/****************************************************************************** * * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include "sns.h" #include "tables.h" /* ---------------------------------------------------------------------------- * DCT-16 * -------------------------------------------------------------------------- */ /** * Matrix of DCT-16 coefficients * * M[n][k] = 2f cos( Pi k (2n + 1) / 2N ) * * k = [0..N-1], n = [0..N-1], N = 16 * f = sqrt(1/4N) for k=0, sqrt(1/2N) otherwise */ static const float dct16_m[16][16] = { { 2.50000000e-01, 3.51850934e-01, 3.46759961e-01, 3.38329500e-01, 3.26640741e-01, 3.11806253e-01, 2.93968901e-01, 2.73300467e-01, 2.50000000e-01, 2.24291897e-01, 1.96423740e-01, 1.66663915e-01, 1.35299025e-01, 1.02631132e-01, 6.89748448e-02, 3.46542923e-02 }, { 2.50000000e-01, 3.38329500e-01, 2.93968901e-01, 2.24291897e-01, 1.35299025e-01, 3.46542923e-02, -6.89748448e-02, -1.66663915e-01, -2.50000000e-01, -3.11806253e-01, -3.46759961e-01, -3.51850934e-01, -3.26640741e-01, -2.73300467e-01, -1.96423740e-01, -1.02631132e-01 }, { 2.50000000e-01, 3.11806253e-01, 1.96423740e-01, 3.46542923e-02, -1.35299025e-01, -2.73300467e-01, -3.46759961e-01, -3.38329500e-01, -2.50000000e-01, -1.02631132e-01, 6.89748448e-02, 2.24291897e-01, 3.26640741e-01, 3.51850934e-01, 2.93968901e-01, 1.66663915e-01 }, { 2.50000000e-01, 2.73300467e-01, 6.89748448e-02, -1.66663915e-01, -3.26640741e-01, -3.38329500e-01, -1.96423740e-01, 3.46542923e-02, 2.50000000e-01, 3.51850934e-01, 2.93968901e-01, 1.02631132e-01, -1.35299025e-01, -3.11806253e-01, -3.46759961e-01, -2.24291897e-01 }, { 2.50000000e-01, 2.24291897e-01, -6.89748448e-02, -3.11806253e-01, -3.26640741e-01, -1.02631132e-01, 1.96423740e-01, 3.51850934e-01, 2.50000000e-01, -3.46542923e-02, -2.93968901e-01, -3.38329500e-01, -1.35299025e-01, 1.66663915e-01, 3.46759961e-01, 2.73300467e-01 }, { 2.50000000e-01, 1.66663915e-01, -1.96423740e-01, -3.51850934e-01, -1.35299025e-01, 2.24291897e-01, 3.46759961e-01, 1.02631132e-01, -2.50000000e-01, -3.38329500e-01, -6.89748448e-02, 2.73300467e-01, 3.26640741e-01, 3.46542923e-02, -2.93968901e-01, -3.11806253e-01 }, { 2.50000000e-01, 1.02631132e-01, -2.93968901e-01, -2.73300467e-01, 1.35299025e-01, 3.51850934e-01, 6.89748448e-02, -3.11806253e-01, -2.50000000e-01, 1.66663915e-01, 3.46759961e-01, 3.46542923e-02, -3.26640741e-01, -2.24291897e-01, 1.96423740e-01, 3.38329500e-01 }, { 2.50000000e-01, 3.46542923e-02, -3.46759961e-01, -1.02631132e-01, 3.26640741e-01, 1.66663915e-01, -2.93968901e-01, -2.24291897e-01, 2.50000000e-01, 2.73300467e-01, -1.96423740e-01, -3.11806253e-01, 1.35299025e-01, 3.38329500e-01, -6.89748448e-02, -3.51850934e-01 }, { 2.50000000e-01, -3.46542923e-02, -3.46759961e-01, 1.02631132e-01, 3.26640741e-01, -1.66663915e-01, -2.93968901e-01, 2.24291897e-01, 2.50000000e-01, -2.73300467e-01, -1.96423740e-01, 3.11806253e-01, 1.35299025e-01, -3.38329500e-01, -6.89748448e-02, 3.51850934e-01 }, { 2.50000000e-01, -1.02631132e-01, -2.93968901e-01, 2.73300467e-01, 1.35299025e-01, -3.51850934e-01, 6.89748448e-02, 3.11806253e-01, -2.50000000e-01, -1.66663915e-01, 3.46759961e-01, -3.46542923e-02, -3.26640741e-01, 2.24291897e-01, 