bits, temporarily smoothed * g_off Gain index offset * reset_off Return True when the nbits_off must be reset * g_min Return lower bound of quantized gain value * return The quantized gain value */ LC3_HOT static int estimate_gain( enum lc3_dt dt, enum lc3_srate sr, const float *x, int nbytes, int nbits_budget, float nbits_off, int g_off, bool *reset_off, int *g_min) { int n4 = lc3_ne(dt, sr) / 4; union { float f; int32_t q16; } e[LC3_MAX_NE / 4]; /* --- Signal adaptative noise floor --- */ int reg_bits = 0; float low_bits = 0; if (lc3_hr(sr)) { int reg_c = (const int [LC3_NUM_DT][LC3_NUM_SRATE - LC3_SRATE_48K_HR]){ [LC3_DT_2M5] = { -6, -6 }, [LC3_DT_5M ] = { 0, 0 }, [LC3_DT_10M] = { 2, 5 } }[dt][sr - LC3_SRATE_48K_HR]; reg_bits = (8*nbytes * 4) / (125 * (1 + dt)); reg_bits = LC3_CLIP(reg_bits + reg_c, 6, 23); float m0 = 1e-5f, m1 = 1e-5f, k = 0; for (int i = 0; i < n4; i++) { m0 += fabsf(x[4*i + 0]), m1 += fabsf(x[4*i + 0]) * k++; m0 += fabsf(x[4*i + 1]), m1 += fabsf(x[4*i + 1]) * k++; m0 += fabsf(x[4*i + 2]), m1 += fabsf(x[4*i + 2]) * k++; m0 += fabsf(x[4*i + 3]), m1 += fabsf(x[4*i + 3]) * k++; } int m = roundf((1.6f * m0) / ((1 + dt) * m1)); low_bits = 8 - LC3_MIN(m, 8); } /* --- Energy (dB) by 4 MDCT blocks --- */ float x2_max = 0; for (int i = 0; i < n4; i++) { float x0 = x[4*i + 0] * x[4*i + 0]; float x1 = x[4*i + 1] * x[4*i + 1]; float x2 = x[4*i + 2] * x[4*i + 2]; float x3 = x[4*i + 3] * x[4*i + 3]; x2_max = fmaxf(x2_max, x0); x2_max = fmaxf(x2_max, x1); x2_max = fmaxf(x2_max, x2); x2_max = fmaxf(x2_max, x3); e[i].f = x0 + x1 + x2 + x3; } float x_max = sqrtf(x2_max); float nf = lc3_hr(sr) ? lc3_ldexpf(x_max, -reg_bits) * lc3_exp2f(-low_bits) : 0; for (int i = 0; i < n4; i++) e[i].q16 = lc3_db_q16(fmaxf(e[i].f + nf, 1e-10f)); /* --- Determine gain index --- */ int nbits = nbits_budget + nbits_off + 0.5f; int g_int = 255 - g_off; const int k_20_28 = 20.f/28 * 0x1p16f + 0.5f; const int k_2u7 = 2.7f * 0x1p16f + 0.5f; const int k_1u4 = 1.4f * 0x1p16f + 0.5f; for (int i = 128, j, j0 = n4-1, j1 ; i > 0; i >>= 1) { int gn = (g_int - i) * k_20_28; int v = 0; for (j = j0; j >= 0 && e[j].q16 < gn; j--); for (j1 = j; j >= 0; j--) { int e_diff = e[j].q16 - gn; v += e_diff < 0 ? k_2u7 : e_diff < 43 << 16 ? e_diff + ( 7 << 16) : 2*e_diff - (36 << 16); } if (v > nbits * k_1u4) j0 = j1; else g_int = g_int - i; } /* --- Limit gain index --- */ float x_lim = lc3_hr(sr) ? 0x7fffp8f : 0x7fffp0f; *g_min = 255 - g_off; for (int i = 128 ; i > 0; i >>= 1) if (x_lim * unquantize_gain(*g_min - i) > x_max) *g_min -= i; *reset_off = g_int < *g_min || x_max == 0; if (*reset_off) g_int = *g_min; return g_int; } /** * Global Gain Adjustment * dt, sr Duration and samplerate of the frame * g_idx The estimated quantized gain index * nbits Computed number of bits coding the spectrum * nbits_budget Number of bits available for coding the spectrum * g_idx_min Minimum gain index value * return Gain adjust value (-1 to 2) */ LC3_HOT static int adjust_gain( enum