/** ****************************************************************************** * @file stm32n6xx_hal_pwr.c * @author MCD Application Team * @brief PWR HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Power Controller (PWR) peripheral: * + Initialization/De-Initialization Functions. * + Peripheral Control Functions. * + PWR Attributes Functions. * ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim ============================================================================== ##### PWR peripheral overview ##### ============================================================================== [..] (#) The Power control (PWR) provides an overview of the supply architecture for the different power domains and of the supply configuration controller. (#) Several low-power modes are available to save power when the CPU does not need to execute code : (+) Sleep (CPU clock stopped and still in RUN mode) (+) Stop (System clock stopped) (+) Standby (System powered down) ============================================================================== ##### How to use this driver ##### ============================================================================== [..] (#) Call HAL_PWR_EnableBkUpAccess() and HAL_PWR_DisableBkUpAccess() functions to enable/disable access to the backup domain (RCC Backup domain control register RCC_BDCR, RTC registers, TAMP registers, backup registers and backup SRAM). (#) Call HAL_PWR_ConfigPVD() after setting parameters to be configured (event mode and voltage threshold) in order to set up the Programmed Voltage Detector, then use HAL_PWR_EnablePVD() and HAL_PWR_DisablePVD() functions to start and stop the PVD detection. (+) PVD level on PVD_IN is compared to the internal VREFINT level. PVDO flag is available in PWR_CR2 to indicate if the voltage level on PVD_IN is higher or lower than the PVD threshold. (#) Call HAL_PWR_EnableWakeUpPin() and HAL_PWR_DisableWakeUpPin() functions with the right parameter to configure the wake up pin polarity (Low or High), the wake up pin selection and to enable and disable it. (#) Call HAL_PWREx_GetWakeupFlag() and HAL_PWREx_ClearWakeupFlag() functions to manage wake-up flag for the selected pin. (#) Call HAL_PWR_EnterSLEEPMode() function to enter the CPU in Sleep mode. Wake-up from Sleep mode could be following to an event or an interrupt according to low power mode intrinsic request called (__WFI() or __WFE()). (#) Call HAL_PWR_EnterSTOPMode() function to enter the whole system to Stop mode. Wake-up from Stop mode could be following to an event or an interrupt according to low power mode intrinsic request called (__WFI() or __WFE()). (Regulator state on STM32N6 devices is managed internally but regulator parameter is kept for product compatibility). (#) Call HAL_PWR_EnterSTANDBYMode() function to enter the whole system in Standby mode. Wake-up from Standby mode can be following only by an interrupt. (#) Call HAL_PWR_EnableSleepOnExit() and HAL_PWR_DisableSleepOnExit() APIs to enable and disable the Cortex-M55 re-entry in Sleep mode after an interruption handling is over. (#) Call HAL_PWR_EnableSEVOnPend() and HAL_PWR_DisableSEVOnPend() functions to configure the Cortex-M55 to wake-up after any pending event / interrupt even if it's disabled or has insufficient priority to cause exception entry. (#) Call HAL_PWR_WAKEUP_PIN_IRQHandler() function to handle all wake-up pins interrupts. (#) Call HAL_PWR_ConfigAttributes() function to configure PWR item secure and privilege attributes and call HAL_PWR_GetConfigAttributes() function to get the attribute configuration for the selected item. *** PWR HAL driver macros list *** ============================================= [..] Below the list of most used macros in PWR HAL driver. (+) __HAL_PWR_GET_FLAG() : Get the PWR pending flags. (+) __HAL_PWR_CLEAR_FLAG() : Clear the PWR pending flags. @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32n6xx_hal.h" /** @addtogroup STM32N6xx_HAL_Driver * @{ */ /** @defgroup PWR PWR * @brief PWR HAL module driver * @{ */ #if defined (HAL_PWR_MODULE_ENABLED) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup PWR_Private_Defines PWR Private Defines * @{ */ /** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask * @{ */ #define PVD_MODE_IT (0x00010000U) /*!