1.96423740e-01, -3.38329500e-01 }, { 2.50000000e-01, -1.66663915e-01, -1.96423740e-01, 3.51850934e-01, -1.35299025e-01, -2.24291897e-01, 3.46759961e-01, -1.02631132e-01, -2.50000000e-01, 3.38329500e-01, -6.89748448e-02, -2.73300467e-01, 3.26640741e-01, -3.46542923e-02, -2.93968901e-01, 3.11806253e-01 }, { 2.50000000e-01, -2.24291897e-01, -6.89748448e-02, 3.11806253e-01, -3.26640741e-01, 1.02631132e-01, 1.96423740e-01, -3.51850934e-01, 2.50000000e-01, 3.46542923e-02, -2.93968901e-01, 3.38329500e-01, -1.35299025e-01, -1.66663915e-01, 3.46759961e-01, -2.73300467e-01 }, { 2.50000000e-01, -2.73300467e-01, 6.89748448e-02, 1.66663915e-01, -3.26640741e-01, 3.38329500e-01, -1.96423740e-01, -3.46542923e-02, 2.50000000e-01, -3.51850934e-01, 2.93968901e-01, -1.02631132e-01, -1.35299025e-01, 3.11806253e-01, -3.46759961e-01, 2.24291897e-01 }, { 2.50000000e-01, -3.11806253e-01, 1.96423740e-01, -3.46542923e-02, -1.35299025e-01, 2.73300467e-01, -3.46759961e-01, 3.38329500e-01, -2.50000000e-01, 1.02631132e-01, 6.89748448e-02, -2.24291897e-01, 3.26640741e-01, -3.51850934e-01, 2.93968901e-01, -1.66663915e-01 }, { 2.50000000e-01, -3.38329500e-01, 2.93968901e-01, -2.24291897e-01, 1.35299025e-01, -3.46542923e-02, -6.89748448e-02, 1.66663915e-01, -2.50000000e-01, 3.11806253e-01, -3.46759961e-01, 3.51850934e-01, -3.26640741e-01, 2.73300467e-01, -1.96423740e-01, 1.02631132e-01 }, { 2.50000000e-01, -3.51850934e-01, 3.46759961e-01, -3.38329500e-01, 3.26640741e-01, -3.11806253e-01, 2.93968901e-01, -2.73300467e-01, 2.50000000e-01, -2.24291897e-01, 1.96423740e-01, -1.66663915e-01, 1.35299025e-01, -1.02631132e-01, 6.89748448e-02, -3.46542923e-02 }, }; /** * Forward DCT-16 transformation * x, y Input and output 16 values */ LC3_HOT static void dct16_forward(const float *x, float *y) { for (int i = 0, j; i < 16; i++) for (y[i] = 0, j = 0; j < 16; j++) y[i] += x[j] * dct16_m[j][i]; } /** * Inverse DCT-16 transformation * x, y Input and output 16 values */ LC3_HOT static void dct16_inverse(const float *x, float *y) { for (int i = 0, j; i < 16; i++) for (y[i] = 0, j = 0; j < 16; j++) y[i] += x[j] * dct16_m[i][j]; } /* ---------------------------------------------------------------------------- * Scale factors * -------------------------------------------------------------------------- */ /** * Scale factors * dt, sr Duration and samplerate of the frame * eb Energy estimation per bands * att 1: Attack detected 0: Otherwise * scf Output 16 scale factors */ LC3_HOT static void compute_scale_factors( enum lc3_dt dt, enum lc3_srate sr, const float *eb, bool att, float *scf) { /* Pre-emphasis gain table : * Ge[b] = 10 ^ (b * g_tilt) / 630 , b = [0..63] */ static const float ge_table[LC3_NUM_SRATE][LC3_NUM_BANDS] = { [LC3_SRATE_8K] = { /* g_tilt = 14 */ 1.00000000e+00, 1.05250029e+00, 1.10775685e+00, 1.16591440e+00, 1.22712524e+00, 1.29154967e+00, 1.35935639e+00, 1.43072299e+00, 1.50583635e+00, 1.58489319e+00, 1.66810054e+00, 1.75567629e+00, 1.84784980e+00, 1.94486244e+00, 2.04696827e+00, 2.15443469e+00, 2.26754313e+00, 2.38658979e+00, 2.51188643e+00, 2.64376119e+00, 2.78255940e+00, 2.92864456e+00, 3.08239924e+00, 3.24422608e+00, 3.41454887e+00, 3.59381366e+00, 3.78248991e+00, 