lc3_dt dt, enum lc3_srate sr, int g_idx, int nbits, int nbits_budget, int g_idx_min) { /* --- Compute delta threshold --- */ const int *t = (const int [LC3_NUM_SRATE][3]){ { 80, 500, 850 }, { 230, 1025, 1700 }, { 380, 1550, 2550 }, { 530, 2075, 3400 }, { 680, 2600, 4250 }, { 680, 2600, 4250 }, { 830, 3125, 5100 } }[sr]; int delta, den = 48; if (nbits < t[0]) { delta = 3*(nbits + 48); } else if (nbits < t[1]) { int n0 = 3*(t[0] + 48), range = t[1] - t[0]; delta = n0 * range + (nbits - t[0]) * (t[1] - n0); den *= range; } else { delta = LC3_MIN(nbits, t[2]); } delta = (delta + den/2) / den; /* --- Adjust gain --- */ if (lc3_hr(sr) && nbits > nbits_budget) { int factor = 1 + (dt <= LC3_DT_5M) + (dt <= LC3_DT_2M5) * (1 + (nbits >= 520)); int g_incr = factor + (factor * (nbits - nbits_budget)) / delta; return LC3_MIN(g_idx + g_incr, 255) - g_idx; } if (!lc3_hr(sr) && nbits < nbits_budget - (delta + 2)) return -(g_idx > g_idx_min); if (!lc3_hr(sr) && nbits > nbits_budget) return (g_idx < 255) + (g_idx < 254 && nbits >= nbits_budget + delta); return 0; } /** * Spectrum quantization * dt, sr Duration and samplerate of the frame * g_int Quantization gain value * x Spectral coefficients, scaled as output * n Return count of significants */ LC3_HOT static void quantize( enum lc3_dt dt, enum lc3_srate sr, int g_int, float *x, int *n) { float g_inv = unquantize_gain(-g_int); int ne = lc3_ne(dt, sr); *n = ne; for (int i = 0; i < ne; i += 2) { float xq_min = lc3_hr(sr) ? 0.5f : 10.f/16; x[i+0] *= g_inv; x[i+1] *= g_inv; *n = fabsf(x[i+0]) >= xq_min || fabsf(x[i+1]) >= xq_min ? ne : *n - 2; } } /** * Spectrum quantization inverse * dt, sr Duration and samplerate of the frame * g_int Quantization gain value * x, nq Spectral quantized, and count of significants * return Unquantized gain value */ LC3_HOT static float unquantize( enum lc3_dt dt, enum lc3_srate sr, int g_int, float *x, int nq) { float g = unquantize_gain(g_int); int i, ne = lc3_ne(dt, sr); for (i = 0; i < nq; i++) x[i] = x[i] * g; for ( ; i < ne; i++) x[i] = 0; return g; } /* ---------------------------------------------------------------------------- * Spectrum coding * -------------------------------------------------------------------------- */ /** * Resolve High-bitrate and LSB modes according size of the frame * sr, nbytes Samplerate and size of the frame * p_lsb_mode True when LSB mode allowed, when not NULL * return True when High-Rate mode enabled */ static bool resolve_modes(enum lc3_srate sr, int nbytes, bool *p_lsb_mode) { int sr_ind = lc3_hr(sr) ? 