< Mask for interruption yielded by PVD threshold crossing */ #define PVD_MODE_EVT (0x00020000U) /*!< Mask for event yielded by PVD threshold crossing */ #define PVD_RISING_EDGE (0x00000001U) /*!< Mask for rising edge set as PVD trigger */ #define PVD_FALLING_EDGE (0x00000002U) /*!< Mask for falling edge set as PVD trigger */ #define PVD_RISING_FALLING_EDGE (0x00000003U) /*!< Mask for rising & falling edge set as PVD trigger */ /** * @} */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup PWR_Exported_Functions PWR Exported Functions * @{ */ /** @defgroup PWR_Exported_Functions_Group1 Initialization and De-Initialization Functions * @brief Initialization and de-Initialization functions * @verbatim =============================================================================== ##### Initialization and De-Initialization Functions ##### =============================================================================== [..] This section provides functions allowing to deinitialize power peripheral. [..] After system reset, the backup domain (RCC Backup domain control register RCC_BDCR, RTC registers, TAMP registers, backup registers and backup SRAM) is protected against possible unwanted write accesses. The HAL_PWR_EnableBkUpAccess() function enables the access to the backup domain. The HAL_PWR_DisableBkUpAccess() function disables the access to the backup domain. @endverbatim * @{ */ /** * @brief Deinitialize the HAL PWR peripheral registers to their default reset * values. * @note This functionality is not available in this product. * The prototype is kept just to maintain compatibility with other * products. * @retval None. */ void HAL_PWR_DeInit(void) { } /** * @brief Enable access to the backup domain (RCC Backup domain control * register RCC_BDCR, RTC registers, TAMP registers, backup registers * and backup SRAM). * @note After a system reset, the backup domain is protected against * possible unwanted write accesses. * @retval None. */ void HAL_PWR_EnableBkUpAccess(void) { WRITE_REG(PWR->DBPCR, PWR_DBPCR_DBP); } /** * @brief Disable access to the backup domain (RCC Backup domain control * register RCC_BDCR, RTC registers, TAMP registers, backup registers * and backup SRAM). * @retval None. */ void HAL_PWR_DisableBkUpAccess(void) { CLEAR_REG(PWR->DBPCR); } /** * @} */ /** @defgroup PWR_Exported_Functions_Group2 Peripheral Control Functions * @brief Power Control functions * @verbatim =============================================================================== ##### Peripheral Control Functions ##### =============================================================================== [..] This section provides functions allowing to control power peripheral. *** PVD configuration *** ========================= [..] (+) The PVD is used to monitor the VDD power supply by comparing it to the internal VREFINT. (+) A PVDO flag is available to indicate if VDD is higher or lower than the PVD threshold. This event is internally connected to the EXTI line 66 to generate an interrupt if enabled. It is configurable through __HAL_PWR_PVD_EXTI_ENABLE_IT() macro. (+) The PVD is stopped in STANDBY mode. *** Wake-up pin configuration *** ================================= [..] (+) Wake-up pin is used to wake up the system from STANDBY mode. The pin pull is configurable through the WKUPEPR register to be in