3.98107171e+00, 4.19007911e+00, 4.41005945e+00, 4.64158883e+00, 4.88527357e+00, 5.14175183e+00, 5.41169527e+00, 5.69581081e+00, 5.99484250e+00, 6.30957344e+00, 6.64082785e+00, 6.98947321e+00, 7.35642254e+00, 7.74263683e+00, 8.14912747e+00, 8.57695899e+00, 9.02725178e+00, 9.50118507e+00, 1.00000000e+01, 1.05250029e+01, 1.10775685e+01, 1.16591440e+01, 1.22712524e+01, 1.29154967e+01, 1.35935639e+01, 1.43072299e+01, 1.50583635e+01, 1.58489319e+01, 1.66810054e+01, 1.75567629e+01, 1.84784980e+01, 1.94486244e+01, 2.04696827e+01, 2.15443469e+01, 2.26754313e+01, 2.38658979e+01, 2.51188643e+01 }, [LC3_SRATE_16K] = { /* g_tilt = 18 */ 1.00000000e+00, 1.06800043e+00, 1.14062492e+00, 1.21818791e+00, 1.30102522e+00, 1.38949549e+00, 1.48398179e+00, 1.58489319e+00, 1.69266662e+00, 1.80776868e+00, 1.93069773e+00, 2.06198601e+00, 2.20220195e+00, 2.35195264e+00, 2.51188643e+00, 2.68269580e+00, 2.86512027e+00, 3.05994969e+00, 3.26802759e+00, 3.49025488e+00, 3.72759372e+00, 3.98107171e+00, 4.25178630e+00, 4.54090961e+00, 4.84969343e+00, 5.17947468e+00, 5.53168120e+00, 5.90783791e+00, 6.30957344e+00, 6.73862717e+00, 7.19685673e+00, 7.68624610e+00, 8.20891416e+00, 8.76712387e+00, 9.36329209e+00, 1.00000000e+01, 1.06800043e+01, 1.14062492e+01, 1.21818791e+01, 1.30102522e+01, 1.38949549e+01, 1.48398179e+01, 1.58489319e+01, 1.69266662e+01, 1.80776868e+01, 1.93069773e+01, 2.06198601e+01, 2.20220195e+01, 2.35195264e+01, 2.51188643e+01, 2.68269580e+01, 2.86512027e+01, 3.05994969e+01, 3.26802759e+01, 3.49025488e+01, 3.72759372e+01, 3.98107171e+01, 4.25178630e+01, 4.54090961e+01, 4.84969343e+01, 5.17947468e+01, 5.53168120e+01, 5.90783791e+01, 6.30957344e+01 }, [LC3_SRATE_24K] = { /* g_tilt = 22 */ 1.00000000e+00, 1.08372885e+00, 1.17446822e+00, 1.27280509e+00, 1.37937560e+00, 1.49486913e+00, 1.62003281e+00, 1.75567629e+00, 1.90267705e+00, 2.06198601e+00, 2.23463373e+00, 2.42173704e+00, 2.62450630e+00, 2.84425319e+00, 3.08239924e+00, 3.34048498e+00, 3.62017995e+00, 3.92329345e+00, 4.25178630e+00, 4.60778348e+00, 4.99358789e+00, 5.41169527e+00, 5.86481029e+00, 6.35586411e+00, 6.88803330e+00, 7.46476041e+00, 8.08977621e+00, 8.76712387e+00, 9.50118507e+00, 1.02967084e+01, 1.11588399e+01, 1.20931568e+01, 1.31057029e+01, 1.42030283e+01, 1.53922315e+01, 1.66810054e+01, 1.80776868e+01, 1.95913107e+01, 2.12316686e+01, 2.30093718e+01, 2.49359200e+01, 2.70237760e+01, 2.92864456e+01, 3.17385661e+01, 3.43959997e+01, 3.72759372e+01, 4.03970086e+01, 4.37794036e+01, 4.74450028e+01, 5.14175183e+01, 5.57226480e+01, 6.03882412e+01, 6.54444792e+01, 7.09240702e+01, 7.68624610e+01, 8.32980665e+01, 9.02725178e+01, 9.78309319e+01, 1.06022203e+02, 1.14899320e+02, 1.24519708e+02, 1.34945600e+02, 1.46244440e+02, 1.58489319e+02 }, [LC3_SRATE_32K] = { /* g_tilt = 26 */ 1.00000000e+00, 1.09968890e+00, 1.20931568e+00, 1.32987103e+00, 1.46244440e+00, 1.60823388e+00, 1.76855694e+00, 1.94486244e+00, 2.13874364e+00, 2.35195264e+00, 2.58641621e+00, 2.84425319e+00, 3.12779366e+00, 3.43959997e+00, 3.78248991e+00, 4.15956216e+00, 4.57422434e+00, 5.03022373e+00, 5.53168120e+00, 6.08312841e+00, 6.68954879e+00, 7.35642254e+00, 8.08977621e+00, 8.89623710e+00, 9.78309319e+00, 1.07583590e+01, 