4 + (sr - LC3_SRATE_48K_HR) : sr; if (p_lsb_mode) *p_lsb_mode = (nbytes >= 20 * (3 + sr_ind)) && (sr < LC3_SRATE_96K_HR); return (nbytes > 20 * (1 + sr_ind)) && (sr < LC3_SRATE_96K_HR); } /** * Bit consumption * dt, sr, nbytes Duration, samplerate and size of the frame * x Spectral quantized coefficients * n Count of significant coefficients, updated on truncation * nbits_budget Truncate to stay in budget, when not zero * p_lsb_mode Return True when LSB's are not AC coded, or NULL * return The number of bits coding the spectrum */ LC3_HOT static int compute_nbits( enum lc3_dt dt, enum lc3_srate sr, int nbytes, const float *x, int *n, int nbits_budget, bool *p_lsb_mode) { bool lsb_mode, high_rate = resolve_modes(sr, nbytes, &lsb_mode); int ne = lc3_ne(dt, sr); /* --- Loop on quantized coefficients --- */ int nbits = 0, nbits_lsb = 0; uint8_t state = 0; int nbits_end = 0; int n_end = 0; nbits_budget = nbits_budget ? nbits_budget * 2048 : INT_MAX; for (int i = 0, h = 0; h < 2; h++) { const uint8_t (*lut_coeff)[4] = lc3_spectrum_lookup[high_rate][h]; for ( ; i < LC3_MIN(*n, (ne + 2) >> (1 - h)) && nbits <= nbits_budget; i += 2) { float xq_off = lc3_hr(sr) ? 0.5f : 6.f/16; uint32_t a = fabsf(x[i+0]) + xq_off; uint32_t b = fabsf(x[i+1]) + xq_off; const uint8_t *lut = lut_coeff[state]; /* --- Sign values --- */ int s = (a != 0) + (b != 0); nbits += s * 2048; /* --- LSB values Reduce to 2*2 bits MSB values --- * Reduce to 2x2 bits MSB values. The LSB's pair are arithmetic * coded with an escape code followed by 1 bit for each values. * The LSB mode does not arthmetic code the first LSB, * add the sign of the LSB when one of pair was at value 1 */ uint32_t m = (a | b) >> 2; unsigned k = 0; if (m) { if (lsb_mode) { nbits += lc3_spectrum_bits[lut[k++]][16] - 2*2048; nbits_lsb += 2 + (a == 1) + (b == 1); } for (m >>= lsb_mode; m; m >>= 1, k++) nbits += lc3_spectrum_bits[lut[LC3_MIN(k, 3)]][16]; nbits += k * 2*2048; a >>= k; b >>= k; k = LC3_MIN(k, 3); } /* --- MSB values --- */ nbits += lc3_spectrum_bits[lut[k]][a + 4*b]; /* --- Update state --- */ if (s && nbits <= nbits_budget) { n_end = i + 2; nbits_end = nbits; } state = (state << 4) + (k > 1 ? 12 + k : 1 + (a + b) * (k + 1)); } } /* --- Return --- */ *n = n_end; if (p_lsb_mode) *p_lsb_mode = lsb_mode && nbits_end + nbits_lsb * 2048 > nbits_budget; if (nbits_budget >= INT_MAX) nbits_end += nbits_lsb * 2048; return (nbits_end + 2047) / 2048; } /** * Put quantized spectrum * bits Bitstream context * dt, sr, nbytes Duration, samplerate and size of the frame * x Spectral quantized coefficients * nq, lsb_mode Count of significants, and LSB discard indication */ LC3_HOT static void put_quantized(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, int nbytes, const float *x, int nq, bool lsb_mode) { bool high_rate = resolve_modes(sr, nbytes, NULL); int ne = lc3_ne(dt, sr); /* --- Loop on quantized coefficients --- */ uint8_t state = 0; for (int i = 0, h = 0; h < 2; h++) { const uint8_t (*lut_coeff)[4] = lc3_spectrum_lookup[high_rate][h]; for ( ; i < LC3_MIN(nq, (ne + 2) >> (1 - h)); i += 2) { float xq_off = lc3_hr(sr) ? 