No-pull, Pull-up and Pull-down. The pin polarity is configurable through the WKUPEPR register to be active on rising or falling edges. (+) There are up to four Wake-up pin in the STM32N6 devices family. *** Low Power modes configuration *** ===================================== [..] The device present 3 principles low-power modes : (+) SLEEP mode : Cortex-M55 is stopped and all PWR domains are remaining active (Powered and Clocked). (+) STOP mode : Cortex-M55 is stopped, clocks are stopped and the regulator is running. The Main regulator or the LP regulator could be selected. (+) STANDBY mode : All PWR domains enter DSTANDBY mode and the VCORE supply regulator is powered off. *** SLEEP mode *** ================== [..] (+) Entry: The SLEEP mode is entered by using the HAL_PWR_EnterSLEEPMode(Regulator, SLEEPEntry) function. (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction. (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction. (++) PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR: enter SLEEP mode with WFE instruction and no clear of pending event. -@@- The Regulator parameter is not used for the STM32N6 family and is kept as parameter just to maintain compatibility with the lower power families. (+) Exit: Any peripheral interrupt acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device from SLEEP mode. *** STOP mode *** ================= [..] In system STOP mode, the CPU clock is stopped. All CPU subsystem peripheral clocks are stopped too. The voltage regulator can be configured either in normal or low-power mode. To minimize the consumption in STOP mode, FLASH can be powered off before entering the STOP mode using the HAL_PWREx_EnableFlashPowerDown() function. It can be switched on again by software after exiting the STOP mode using the HAL_PWREx_DisableFlashPowerDown() function. (+) Entry: The STOP mode is entered using the HAL_PWR_EnterSTOPMode(Regulator, STOPEntry) function with: (++) Regulator: (+++) PWR_MAINREGULATOR_ON: Main regulator ON. This parameter is not used for the STM32N6 family and is kept as parameter just to maintain compatibility with the lower power families. (++) STOPEntry: (+++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction. (+++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction. (+++) PWR_STOPENTRY_WFE_NO_EVT_CLEAR: enter STOP mode with WFE instruction and no clear of pending event. (+) Exit: Any EXTI Line (Internal or External) configured in Interrupt/Event mode. *** STANDBY mode *** ==================== [..] (+) The system STANDBY mode allows to achieve the lowest power consumption. It is based on the Cortex-M55 deep SLEEP mode, with the voltage regulator disabled. The system is consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost except for the RTC registers, RTC backup registers, backup SRAM and standby circuitry. [..] The voltage regulator is OFF. (++) Entry: (+++) The STANDBY mode is entered using the HAL_PWR_EnterSTANDBYMode() function. (++) Exit: (+++) WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC wakeup, tamper event, time stamp event, external reset in NRST pin, IWDG reset. *** Auto-wakeup (AWU) from low-power mode *** ============================================= [..] (+) The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC Wakeup event, a tamper event or a time-stamp event, without depending on an external interrupt (Auto-wakeup mode). (+) RTC auto-wakeup (AWU) from the STOP and STANDBY modes (++) To wake up from the STOP mode with an RTC alarm event, it is necessary to configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. (++) To wake up from the STOP mode with an RTC Tamper or time stamp event, it is necessary to configure the RTC to detect the tamper or time stamp event using the HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions. (++) To