/** ****************************************************************************** * @file stm32h7rsxx_hal_rcc_ex.c * @author MCD Application Team * @brief Extended RCC HAL module driver. * This file provides firmware functions to manage the following * functionalities RCC extension peripheral: * + Extended Peripheral Control functions * ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7rsxx_hal.h" /** @addtogroup STM32H7RSxx_HAL_Driver * @{ */ /** @defgroup RCCEx RCCEx * @brief RCC HAL module driver * @{ */ #ifdef HAL_RCC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private defines -----------------------------------------------------------*/ /** @defgroup RCCEx_Private_defines RCCEx Private Defines * @{ */ /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @defgroup RCCEx_Private_Macros RCCEx Private Macros * @{ */ /** * @} */ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @defgroup RCCEx_Private_Functions RCCEx Private Functions * @{ */ static uint32_t RCC_GetCLKPFreq(void); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions * @{ */ /** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions * @brief Extended Peripheral Control functions * @verbatim =============================================================================== ##### Extended Peripheral Control functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to control the RCC Clocks frequencies. [..] (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select the RTC clock source; in this case the Backup domain will be reset in order to modify the RTC Clock source, as consequence RTC registers (including the backup registers) and RCC_BDCR register are set to their reset values. @endverbatim * @{ */ /** * @brief Initializes the RCC extended peripherals clocks according to the specified * parameters in the RCC_PeriphCLKInitTypeDef. * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that * contains the configuration information for the Extended Peripherals * clocks (SDMMC12, CKPER, FMC, XSPI1, XSPI2, ADC, ADF1, CEC, FDCAN, I2C1/I3C1, * I2C2, LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPUART1, SAI1, * SAI2, SPDIF, SPI1, SPI2, SPI3, SPI4, SPI5, SPI6, SAI1, USART1, USART2, * USART3, UART4, UART5, UART7, UART8, ETH1, USB and RTC). * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select * the RTC clock source; in this case the Backup domain will be reset in * order to modify the RTC Clock source, as consequence RTC registers (including * the backup registers) are set to their reset values. * * @retval HAL status */ HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(const RCC_PeriphCLKInitTypeDef *PeriphClkInit) { uint32_t tmpreg; uint32_t tickstart; HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */ HAL_StatusTypeDef status = HAL_OK; /* Final status */ /* Check the parameters */ assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); /*---------------------------- RTC configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) { /* check for RTC Parameters used to output RTCCLK */ assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection)); /* As the RTC clock source selection can be changed only if the Backup Domain is reset */ /* reset the Backup domain only if the RTC Clock source selection is modified from default reset value */ tmpreg = READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL); if ((tmpreg != RCC_RTCCLKSOURCE_DISABLE) && (tmpreg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))) { /* Enable write access to Backup domain */ SET_BIT(PWR->CR1, PWR_CR1_DBP); /* Read back to check Backup domain enabled */ if (READ_BIT(PWR->CR1, PWR_CR1_DBP) == 0U) { ret = HAL_ERROR; } else { /* Store the content of BDCR register before the reset of Backup Domain */ /* excepted the RTC clock source selection that will be changed */ tmpreg = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL)); __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); /* Restore the content of BDCR register */ WRITE_REG(RCC->BDCR, tmpreg); } } if (ret == HAL_OK) { /* If LSE is selected as RTC clock source (and enabled prior to Backup Domain reset), wait for LSE reactivation */ if (PeriphClkInit->RTCClockSelection == RCC_RTCCLKSOURCE_LSE) { /* Get Start Tick*/ tickstart = HAL_GetTick(); /* Wait till LSE is ready */ while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) { if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) { ret = HAL_TIMEOUT; break; } } } if (ret == HAL_OK) { __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); __HAL_RCC_RTC_ENABLE(); } else { /* set overall return value */ status = ret; } } else { /* set overall return value */ status = ret; } } /*---------------------------- FMC configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_FMC) == RCC_PERIPHCLK_FMC) { /* Check the parameters */ assert_param(IS_RCC_FMCCLKSOURCE(PeriphClkInit->FmcClockSelection)); switch (PeriphClkInit->FmcClockSelection) { case