0.5f : 6.f/16; uint32_t a = fabsf(x[i+0]) + xq_off; uint32_t b = fabsf(x[i+1]) + xq_off; const uint8_t *lut = lut_coeff[state]; /* --- LSB values Reduce to 2*2 bits MSB values --- * Reduce to 2x2 bits MSB values. The LSB's pair are arithmetic * coded with an escape code and 1 bits for each values. * The LSB mode discard the first LSB (at this step) */ uint32_t m = (a | b) >> 2; unsigned k = 0, shr = 0; if (m) { if (lsb_mode) lc3_put_symbol(bits, lc3_spectrum_models + lut[k++], 16); for (m >>= lsb_mode; m; m >>= 1, k++) { lc3_put_bit(bits, (a >> k) & 1); lc3_put_bit(bits, (b >> k) & 1); lc3_put_symbol(bits, lc3_spectrum_models + lut[LC3_MIN(k, 3)], 16); } a >>= lsb_mode; b >>= lsb_mode; shr = k - lsb_mode; k = LC3_MIN(k, 3); } /* --- Sign values --- */ if (a) lc3_put_bit(bits, x[i+0] < 0); if (b) lc3_put_bit(bits, x[i+1] < 0); /* --- MSB values --- */ a >>= shr; b >>= shr; lc3_put_symbol(bits, lc3_spectrum_models + lut[k], a + 4*b); /* --- Update state --- */ state = (state << 4) + (k > 1 ? 12 + k : 1 + (a + b) * (k + 1)); } } } /** * Get quantized spectrum * bits Bitstream context * dt, sr, nbytes Duration, samplerate and size of the frame * nq, lsb_mode Count of significants, and LSB discard indication * x Return `nq` spectral quantized coefficients * nf_seed Return the noise factor seed associated * return 0: Ok -1: Invalid bitstream data */ LC3_HOT static int get_quantized(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, int nbytes, int nq, bool lsb_mode, float *x, uint16_t *nf_seed) { bool high_rate = resolve_modes(sr, nbytes, NULL); int ne = lc3_ne(dt, sr); *nf_seed = 0; /* --- Loop on quantized coefficients --- */ uint8_t state = 0; for (int i = 0, h = 0; h < 2; h++) { const uint8_t (*lut_coeff)[4] = lc3_spectrum_lookup[high_rate][h]; for ( ; i < LC3_MIN(nq, (ne + 2) >> (1 - h)); i += 2) { const uint8_t *lut = lut_coeff[state]; int max_shl = lc3_hr(sr) ? 22 : 14; /* --- LSB values --- * Until the symbol read indicates the escape value 16, * read an LSB bit for each values. * The LSB mode discard the first LSB (at this step) */ int u = 0, v = 0; int k = 0, shl = 0; unsigned s = lc3_get_symbol(bits, lc3_spectrum_models + lut[k]); if (lsb_mode && s >= 16) { s = lc3_get_symbol(bits, lc3_spectrum_models + lut[++k]); shl++; } for ( ; s >= 16 && shl < max_shl; shl++) { u |= lc3_get_bit(bits) << shl; v |= lc3_get_bit(bits) << shl; k += (k < 3); s = lc3_get_symbol(bits, lc3_spectrum_models + lut[k]); } if (s >= 16) return -1; /* --- MSB & sign values --- */ int a = s % 4; int b = s / 4; u |= a << shl; v |= b << shl; x[i+0] = u && lc3_get_bit(bits) ? -u : u; x[i+1] = v && lc3_get_bit(bits) ? -v : v; *nf_seed = (*nf_seed + (u & 0x7fff) * (i ) + (v & 0x7fff) * (i+1)) & 0xffff; /* --- Update state --- */ state = (state << 4) + (k > 1 ? 12 + k : 1 + (a + b) * (k + 1)); } } return 0; } /** * Put residual bits of quantization * bits Bitstream context * nbits Maximum number of bits to output * hrmode High-Resolution mode * x, n Spectral quantized, and count of significants */ LC3_HOT static void put_residual(lc3_bits_t *bits, int nbits, bool hrmode, float *x, int n) { float xq_lim = hrmode ? 0.5f : 10.f/16; float xq_off = xq_lim / 2; for (int iter = 0; iter < (hrmode ? 