wake up from the STOP mode with an RTC WakeUp event, it is necessary to configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function. @endverbatim * @{ */ /** * @brief Configure the voltage threshold detected by the Programmed Voltage * Detector (PVD). * @param pConfigPVD : Pointer to a PWR_PVDTypeDef structure that contains the * PVD configuration information (EventMode). * @retval None. */ void HAL_PWR_ConfigPVD(const PWR_PVDTypeDef *pConfigPVD) { /* Check the parameters */ assert_param(IS_PWR_PVD_MODE(pConfigPVD->Mode)); /* Disable PVD Event/Interrupt */ __HAL_PWR_PVD_EXTI_DISABLE_EVENT(); __HAL_PWR_PVD_EXTI_DISABLE_IT(); __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); /* Configure the PVD in interrupt mode */ if ((pConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) { __HAL_PWR_PVD_EXTI_ENABLE_IT(); } /* Configure the PVD in event mode */ if ((pConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) { __HAL_PWR_PVD_EXTI_ENABLE_EVENT(); } /* Rising edge configuration */ if ((pConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) { __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); } /* Falling edge configuration */ if ((pConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) { __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); } } /** * @brief Enable the programmable voltage detector (PVD). * @retval None. */ void HAL_PWR_EnablePVD(void) { SET_BIT(PWR->CR2, PWR_CR2_PVDEN); } /** * @brief Disable the programmable voltage detector (PVD). * @retval None. */ void HAL_PWR_DisablePVD(void) { CLEAR_BIT(PWR->CR2, PWR_CR2_PVDEN); } /** * @brief Enable the WakeUp PINx functionality. * @param WakeUpPinPolarity : Specifies which Wake-Up pin to enable. * This parameter can be one of the following legacy values, which * sets the default (rising edge): * @arg PWR_WAKEUP_PIN1, * PWR_WAKEUP_PIN2, * PWR_WAKEUP_PIN3, * PWR_WAKEUP_PIN4. * or one of the following values where the user can explicitly states * the enabled pin and the chosen polarity: * @arg PWR_WAKEUP_PIN1_HIGH, PWR_WAKEUP_PIN1_LOW, * PWR_WAKEUP_PIN2_HIGH, PWR_WAKEUP_PIN2_LOW, * PWR_WAKEUP_PIN3_HIGH, PWR_WAKEUP_PIN3_LOW, * PWR_WAKEUP_PIN4_HIGH, PWR_WAKEUP_PIN4_LOW. * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. * @retval None. */ void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity) { /* Check the parameters */ assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity)); /* Enable and Specify the Wake-Up pin polarity and the pull configuration for the event detection (rising or falling edge). */ SET_BIT(PWR->WKUPEPR, WakeUpPinPolarity); } /** * @brief Disable the WakeUp PINx functionality. * @param WakeUpPinx : Specifies the Power Wake-Up pin to disable. * This parameter can be one of the following values: * @arg PWR_WAKEUP_PIN1, * PWR_WAKEUP_PIN2, * PWR_WAKEUP_PIN3, * PWR_WAKEUP_PIN4, * PWR_WAKEUP_PIN1_HIGH, PWR_WAKEUP_PIN1_LOW, * PWR_WAKEUP_PIN2_HIGH, PWR_WAKEUP_PIN2_LOW, * PWR_WAKEUP_PIN3_HIGH, PWR_WAKEUP_PIN3_LOW, * PWR_WAKEUP_PIN4_HIGH, PWR_WAKEUP_PIN4_LOW. * @retval None. */ void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) { /* Check the parameters */ assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); /* Disable the wake up pin selected */ CLEAR_BIT(PWR->WKUPEPR, (PWR_WKUPEPR_WKUPEN & WakeUpPinx)); } /** * @brief Get the Wake-Up Pin pending flags. * @param WakeUpFlag : Specifies the Wake-Up PIN flag to be checked. * This parameter can be one of the following values: * @arg PWR_WAKEUP_FLAG1 : Get wakeup event received from PA0. * @arg PWR_WAKEUP_FLAG2 : Get wakeup event received from PA2. * @arg PWR_WAKEUP_FLAG3 : Get wakeup event received from PC13. * @arg PWR_WAKEUP_FLAG4 : Get wakeup event received from PD2. * @arg PWR_WAKEUP_FLAG_ALL : Get Wakeup event received from all * wake up pins. * @retval The Wake-Up