/****************************************************************************** * * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #ifndef __LC3_FASTMATH_H #define __LC3_FASTMATH_H #include <stdint.h> #include <float.h> #include <math.h> /** * IEEE 754 Floating point representation */ #define LC3_IEEE754_SIGN_SHL (31) #define LC3_IEEE754_SIGN_MASK (1 << LC3_IEEE754_SIGN_SHL) #define LC3_IEEE754_EXP_SHL (23) #define LC3_IEEE754_EXP_MASK (0xff << LC3_IEEE754_EXP_SHL) #define LC3_IEEE754_EXP_BIAS (127) /** * Fast multiply floating-point number by integral power of 2 * x Operand, finite number * exp Exponent such that 2^x is finite * return 2^exp */ static inline float lc3_ldexpf(float _x, int exp) { union { float f; int32_t s; } x = { .f = _x }; if (x.s & LC3_IEEE754_EXP_MASK) x.s += exp << LC3_IEEE754_EXP_SHL; return x.f; } /** * Fast convert floating-point number to fractional and integral components * x Operand, finite number * exp Return the exponent part * return The normalized fraction in [0.5:1[ */ static inline float lc3_frexpf(float _x, int *exp) { union { float f; uint32_t u; } x = { .f = _x }; int e = (x.u & LC3_IEEE754_EXP_MASK) >> LC3_IEEE754_EXP_SHL; *exp = e - (LC3_IEEE754_EXP_BIAS - 1); x.u = (x.u & ~LC3_IEEE754_EXP_MASK) | ((LC3_IEEE754_EXP_BIAS - 1) << LC3_IEEE754_EXP_SHL); return x.f; } /** * Fast 2^n approximation * x Operand, range -100 to 100 * return 2^x approximation (max relative error ~ 4e-7) */ static inline float lc3_exp2f(float x) { /* --- 2^(i/8) for i from 0 to 7 --- */ static const float e[] = { 1.00000000e+00, 1.09050773e+00, 1.18920712e+00, 1.29683955e+00, 1.41421356e+00, 1.54221083e+00, 1.68179283e+00, 1.83400809e+00 }; /* --- Polynomial approx in range 0 to 1/8 --- */ static const float p[] = { 1.00448128e-02, 5.54563260e-02, 2.40228756e-01, 6.93147140e-01 }; /* --- Split the operand --- * * Such as x = k/8 + y, with k an integer, and |y| < 0.5/8 * * Note that `fast-math` compiler option leads to rounding error, * disable optimisation with `volatile`. */ volatile union { float f; int32_t s; } v; v.f = x + 0x1.8p20f; int k = v.s; x -= v.f - 0x1.8p20f; /* --- Compute 2^x, with |x| < 1 --- * Perform polynomial approximation in range -0.5/8 to 0.5/8, * and muplity by precomputed value of 2^(i/8), i in [0:7] */ union { float f; int32_t s; } y; y.f = ( p[0]) * x; y.f = (y.f + p[1]) * x; y.f = (y.f + p[2]) * x; y.f = (y.f + p[3]) * x; y.f = (y.f + 1.f) * e[k & 7]; /* --- Add the exponent --- */ y.s += (k >> 3) << LC3_IEEE754_EXP_SHL; return y.f; } /** * Fast log2(x) approximation * x Operand, greater than 0 * return log2(x) approximation (max absolute error ~ 1e-4) */ static inline float lc3_log2f(float x) { float y; int e; /* --- Polynomial approx in range 0.5 to 1 --- */ static const float c[] = { -1.29479677, 5.11769018, -8.42295281, 8.10557963, -3.50567360 }; x = lc3_frexpf(x, &e); y = ( c[0]) * x; y = (y + c[1]) * x; y = (y + c[2]) * x; y = (y + c[3]) * x; y = (y + c[4]); /* --- Add log2f(2^e) and return --- */ return e + y; } /** * Fast log10(x) approximation * x Operand, greater than 0 * return log10(x) approximation (max absolute error ~ 1e-4) */ static inline float lc3_log10f(float x) { return log10f(2) * lc3_log2f(x); } /** * Fast `10 * log10(x)` (or dB) approximation in fixed Q16 * x Operand, in range 2^-63 to 2^63 (1e-19 to 1e19) * return 10 * log10(x) in fixed Q16 (-190 to 192 dB) * * - The 0 value is accepted and return the minimum value ~ -191dB * - This function assumed that float 32 bits is coded IEEE 754 */ static inline int32_t lc3_db_q16(float x) { /* --- Table in Q15 --- */ static const uint16_t t[][2] = { /* [n][0] = 10 * log10(2) * log2(1 + n/32), with n = [0..15] */ /* [n][1] = [n+1][0] - [n][0] (while defining [16][0]) */ { 0, 4379 }, { 4379, 4248 }, { 8627, 4125 }, { 12753, 4009 }, { 16762, 3899 }, { 20661, 3795 }, { 24456, 3697 }, { 28153, 3603 }, { 31755, 3514 }, { 35269, 3429 }, { 38699, 3349 }, { 42047, 3272 }, { 45319, 3198 }, { 48517, 3128 }, { 51645, 3061 }, { 54705, 2996 }, /* [n][0] = 10 * log10(2) * log2(1 + n/32) - 10 * log10(2) / 2, */ /* with n = [16..31] */ /* [n][1] = [n+1][0] - [n][0] (while defining [32][0]) */ { 8381, 2934 }, { 11315, 2875 }, { 14190, 2818 }, { 17008, 2763 }, { 19772, 2711 }, { 22482, 2660 }, { 25142, 2611 }, { 27754, 2564 }, { 30318, 2519 }, { 32837, 2475 }, { 35312, 2433 }, { 37744, 2392 }, { 40136, 2352 }, { 42489, 2314 }, { 44803, 2277 }, { 47080, 2241 }, }; /* --- Approximation --- * * 10 * log10(x^2) = 10 * log10(2) * log2(x^2) * * And log2(x^2) = 2 * log2( (1 + m) * 2^e ) * = 2 * (e + log2(1 + m)) , with m in range [0..1] * * Split the float values in : * e2 Double value of the exponent (2 * e + k) * hi High 5 bits of mantissa, for precalculated result `t[hi][0]` * lo Low 16 bits of mantissa, for linear interpolation `t[hi][1]` * * Two cases, from the range of the mantissa : * 0 to 0.5 `k = 0`, use 1st part of the table * 0.5 to 1 `k = 1`, use 2nd part of the table */ union { float f; uint32_t u; } x2 = { .f = x*x }; int e2 = (int)(x2.u >> 22) - 2*127; int hi = (x2.u >> 18) & 0x1f; int lo = (x2.u >> 2) & 0xffff; return e2 * 49321 + t[hi][0] + ((t[hi][1] * lo) >> 16); } #endif /* __LC3_FASTMATH_H */