20 : 1) && nbits > 0; iter++) { for (int i = 0; i < n && nbits > 0; i++) { float xr = fabsf(x[i]); if (xr < xq_lim) continue; bool b = (xr - truncf(xr) < xq_lim) ^ (x[i] < 0); lc3_put_bit(bits, b); nbits--; x[i] += b ? -xq_off : xq_off; } xq_off *= xq_lim; } } /** * Get residual bits of quantization * bits Bitstream context * nbits Maximum number of bits to output * hrmode High-Resolution mode * x, nq Spectral quantized, and count of significants */ LC3_HOT static void get_residual(lc3_bits_t *bits, int nbits, bool hrmode, float *x, int n) { float xq_off_1 = hrmode ? 0.25f : 5.f/16; float xq_off_2 = hrmode ? 0.25f : 3.f/16; for (int iter = 0; iter < (hrmode ? 20 : 1) && nbits > 0; iter++) { for (int i = 0; i < n && nbits > 0; i++) { if (x[i] == 0) continue; if (lc3_get_bit(bits) == 0) x[i] -= x[i] < 0 ? xq_off_1 : xq_off_2; else x[i] += x[i] > 0 ? xq_off_1 : xq_off_2; nbits--; } xq_off_1 *= 0.5f; xq_off_2 *= 0.5f; } } /** * Put LSB values of quantized spectrum values * bits Bitstream context * nbits Maximum number of bits to output * hrmode High-Resolution mode * x, n Spectral quantized, and count of significants */ LC3_HOT static void put_lsb(lc3_bits_t *bits, int nbits, bool hrmode, const float *x, int n) { for (int i = 0; i < n && nbits > 0; i += 2) { float xq_off = hrmode ? 0.5f : 6.f/16; uint32_t a = fabsf(x[i+0]) + xq_off; uint32_t b = fabsf(x[i+1]) + xq_off; if ((a | b) >> 2 == 0) continue; if (nbits-- > 0) lc3_put_bit(bits, a & 1); if (a == 1 && nbits-- > 0) lc3_put_bit(bits, x[i+0] < 0); if (nbits-- > 0) lc3_put_bit(bits, b & 1); if (b == 1 && nbits-- > 0) lc3_put_bit(bits, x[i+1] < 0); } } /** * Get LSB values of quantized spectrum values * bits Bitstream context * nbits Maximum number of bits to output * x, nq Spectral quantized, and count of significants * nf_seed Update the noise factor seed according */ LC3_HOT static void get_lsb(lc3_bits_t *bits, int nbits, float *x, int nq, uint16_t *nf_seed) { for (int i = 0; i < nq && nbits > 0; i += 2) { float a = fabsf(x[i]), b = fabsf(x[i+1]); if (fmaxf(a, b) < 4) continue; if (nbits-- > 0 && lc3_get_bit(bits)) { if (a) { x[i] += x[i] < 0 ? -1 : 1; *nf_seed = (*nf_seed + i) & 0xffff; } else if (nbits-- > 0) { x[i] = lc3_get_bit(bits) ? -1 : 1; *nf_seed = (*nf_seed + i) & 0xffff; } } if (nbits-- > 0 && lc3_get_bit(bits)) { if (b) { x[i+1] += x[i+1] < 0 ? -1 : 1; *nf_seed = (*nf_seed + i+1) & 0xffff; } else if (nbits-- > 0) { x[i+1] = lc3_get_bit(bits) ? -1 : 1; *nf_seed = (*nf_seed + i+1) & 0xffff; } } } } /* ---------------------------------------------------------------------------- * Noise coding * -------------------------------------------------------------------------- */ /** * Estimate noise level * dt, bw Duration and bandwidth of the frame * hrmode High-Resolution mode * x, n Spectral quantized, and count of significants * return Noise factor (0 to 7) */ LC3_HOT static int estimate_noise( enum lc3_dt dt, enum lc3_bandwidth bw, bool hrmode, const float *x, int n) { int bw_stop = lc3_ne(dt, (enum lc3_srate)LC3_MIN(bw, LC3_BANDWIDTH_FB)); int w = 1 + (dt >= LC3_DT_7M5) + (dt>= LC3_DT_10M); float xq_lim = hrmode ? 