pin flag. */ uint32_t HAL_PWR_GetWakeupFlag(uint32_t WakeUpFlag) { /* Check the parameters */ assert_param(IS_PWR_WAKEUP_FLAG(WakeUpFlag)); /* Return the wake up pin flag */ return (PWR->WKUPSR & WakeUpFlag); } /** * @brief Clear the Wake-Up pin pending flag. * @param WakeUpFlag: Specifies the Wake-Up PIN flag to clear. * This parameter can be one of the following values: * @arg PWR_WAKEUP_FLAG1 : Clear the wakeup event received from PA0. * @arg PWR_WAKEUP_FLAG2 : Clear the wakeup event received from PA2. * @arg PWR_WAKEUP_FLAG3 : Clear the wakeup event received from PC13. * @arg PWR_WAKEUP_FLAG4 : Clear the wakeup event received from PD2. * @arg PWR_WAKEUP_FLAG_ALL : Clear the wakeup events received from all * wake up pins. * @retval HAL status. */ HAL_StatusTypeDef HAL_PWR_ClearWakeupFlag(uint32_t WakeUpFlag) { /* Check the parameter */ assert_param(IS_PWR_WAKEUP_FLAG(WakeUpFlag)); /* Clear the wake up event received from wake up pin x */ WRITE_REG(PWR->WKUPCR, WakeUpFlag); /* Check if the wake up event is well cleared */ if ((PWR->WKUPSR & WakeUpFlag) != 0U) { return HAL_ERROR; } return HAL_OK; } /** * @brief Enter the current core in SLEEP mode (CSLEEP). * @param Regulator : NA in this family project * Specifies the regulator state in SLEEP mode. * @note This parameter is not used for the STM32N6 family and is kept as * parameter just to maintain compatibility with the lower power * families. * @param SLEEPEntry : Specifies if SLEEP mode is entered with WFI or WFE * intrinsic instruction. * This parameter can be one of the following values: * @arg PWR_SLEEPENTRY_WFI : Enter SLEEP mode with WFI instruction. * @arg PWR_SLEEPENTRY_WFE : Enter SLEEP mode with WFE instruction. * @arg PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR: Enter SLEEP mode with WFE and no clear of pending event before. * * @note Ensure to clear pending events before calling this API through * HAL_PWREx_ClearPendingEvent() when the SLEEP entry is WFE. * @retval None. */ void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) { /* Prevent unused argument(s) compilation warning */ UNUSED(Regulator); /* Check the parameters */ assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); /* Clear SLEEPDEEP bit of Cortex System Control Register */ CLEAR_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); /* Select Sleep mode entry */ if (SLEEPEntry == PWR_SLEEPENTRY_WFI) { /* Request Wait For Interrupt */ __WFI(); } else { if(SLEEPEntry != PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR) { /* Clear all pending event */ __SEV(); __WFE(); } /* Request Wait For Event */ __WFE(); } } /** * @brief Enter the whole system to Stop mode. * @note This API will enter the system in STOP mode * @param Regulator : This parameter is not used for this product family. and is kept as parameter just to maintain compatibility with the lower power families. * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE * intrinsic instruction. * This parameter can be one of the following values: * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction. * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction. * @arg PWR_STOPENTRY_WFE_NO_EVT_CLEAR : Enter STOP mode with WFE and no clear of pending event before. * @note In System STOP mode, all I/O pins keep the same state as in Run mode. * @note When exiting System STOP mode by issuing an interrupt or a wakeup * event, the HSI RC oscillator is selected as default system wakeup * clock. * @note In System STOP mode, when the voltage regulator operates in low * power mode, an additional startup delay is incurred when the system * is waking up. By keeping the internal regulator ON during STOP mode, * the consumption is higher although the startup time is reduced. * @retval None. */ void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) { /* Prevent