1.18308480e+01, 1.30102522e+01, 1.43072299e+01, 1.57335019e+01, 1.73019574e+01, 1.90267705e+01, 2.09235283e+01, 2.30093718e+01, 2.53031508e+01, 2.78255940e+01, 3.05994969e+01, 3.36499270e+01, 3.70044512e+01, 4.06933843e+01, 4.47500630e+01, 4.92111475e+01, 5.41169527e+01, 5.95118121e+01, 6.54444792e+01, 7.19685673e+01, 7.91430346e+01, 8.70327166e+01, 9.57089124e+01, 1.05250029e+02, 1.15742288e+02, 1.27280509e+02, 1.39968963e+02, 1.53922315e+02, 1.69266662e+02, 1.86140669e+02, 2.04696827e+02, 2.25102829e+02, 2.47543082e+02, 2.72220379e+02, 2.99357729e+02, 3.29200372e+02, 3.62017995e+02, 3.98107171e+02 }, [LC3_SRATE_48K] = { /* g_tilt = 30 */ 1.00000000e+00, 1.11588399e+00, 1.24519708e+00, 1.38949549e+00, 1.55051578e+00, 1.73019574e+00, 1.93069773e+00, 2.15443469e+00, 2.40409918e+00, 2.68269580e+00, 2.99357729e+00, 3.34048498e+00, 3.72759372e+00, 4.15956216e+00, 4.64158883e+00, 5.17947468e+00, 5.77969288e+00, 6.44946677e+00, 7.19685673e+00, 8.03085722e+00, 8.96150502e+00, 1.00000000e+01, 1.11588399e+01, 1.24519708e+01, 1.38949549e+01, 1.55051578e+01, 1.73019574e+01, 1.93069773e+01, 2.15443469e+01, 2.40409918e+01, 2.68269580e+01, 2.99357729e+01, 3.34048498e+01, 3.72759372e+01, 4.15956216e+01, 4.64158883e+01, 5.17947468e+01, 5.77969288e+01, 6.44946677e+01, 7.19685673e+01, 8.03085722e+01, 8.96150502e+01, 1.00000000e+02, 1.11588399e+02, 1.24519708e+02, 1.38949549e+02, 1.55051578e+02, 1.73019574e+02, 1.93069773e+02, 2.15443469e+02, 2.40409918e+02, 2.68269580e+02, 2.99357729e+02, 3.34048498e+02, 3.72759372e+02, 4.15956216e+02, 4.64158883e+02, 5.17947468e+02, 5.77969288e+02, 6.44946677e+02, 7.19685673e+02, 8.03085722e+02, 8.96150502e+02, 1.00000000e+03 }, }; float e[LC3_NUM_BANDS]; /* --- Copy and padding --- */ int nb = LC3_MIN(lc3_band_lim[dt][sr][LC3_NUM_BANDS], LC3_NUM_BANDS); int n2 = LC3_NUM_BANDS - nb; for (int i2 = 0; i2 < n2; i2++) e[2*i2 + 0] = e[2*i2 + 1] = eb[i2]; memcpy(e + 2*n2, eb + n2, (nb - n2) * sizeof(float)); /* --- Smoothing, pre-emphasis and logarithm --- */ const float *ge = ge_table[sr]; float e0 = e[0], e1 = e[0], e2; float e_sum = 0; for (int i = 0; i < LC3_NUM_BANDS-1; ) { e[i] = (e0 * 0.25f + e1 * 0.5f + (e2 = e[i+1]) * 0.25f) * ge[i]; e_sum += e[i++]; e[i] = (e1 * 0.25f + e2 * 0.5f + (e0 = e[i+1]) * 0.25f) * ge[i]; e_sum += e[i++]; e[i] = (e2 * 0.25f + e0 * 0.5f + (e1 = e[i+1]) * 0.25f) * ge[i]; e_sum += e[i++]; } e[LC3_NUM_BANDS-1] = (e0 * 0.25f + e1 * 0.75f) * ge[LC3_NUM_BANDS-1]; e_sum += e[LC3_NUM_BANDS-1]; float noise_floor = fmaxf(e_sum * (1e-4f / 64), 0x1p-32f); for (int i = 0; i < LC3_NUM_BANDS; i++) e[i] = fast_log2f(fmaxf(e[i], noise_floor)) * 0.5f; /* --- Grouping & scaling --- */ float scf_sum; scf[0] = (e[0] + e[4]) * 1.f/12 + (e[0] + e[3]) * 2.f/12 + (e[1] + e[2]) * 3.f/12 ; scf_sum = scf[0]; for (int i = 1; i < 15; i++) { scf[i] = (e[4*i-1] + e[4*i+4]) * 1.f/12 + (e[4*i ] + e[4*i+3]) * 2.f/12 + (e[4*i+1] + e[4*i+2]) * 3.f/12 ; scf_sum += scf[i]; } scf[15] = (e[59] + e[63]) * 1.f/12 + (e[60] + e[63]) * 2.f/12 + (e[61] + e[62]) * 3.f/12 ; scf_sum += scf[15]; for (int i = 0; i < 16; i++) scf[i] = 0.85f * (scf[i] - scf_sum * 1.f/16); /* --- Attack handling --- */ if (!att) return; float s0, s1 = scf[0], s2 = scf[1], s3 = scf[2], s4 = scf[3]; float sn = s1 + s2; scf[0] = (sn += s3) * 1.f/3; scf[1] = (sn += s4) * 1.f/4; scf_sum = scf[0] + scf[1]; for (int i = 2; i < 14; i++, sn -= s0) { s0 = s1, s1 = s2, s2 = s3, s3 = s4, s4 = scf[i+2]; scf[i] = (sn += s4) * 1.f/5; scf_sum += scf[i]; } scf[14] = (sn ) * 1.f/4; scf[15] = (sn -= s1) * 1.f/3; scf_sum += scf[14] + scf[15]; for (int i = 0; i < 16; i++) scf[i] = (dt == LC3_DT_7M5 ? 