0.5f : 10.f/16; float sum = 0; int i, ns = 0, z = 0; for (i = 6 * (1 + dt) - w; i < LC3_MIN(n, bw_stop); i++) { z = fabsf(x[i]) < xq_lim ? z + 1 : 0; if (z > 2*w) sum += fabsf(x[i - w]), ns++; } for ( ; i < bw_stop + w; i++) if (++z > 2*w) sum += fabsf(x[i - w]), ns++; int nf = ns ? 8 - (int)((16 * sum) / ns + 0.5f) : 8; return LC3_CLIP(nf, 0, 7); } /** * Noise filling * dt, bw Duration and bandwidth of the frame * nf, nf_seed The noise factor and pseudo-random seed * g Quantization gain * x, nq Spectral quantized, and count of significants */ LC3_HOT static void fill_noise(enum lc3_dt dt, enum lc3_bandwidth bw, int nf, uint16_t nf_seed, float g, float *x, int nq) { int bw_stop = lc3_ne(dt, (enum lc3_srate)LC3_MIN(bw, LC3_BANDWIDTH_FB)); int w = 1 + (dt >= LC3_DT_7M5) + (dt>= LC3_DT_10M); float s = g * (float)(8 - nf) / 16; int i, z = 0; for (i = 6 * (1 + dt) - w; i < LC3_MIN(nq, bw_stop); i++) { z = x[i] ? 0 : z + 1; if (z > 2*w) { nf_seed = (13849 + nf_seed*31821) & 0xffff; x[i - w] = nf_seed & 0x8000 ? -s : s; } } for ( ; i < bw_stop + w; i++) if (++z > 2*w) { nf_seed = (13849 + nf_seed*31821) & 0xffff; x[i - w] = nf_seed & 0x8000 ? -s : s; } } /** * Put noise factor * bits Bitstream context * nf Noise factor (0 to 7) */ static void put_noise_factor(lc3_bits_t *bits, int nf) { lc3_put_bits(bits, nf, 3); } /** * Get noise factor * bits Bitstream context * return Noise factor (0 to 7) */ static int get_noise_factor(lc3_bits_t *bits) { return lc3_get_bits(bits, 3); } /* ---------------------------------------------------------------------------- * Encoding * -------------------------------------------------------------------------- */ /** * Bit consumption of the number of coded coefficients * dt, sr, nbytes Duration, samplerate and size of the frame * return Bit consumpution of the number of coded coefficients */ static int get_nbits_nq(enum lc3_dt dt, enum lc3_srate sr) { int ne = lc3_ne(dt, sr); return 4 + (ne > 32) + (ne > 64) + (ne > 128) + (ne > 256) + (ne > 512); } /** * Bit consumption of the arithmetic coder * dt, sr, nbytes Duration, samplerate and size of the frame * return Bit consumption of bitstream data */ static int get_nbits_ac(enum lc3_dt dt, enum lc3_srate sr, int nbytes) { return get_nbits_nq(dt, sr) + 3 + lc3_hr(sr) + LC3_MIN((nbytes-1) / 160, 2); } /** * Spectrum analysis */ void lc3_spec_analyze( enum lc3_dt dt, enum lc3_srate sr, int nbytes, bool pitch, const lc3_tns_data_t *tns, struct lc3_spec_analysis *spec, float *x, struct lc3_spec_side *side) { bool reset_off; /* --- Bit budget --- */ const int nbits_gain = 8; const int nbits_nf = 3; int nbits_budget = 8*nbytes - get_nbits_ac(dt, sr, nbytes) - lc3_bwdet_get_nbits(sr) - lc3_ltpf_get_nbits(pitch) - lc3_sns_get_nbits() - lc3_tns_get_nbits(tns) - nbits_gain - nbits_nf; /* --- Global gain --- */ float nbits_off = spec->nbits_off + spec->nbits_spare; nbits_off = fminf(fmaxf(nbits_off, -40), 40); nbits_off = 0.8f * spec->nbits_off + 0.2f * nbits_off; int g_off = resolve_gain_offset(sr, nbytes); int g_min, g_int = estimate_gain(dt, sr, x, nbytes, nbits_budget, nbits_off, g_off, &reset_off, &g_min); /* --- Quantization --- */ quantize(dt, sr, g_int, x, &side->nq); int nbits = compute_nbits(dt, sr, nbytes, x, &side->nq, 0, NULL); spec->nbits_off = reset_off ? 