unused argument(s) compilation warning */ UNUSED(Regulator); /* Check the parameters */ assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); /* Select Stop mode when device enters Deepsleep */ CLEAR_BIT(PWR->CPUCR, PWR_CPUCR_PDDS); /* Set SLEEPDEEP bit of Cortex System Control Register */ SET_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); /* Ensure that all instructions are done before entering STOP mode */ __DSB(); __ISB(); /* Select Stop mode entry */ if (STOPEntry == PWR_STOPENTRY_WFI) { /* Request Wait For Interrupt */ __WFI(); } else { if(STOPEntry != PWR_STOPENTRY_WFE_NO_EVT_CLEAR) { /* Clear all pending event */ __SEV(); __WFE(); } /* Request Wait For Event */ __WFE(); } /* Clear SLEEPDEEP bit of Cortex-M55 in the System Control Register */ CLEAR_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); } /** * @brief Enter the whole system to Standby mode. * @note The Standby mode allows achieving the lowest power consumption. * @note When the system enters in Standby mode, the voltage regulator is disabled. * The complete VCORE domain is consequently powered off. * The PLLs, HSI oscillator, CSI oscillator, HSI48 and the HSE oscillator are * also switched off. * SRAM and register contents are lost except for backup domain registers * (RTC registers, RTC backup register and backup RAM), and Standby circuitry. * @note When the System exit STANDBY mode by issuing an interrupt or a * wakeup event, the HSI RC oscillator is selected as system clock. * @retval None. */ void HAL_PWR_EnterSTANDBYMode(void) { /* Select Standby when device enters Deepsleep */ SET_BIT(PWR->CPUCR, PWR_CPUCR_PDDS); /* Set SLEEPDEEP bit of Cortex System Control Register */ SET_BIT(SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); /* Ensure that all instructions are done before entering STANDBY mode */ __DSB(); __ISB(); /* Request Wait For Interrupt */ __WFI(); } /** * @brief Indicate SLEEP-ON-EXIT feature when returning from handler mode to * thread mode. * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the * processor re-enters Sleep mode when an interruption handling is over. * Setting this bit is useful when the processor is expected to run * only on interruptions handling. * @retval None. */ void HAL_PWR_EnableSleepOnExit(void) { /* Set SLEEPONEXIT bit of Cortex-M55 System Control Register */ SET_BIT(SCB->SCR, SCB_SCR_SLEEPONEXIT_Msk); } /** * @brief Disable SLEEP-ON-EXIT feature when returning from handler mode to * thread mode. * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the * processor re-enters Sleep mode when an interruption handling is over. * @retval None. */ void HAL_PWR_DisableSleepOnExit(void) { /* Clear SLEEPONEXIT bit of Cortex-M55 System Control Register */ CLEAR_BIT(SCB->SCR, SCB_SCR_SLEEPONEXIT_Msk); } /** * @brief Enable CORTEX SEV-ON-PEND feature. * @note Sets SEVONPEND bit of SCR register. When this bit is set, any * pending event / interrupt even if it's disabled or has insufficient * priority to cause exception entry wakes up the Cortex-M55. * @retval None. */ void HAL_PWR_EnableSEVOnPend(void) { /* Set SEVONPEND bit of Cortex-M55 System Control Register */ SET_BIT(SCB->SCR, SCB_SCR_SEVONPEND_Msk); } /** * @brief Disable CORTEX SEVONPEND feature. * @note Resets SEVONPEND bit of SCR register. When this bit is reset, only * enabled pending causes exception entry wakes up the Cortex-M55. * @retval None. */ void HAL_PWR_DisableSEVOnPend(void) { /* Clear SEVONPEND bit of Cortex-M55 System Control Register */ CLEAR_BIT(SCB->SCR, SCB_SCR_SEVONPEND_Msk); } /** * @brief PWR PVD interrupt Rising callback * @retval None */ __weak void HAL_PWR_PVD_Rising_Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, the HAL_PWR_PVD_Rising_Callback can be implemented in the user file */ } /** * @brief PWR PVD interrupt