0.3f : 0.5f) * (scf[i] - scf_sum * 1.f/16); } /** * Codebooks * scf Input 16 scale factors * lf/hfcb_idx Output the low and high frequency codebooks index */ LC3_HOT static void resolve_codebooks( const float *scf, int *lfcb_idx, int *hfcb_idx) { float dlfcb_max = 0, dhfcb_max = 0; *lfcb_idx = *hfcb_idx = 0; for (int icb = 0; icb < 32; icb++) { const float *lfcb = lc3_sns_lfcb[icb]; const float *hfcb = lc3_sns_hfcb[icb]; float dlfcb = 0, dhfcb = 0; for (int i = 0; i < 8; i++) { dlfcb += (scf[ i] - lfcb[i]) * (scf[ i] - lfcb[i]); dhfcb += (scf[8+i] - hfcb[i]) * (scf[8+i] - hfcb[i]); } if (icb == 0 || dlfcb < dlfcb_max) *lfcb_idx = icb, dlfcb_max = dlfcb; if (icb == 0 || dhfcb < dhfcb_max) *hfcb_idx = icb, dhfcb_max = dhfcb; } } /** * Unit energy normalize pulse configuration * c Pulse configuration * cn Normalized pulse configuration */ LC3_HOT static void normalize(const int *c, float *cn) { int c2_sum = 0; for (int i = 0; i < 16; i++) c2_sum += c[i] * c[i]; float c_norm = 1.f / sqrtf(c2_sum); for (int i = 0; i < 16; i++) cn[i] = c[i] * c_norm; } /** * Sub-procedure of `quantize()`, add unit pulse * x, y, n Transformed residual, and vector of pulses with length * start, end Current number of pulses, limit to reach * corr, energy Correlation (x,y) and y energy, updated at output */ LC3_HOT static void add_pulse(const float *x, int *y, int n, int start, int end, float *corr, float *energy) { for (int k = start; k < end; k++) { float best_c2 = (*corr + x[0]) * (*corr + x[0]); float best_e = *energy + 2*y[0] + 1; int nbest = 0; for (int i = 1; i < n; i++) { float c2 = (*corr + x[i]) * (*corr + x[i]); float e = *energy + 2*y[i] + 1; if (c2 * best_e > e * best_c2) best_c2 = c2, best_e = e, nbest = i; } *corr += x[nbest]; *energy += 2*y[nbest] + 1; y[nbest]++; } } /** * Quantization of codebooks residual * scf Input 16 scale factors, output quantized version * lf/hfcb_idx Codebooks index * c, cn Output 4 pulse configurations candidates, normalized * shape/gain_idx Output selected shape/gain indexes */ LC3_HOT static void quantize(const float *scf, int lfcb_idx, int hfcb_idx, int (*c)[16], float (*cn)[16], int *shape_idx, int *gain_idx) { /* --- Residual --- */ const float *lfcb = lc3_sns_lfcb[lfcb_idx]; const float *hfcb = lc3_sns_hfcb[hfcb_idx]; float r[16], x[16]; for (int i = 0; i < 8; i++) { r[ i] = scf[ i] - lfcb[i]; r[8+i] = scf[8+i] - hfcb[i]; } dct16_forward(r, x); /* --- Shape 3 candidate --- * Project to or below pyramid N = 16, K = 6, * then add unit pulses until you reach K = 6, over N = 16 */ float xm[16]; float xm_sum = 0; for (int i = 0; i < 16; i++) { xm[i] = fabsf(x[i]); xm_sum += xm[i]; } float proj_factor = (6 - 1) / fmaxf(xm_sum, 1e-31f); float corr = 0, energy = 0; int npulses = 0; for (int i = 