0 : nbits_off; spec->nbits_spare = reset_off ? 0 : nbits_budget - nbits; /* --- Adjust gain and requantize --- */ int g_adj = adjust_gain(dt, sr, g_off + g_int, nbits, nbits_budget, g_off + g_min); if (g_adj) quantize(dt, sr, g_adj, x, &side->nq); side->g_idx = g_int + g_adj + g_off; nbits = compute_nbits(dt, sr, nbytes, x, &side->nq, nbits_budget, &side->lsb_mode); } /** * Put spectral quantization side data */ void lc3_spec_put_side(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, const struct lc3_spec_side *side) { int nbits_nq = get_nbits_nq(dt, sr); lc3_put_bits(bits, LC3_MAX(side->nq >> 1, 1) - 1, nbits_nq); lc3_put_bits(bits, side->lsb_mode, 1); lc3_put_bits(bits, side->g_idx, 8); } /** * Encode spectral coefficients */ void lc3_spec_encode(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, enum lc3_bandwidth bw, int nbytes, const lc3_spec_side_t *side, float *x) { bool lsb_mode = side->lsb_mode; int nq = side->nq; put_noise_factor(bits, estimate_noise(dt, bw, lc3_hr(sr), x, nq)); put_quantized(bits, dt, sr, nbytes, x, nq, lsb_mode); int nbits_left = lc3_get_bits_left(bits); if (lsb_mode) put_lsb(bits, nbits_left, lc3_hr(sr), x, nq); else put_residual(bits, nbits_left, lc3_hr(sr), x, nq); } /* ---------------------------------------------------------------------------- * Decoding * -------------------------------------------------------------------------- */ /** * Get spectral quantization side data */ int lc3_spec_get_side(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, struct lc3_spec_side *side) { int nbits_nq = get_nbits_nq(dt, sr); int ne = lc3_ne(dt, sr); side->nq = (lc3_get_bits(bits, nbits_nq) + 1) << 1; side->lsb_mode = lc3_get_bit(bits); side->g_idx = lc3_get_bits(bits, 8); return side->nq > ne ? (side->nq = ne), -1 : 0; } /** * Decode spectral coefficients */ int lc3_spec_decode(lc3_bits_t *bits, enum lc3_dt dt, enum lc3_srate sr, enum lc3_bandwidth bw, int nbytes, const lc3_spec_side_t *side, float *x) { bool lsb_mode = side->lsb_mode; int nq = side->nq; int ret = 0; int nf = get_noise_factor(bits); uint16_t nf_seed; if ((ret = get_quantized(bits, dt, sr, nbytes, nq, lsb_mode, x, &nf_seed)) < 0) return ret; int nbits_left = lc3_get_bits_left(bits); if (lsb_mode) get_lsb(bits, nbits_left, x, nq, &nf_seed); else get_residual(bits, nbits_left, lc3_hr(sr), x, nq); int g_int = side->g_idx - resolve_gain_offset(sr, nbytes); float g = unquantize(dt, sr, g_int, x, nq); if (nq > 2 || x[0] || x[1] || side->g_idx > 0 || nf < 7) fill_noise(dt, bw, nf, nf_seed, g, x, nq); return 0; }