Falling callback * @retval None */ __weak void HAL_PWR_PVD_Falling_Callback(void) { /* NOTE : This function should not be modified; when the callback is needed, the HAL_PWR_PVD_Falling_Callback can be implemented in the user file */ } /** * @brief This function handles the PWR WAKEUP PIN interrupt request. * @note This API should be called under the WAKEUP_PIN_IRQHandler(). * @retval None. */ void HAL_PWR_WAKEUP_PIN_IRQHandler(void) { /* Wakeup pin EXTI line interrupt detected */ if (READ_BIT(PWR->WKUPSR, PWR_WKUPSR_WKUPF1) != 0U) { /* Clear PWR WKUPF1 flag */ __HAL_PWR_CLEAR_WAKEUPFLAG(PWR_FLAG_WKUP1); /* PWR WKUP1 interrupt user callback */ HAL_PWR_WKUP1_Callback(); } if (READ_BIT(PWR->WKUPSR, PWR_WKUPSR_WKUPF2) != 0U) { /* Clear PWR WKUPF2 flag */ __HAL_PWR_CLEAR_WAKEUPFLAG(PWR_FLAG_WKUP2); /* PWR WKUP2 interrupt user callback */ HAL_PWR_WKUP2_Callback(); } if (READ_BIT(PWR->WKUPSR, PWR_WKUPSR_WKUPF3) != 0U) { /* Clear PWR WKUPF3 flag */ __HAL_PWR_CLEAR_WAKEUPFLAG(PWR_FLAG_WKUP3); /* PWR WKUP3 interrupt user callback */ HAL_PWR_WKUP3_Callback(); } if (READ_BIT(PWR->WKUPSR, PWR_WKUPSR_WKUPF4) != 0U) { /* Clear PWR WKUPF4 flag */ __HAL_PWR_CLEAR_WAKEUPFLAG(PWR_FLAG_WKUP4); /* PWR WKUP4 interrupt user callback */ HAL_PWR_WKUP4_Callback(); } } /** * @brief PWR WKUP1 interrupt callback. * @retval None. */ __weak void HAL_PWR_WKUP1_Callback(void) { /* NOTE : This function should not be modified, when the callback is needed, the HAL_PWR_WKUP1_Callback can be implemented in the user file */ } /** * @brief PWR WKUP2 interrupt callback. * @retval None. */ __weak void HAL_PWR_WKUP2_Callback(void) { /* NOTE : This function should not be modified, when the callback is needed, the HAL_PWR_WKUP2_Callback can be implemented in the user file */ } /** * @brief PWR WKUP3 interrupt callback. * @retval None. */ __weak void HAL_PWR_WKUP3_Callback(void) { /* NOTE : This function should not be modified, when the callback is needed, the HAL_PWR_WKUP3_Callback can be implemented in the user file */ } /** * @brief PWR WKUP4 interrupt callback. * @retval None. */ __weak void HAL_PWR_WKUP4_Callback(void) { /* NOTE : This function should not be modified, when the callback is needed, the HAL_PWR_WKUP4_Callback can be implemented in the user file */ } /** * @} */ #if defined(PWR_PRIVCFGR_PRIV0) /** @defgroup PWR_Exported_Functions_Group3 Attributes Management Functions * @brief Attributes management functions * @verbatim =============================================================================== ##### PWR Attributes Functions ##### =============================================================================== [..] The PWR is able to protect register bits from being modified by non-secure and unprivileged accesses. The protection can be activated for the following features through PWR_SECCFGR and PWR_PRIVCFGR: (++) System supply configuration. (++) Voltage scaling. (++) Low-power mode. (++) Wake-up (WKUP) pins. (++) Voltage detection and monitoring. (++) VBAT mode. A non-secure access to a secure-protected register bit is denied : (++) The secured bits are not written (WI) with a non-secure write access. (++) The secured bits are read as 0 (RAZ) with a non-secure read access. [..] After any application reset or system reset, the PWR does not filter any access (default configuration: non-secure, any privileged) until the trusted agent has programmed the security and privileged protection. [..] Secure/non-secure access filtering To enable the filtering access based on this attribute, the authorized master agent must set SECx in PWR_SECCFGR related to the PWR feature. When a register is configured as secure, read and write operations are only allowed by a secure access. Non-secure read or write accesses are denied (RAZ/WI). An illegal secure access event is generated to the