0; i < 16; i++) { c[3][i] = floorf(xm[i] * proj_factor); npulses += c[3][i]; corr += c[3][i] * xm[i]; energy += c[3][i] * c[3][i]; } add_pulse(xm, c[3], 16, npulses, 6, &corr, &energy); npulses = 6; /* --- Shape 2 candidate --- * Add unit pulses until you reach K = 8 on shape 3 */ memcpy(c[2], c[3], sizeof(c[2])); add_pulse(xm, c[2], 16, npulses, 8, &corr, &energy); npulses = 8; /* --- Shape 1 candidate --- * Remove any unit pulses from shape 2 that are not part of 0 to 9 * Update energy and correlation terms accordingly * Add unit pulses until you reach K = 10, over N = 10 */ memcpy(c[1], c[2], sizeof(c[1])); for (int i = 10; i < 16; i++) { c[1][i] = 0; npulses -= c[2][i]; corr -= c[2][i] * xm[i]; energy -= c[2][i] * c[2][i]; } add_pulse(xm, c[1], 10, npulses, 10, &corr, &energy); npulses = 10; /* --- Shape 0 candidate --- * Add unit pulses until you reach K = 1, on shape 1 */ memcpy(c[0], c[1], sizeof(c[0])); add_pulse(xm + 10, c[0] + 10, 6, 0, 1, &corr, &energy); /* --- Add sign and unit energy normalize --- */ for (int j = 0; j < 16; j++) for (int i = 0; i < 4; i++) c[i][j] = x[j] < 0 ? -c[i][j] : c[i][j]; for (int i = 0; i < 4; i++) normalize(c[i], cn[i]); /* --- Determe shape & gain index --- * Search the Mean Square Error, within (shape, gain) combinations */ float mse_min = INFINITY; *shape_idx = *gain_idx = 0; for (int ic = 0; ic < 4; ic++) { const struct lc3_sns_vq_gains *cgains = lc3_sns_vq_gains + ic; float cmse_min = INFINITY; int cgain_idx = 0; for (int ig = 0; ig < cgains->count; ig++) { float g = cgains->v[ig]; float mse = 0; for (int i = 0; i < 16; i++) mse += (x[i] - g * cn[ic][i]) * (x[i] - g * cn[ic][i]); if (mse < cmse_min) { cgain_idx = ig, cmse_min = mse; } } if (cmse_min < mse_min) { *shape_idx = ic, *gain_idx = cgain_idx; mse_min = cmse_min; } } } /** * Unquantization of codebooks residual * lf/hfcb_idx Low and high frequency codebooks index * c Table of normalized pulse configuration * shape/gain Selected shape/gain indexes * scf Return unquantized scale factors */ LC3_HOT static void unquantize(int lfcb_idx, int hfcb_idx, const float *c, int shape, int gain, float *scf) { const float *lfcb = lc3_sns_lfcb[lfcb_idx]; const float *hfcb = lc3_sns_hfcb[hfcb_idx]; float g = lc3_sns_vq_gains[shape].v[gain]; dct16_inverse(c, scf); for (int i = 0; i < 8; i++) scf[i] = lfcb[i] + g * scf[i]; for (int i = 8; i < 16; i++) scf[i] = hfcb[i-8] + g * scf[i]; } /** * Sub-procedure of `sns_enumerate()`, enumeration of a vector * c, n Table of pulse configuration, and length * idx, ls Return enumeration set */ static void enum_mvpq(const int *c, int n, int *idx, bool *ls) { int ci, i, j; /* --- Scan for 1st significant coeff --- */ for (i = 0, c += n; (ci = *(--c)) == 0 ; i++); *idx = 0; *ls = ci < 0; /* --- Scan remaining coefficients --- */ for (i++, j = LC3_ABS(ci); i < n; i++, j += LC3_ABS(ci)) { if ((ci = *(--c)) != 0) { *idx = (*idx << 1) | *ls; *ls = ci < 0; } *idx += lc3_sns_mpvq_offsets[i][j]; } } /** * Sub-procedure of `sns_deenumerate()`, deenumeration of a vector * idx, ls Enumeration set * npulses Number of pulses in the set * c, n Table of pulses configuration, and length */ static void deenum_mvpq(int