IAC (illegal access controller). There is no bus error generated. When a register is configured as non-secure, read and write operations are allowed by both secure and non-secure accesses. [..] Privileged/unprivileged access filtering To enable the filtering access based on this attribute, the authorized master agent has to set PRIVx in PWR_PRIVCFGR related to the PWR feature. When a register is configured as privileged, read and write operations are only allowed by a privileged access. Unprivileged read or write accesses are denied (RAZ/WI). An illegal privileged access event is generated to the IAC. There is no bus error generated. When a register is configured as unprivileged, read and write operations are allowed by both privileged and unprivileged accesses. @endverbatim * @{ */ /** * @brief Configure the PWR item attributes. * @note Available attributes are security and privilege protection. * @note Security attribute can only be set only by secure access. * @note Privilege attribute for secure items can be managed only by a secure * privileged access. * @note Privilege attribute for nsecure items can be managed by a secure * privileged access or by a nsecure privileged access. * @param Item : Specifies the item(s) to set attributes on. * This parameter can be a combination of PWR_ITEMS. * @param Attributes : Specifies the available attribute(s). * This parameter can be one of PWR_ATTRIBUTES. * @retval None. */ void HAL_PWR_ConfigAttributes(uint32_t Item, uint32_t Attributes) { /* Check the parameters */ assert_param(IS_PWR_ITEMS_ATTRIBUTES(Item)); assert_param(IS_PWR_ATTRIBUTES(Attributes)); #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /* Secure item management (TZEN = 1) */ if ((Attributes & PWR_ITEM_ATTR_SEC_PRIV_MASK) == PWR_ITEM_ATTR_SEC_PRIV_MASK) { /* Privilege item management */ if ((Attributes & PWR_SEC_PRIV) == PWR_SEC_PRIV) { SET_BIT(PWR_S->SECCFGR, Item); SET_BIT(PWR->PRIVCFGR, Item); } else { SET_BIT(PWR_S->SECCFGR, Item); CLEAR_BIT(PWR->PRIVCFGR, Item); } } /* NSecure item management */ else { /* Privilege item management */ if ((Attributes & PWR_NSEC_PRIV) == PWR_NSEC_PRIV) { CLEAR_BIT(PWR_S->SECCFGR, Item); SET_BIT(PWR->PRIVCFGR, Item); } else { CLEAR_BIT(PWR_S->SECCFGR, Item); CLEAR_BIT(PWR->PRIVCFGR, Item); } } #else /* NSecure item management (TZEN = 0) */ if ((Attributes & PWR_ITEM_ATTR_NSEC_PRIV_MASK) == PWR_ITEM_ATTR_NSEC_PRIV_MASK) { /* Privilege item management */ if ((Attributes & PWR_NSEC_PRIV) == PWR_NSEC_PRIV) { SET_BIT(PWR->PRIVCFGR, Item); } else { CLEAR_BIT(PWR->PRIVCFGR, Item); } } #endif /* __ARM_FEATURE_CMSE */ } /** * @brief Get attribute(s) of a PWR item. * @param Item : Specifies the item(s) to get attributes on. * This parameter can be one of PWR_ITEMS. * @param pAttributes : Pointer to return attribute(s). * Returned value could be on of PWR_ATTRIBUTES. * @retval HAL Status. */ HAL_StatusTypeDef HAL_PWR_GetConfigAttributes(uint32_t Item, uint32_t *pAttributes) { uint32_t attributes; /* Check attribute pointer */ if (pAttributes == NULL) { return HAL_ERROR; } /* Check the parameter */ assert_param(IS_PWR_ITEMS_ATTRIBUTES(Item)); #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /* Check item security */ if ((PWR->SECCFGR & Item) == Item) { if ((PWR->PRIVCFGR & Item) == Item) { attributes = PWR_SEC_PRIV; } else { attributes = PWR_SEC_NPRIV; } } else { if ((PWR->PRIVCFGR & Item) == Item) { attributes = PWR_NSEC_PRIV; } else { attributes = PWR_NSEC_NPRIV; } } #else if ((PWR->PRIVCFGR & Item) == Item) { attributes = PWR_NSEC_PRIV; } else { attributes = PWR_NSEC_NPRIV; } #endif /* __ARM_FEATURE_CMSE */ /* return value */ *pAttributes = attributes; return HAL_OK; } /** * @} */ #endif /* #if defined(PWR_PRIVCFGR_PRIV0) */ /** * @} */ #endif /* defined (HAL_PWR_MODULE_ENABLED) */ /** * @} */ /** * @} */