idx, bool ls, int npulses, int *c, int n) { int i; /* --- Scan for coefficients --- */ for (i = n-1; i >= 0 && idx; i--) { int ci = 0; for (ci = 0; idx < lc3_sns_mpvq_offsets[i][npulses - ci]; ci++); idx -= lc3_sns_mpvq_offsets[i][npulses - ci]; *(c++) = ls ? -ci : ci; npulses -= ci; if (ci > 0) { ls = idx & 1; idx >>= 1; } } /* --- Set last significant --- */ int ci = npulses; if (i-- >= 0) *(c++) = ls ? -ci : ci; while (i-- >= 0) *(c++) = 0; } /** * SNS Enumeration of PVQ configuration * shape Selected shape index * c Selected pulse configuration * idx_a, ls_a Return enumeration set A * idx_b, ls_b Return enumeration set B (shape = 0) */ static void enumerate(int shape, const int *c, int *idx_a, bool *ls_a, int *idx_b, bool *ls_b) { enum_mvpq(c, shape < 2 ? 10 : 16, idx_a, ls_a); if (shape == 0) enum_mvpq(c + 10, 6, idx_b, ls_b); } /** * SNS Deenumeration of PVQ configuration * shape Selected shape index * idx_a, ls_a enumeration set A * idx_b, ls_b enumeration set B (shape = 0) * c Return pulse configuration */ static void deenumerate(int shape, int idx_a, bool ls_a, int idx_b, bool ls_b, int *c) { int npulses_a = (const int []){ 10, 10, 8, 6 }[shape]; deenum_mvpq(idx_a, ls_a, npulses_a, c, shape < 2 ? 10 : 16); if (shape == 0) deenum_mvpq(idx_b, ls_b, 1, c + 10, 6); else if (shape == 1) memset(c + 10, 0, 6 * sizeof(*c)); } /* ---------------------------------------------------------------------------- * Filtering * -------------------------------------------------------------------------- */ /** * Spectral shaping * dt, sr Duration and samplerate of the frame * scf_q Quantized scale factors * inv True on inverse shaping, False otherwise * x Spectral coefficients * y Return shapped coefficients * * `x` and `y` can be the same buffer */ LC3_HOT static void spectral_shaping(enum lc3_dt dt, enum lc3_srate sr, const float *scf_q, bool inv, const float *x, float *y) { /* --- Interpolate scale factors --- */ float scf[LC3_NUM_BANDS]; float s0, s1 = inv ? -scf_q[0] : scf_q[0]; scf[0] = scf[1] = s1; for (int i = 0; i < 15; i++) { s0 = s1, s1 = inv ? -scf_q[i+1] : scf_q[i+1]; scf[4*i+2] = s0 + 0.125f * (s1 - s0); scf[4*i+3] = s0 + 0.375f * (s1 - s0); scf[4*i+4] = s0 + 0.625f * (s1 - s0); scf[4*i+5] = s0 + 0.875f * (s1 - s0); } scf[62] = s1 + 0.125f * (s1 - s0); scf[63] = s1 + 0.375f * (s1 - s0); int nb = LC3_MIN(lc3_band_lim[dt][sr][LC3_NUM_BANDS], LC3_NUM_BANDS); int n2 = LC3_NUM_BANDS - nb; for (int i2 = 0; i2 < n2; i2++) scf[i2] = 0.5f * (scf[2*i2] + scf[2*i2+1]); if (n2 > 0) memmove(scf + n2, scf + 2*n2, (nb - n2) * sizeof(float)); /* --- Spectral shaping --- */ const int *lim = lc3_band_lim[dt][sr]; for (int i = 0, ib = 0; ib < nb; ib++) { float g_sns = fast_exp2f(-scf[ib]); for ( ; i < lim[ib+1]; i++) y[i] = x[i] * g_sns; } } /* ---------------------------------------------------------------------------- * Interface * -------------------------------------------------------------------------- */ /** * SNS analysis */ void lc3_sns_analyze(enum lc3_dt dt, enum lc3_srate sr, const float *eb, bool att, struct lc3_sns_data *data, const float *x, float *y) { /* Processing steps : * - Determine 16 scale factors from bands energy estimation * - Get codebooks indexes that match thoses scale factors * - Quantize the residual with the selected codebook * - The pulse configuration `c[]` is enumerated * - Finally shape the spectrum coefficients accordingly */ float scf[16], cn[4][16]; int c[4][16]; compute_scale_factors(dt, sr, eb, att, scf); resolve_codebooks(scf, &data->lfcb, &data->hfcb); quantize(scf, data->lfcb, data->hfcb, c, cn, &data->shape, &data->gain); unquantize(data->lfcb, data->hfcb, cn[data->shape], data->shape, data->gain, scf); enumerate(data->shape, c[data->shape], &data->idx_a, &data->ls_a, &data->idx_b, &data->ls_b); spectral_shaping(dt, sr, scf, false, x, y); } /** * SNS synthesis */ void lc3_sns_synthesize(enum lc3_dt dt, enum lc3_srate sr, const lc3_sns_data_t *data, const float *x, float *y) { float scf[16], cn[16]; int c[16]; deenumerate(data->shape, data->idx_a, data->ls_a, data->idx_b, data->ls_b, c); normalize(c, cn); unquantize(data->lfcb, data->hfcb, cn, data->shape, data->gain, scf); spectral_shaping(dt, sr, scf, true, x, y); } /** * Return number of bits coding the bitstream data */ int lc3_sns_get_nbits(void) { return 38; } /** * Put bitstream data */ void lc3_sns_put_data(lc3_bits_t *bits, const struct lc3_sns_data *data) { /* --- Codebooks --- */ lc3_put_bits(bits, data->lfcb, 5); lc3_put_bits(bits, data->hfcb, 5); /* --- Shape, gain and vectors --- * * Write MSB bit of shape index, next LSB bits of shape and gain, * and MVPQ vectors indexes are muxed */ int shape_msb = data->shape >> 1; lc3_put_bit(bits, shape_msb); if (shape_msb == 0) { const int size_a = 2390004; int submode = data->shape & 1; int mux_high = submode == 0 ? 2 * (data->idx_b + 1) + data->ls_b : data->gain & 1; int mux_code = mux_high * size_a + data->idx_a; lc3_put_bits(bits, data->gain >> submode, 1); lc3_put_bits(bits, data->ls_a, 1); lc3_put_bits(bits, mux_code, 25); } else { const int size_a = 15158272; int submode = data->shape & 1; int mux_code = submode == 0 ? data->idx_a : size_a + 2 * data->idx_a + (data->gain & 1); lc3_put_bits(bits, data->gain >> submode, 2); lc3_put_bits(bits, data->ls_a, 1); lc3_put_bits(bits, mux_code, 24); } } /** * Get bitstream data */ int lc3_sns_get_data(lc3_bits_t *bits, struct lc3_sns_data *data) { /* --- Codebooks --- */ *data = (struct lc3_sns_data){ .lfcb = lc3_get_bits(bits, 5), .hfcb = lc3_get_bits(bits, 5) }; /* --- Shape, gain and vectors --- */ int shape_msb = lc3_get_bit(bits); data->gain = lc3_get_bits(bits, 1 + shape_msb); data->ls_a = lc3_get_bit(bits); int mux_code = lc3_get_bits(bits, 25 - shape_msb); if (shape_msb == 0) { const int size_a = 2390004; if (mux_code >= size_a * 14) return -1; data->idx_a = mux_code % size_a; mux_code = mux_code / size_a; data->shape = (mux_code < 2); if (data->shape == 0) { data->idx_b = (mux_code - 2) / 2; data->ls_b = (mux_code - 2) % 2; } else { data->gain = (data->gain << 1) + (mux_code % 2); } } else { const int size_a = 15158272; if (mux_code >= size_a + 1549824) return -1; data->shape = 2 + (mux_code >= size_a); if (data->shape == 2) { data->idx_a = mux_code; } else { mux_code -= size_a; data->idx_a = mux_code / 2; data->gain = (data->gain << 1) + (mux_code % 2); } } return 0; }