RCC_FMCCLKSOURCE_HCLK: /* HCLK clock selected as FMC kernel peripheral clock */ break; case RCC_FMCCLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for FMC kernel */ /* Enable FMC kernel clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* FMC kernel clock source configuration done later after clock selection check */ break; case RCC_FMCCLKSOURCE_PLL2R: /* PLL2_R is used as clock source for FMC kernel */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_RCLK); /* FMC kernel clock source configuration done later after clock selection check */ break; case RCC_FMCCLKSOURCE_HSI: /* HSI oscillator is used as clock source for FMC kernel */ /* FMC kernel clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of FMC kernel clock*/ __HAL_RCC_FMC_CONFIG(PeriphClkInit->FmcClockSelection); } else { /* set overall return value */ status = ret; } } /*-------------------------- XSPI1 clock source configuration ----------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_XSPI1) == RCC_PERIPHCLK_XSPI1) { /* Check the parameters */ assert_param(IS_RCC_XSPI1CLKSOURCE(PeriphClkInit->Xspi1ClockSelection)); switch (PeriphClkInit->Xspi1ClockSelection) { case RCC_XSPI1CLKSOURCE_HCLK: /* HCLK is used as clock source for Xspi1 */ /* Nothing to do */ break; case RCC_XSPI1CLKSOURCE_PLL2S: /* PLL2_S is used as clock source for Xspi1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_SCLK); /* XSPI1 clock source configuration done later after clock selection check */ break; case RCC_XSPI1CLKSOURCE_PLL2T: /* PLL2_T is used as clock source for Xspi1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_TCLK); /* XSPI1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Configure the XSPI1 clock source */ __HAL_RCC_XSPI1_CONFIG(PeriphClkInit->Xspi1ClockSelection); } else { /* set overall return value */ status = ret; } } /*-------------------------- XSPI2 clock source configuration ----------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_XSPI2) == RCC_PERIPHCLK_XSPI2) { /* Check the parameters */ assert_param(IS_RCC_XSPI2CLKSOURCE(PeriphClkInit->Xspi2ClockSelection)); switch (PeriphClkInit->Xspi2ClockSelection) { case RCC_XSPI2CLKSOURCE_HCLK: /* HCLK is used as clock source for Xspi2 */ /* Nothing to do */ break; case RCC_XSPI2CLKSOURCE_PLL2S: /* PLL2_S is used as clock source for Xspi2 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_SCLK); /* XSPI2 clock source configuration done later after clock selection check */ break; case RCC_XSPI2CLKSOURCE_PLL2T: /* PLL2_T is used as clock source for Xspi2 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_TCLK); /* XSPI2 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Configure the XSPI2 clock source */ __HAL_RCC_XSPI2_CONFIG(PeriphClkInit->Xspi2ClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------------ CKPER configuration --------------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_CKPER) == RCC_PERIPHCLK_CKPER) { /* Check the parameters */ assert_param(IS_RCC_CKPERCLKSOURCE(PeriphClkInit->CkperClockSelection)); /* Configure the CKPER clock source */ __HAL_RCC_CLKP_CONFIG(PeriphClkInit->CkperClockSelection); } /*------------------------------------- SDMMC12 Configuration ------------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SDMMC12) == RCC_PERIPHCLK_SDMMC12) { /* Check the parameters */ assert_param(IS_RCC_SDMMC12CLKSOURCE(PeriphClkInit->Sdmmc12ClockSelection)); switch (PeriphClkInit->Sdmmc12ClockSelection) { case RCC_SDMMC12CLKSOURCE_PLL2S: /* PLL2_S is used as clock source for SDMMC12 kernel */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_SCLK); /* SDMMC12 kernel clock source configuration done later after clock selection check */ break; case RCC_SDMMC12CLKSOURCE_PLL2T: /* PLL2_T is used as clock source for SDMMC12 kernel */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_TCLK); /* SDMMC12 kernel clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SDMMC12 clock*/ __HAL_RCC_SDMMC12_CONFIG(PeriphClkInit->Sdmmc12ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- ADC configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) { /* Check the parameters */ assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection)); switch (PeriphClkInit->AdcClockSelection) { case RCC_ADCCLKSOURCE_PLL2P: /* PLL2_P is used as clock source for ADC */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* ADC clock source configuration done later after clock selection check */ break; case RCC_ADCCLKSOURCE_PLL3R: /* PLL3_R is used as clock source for ADC */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* ADC clock source configuration done later after clock selection check */ break; case RCC_ADCCLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of ADC clock */ /* ADC clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of ADC clock*/ __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- ADF1 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_ADF1) == RCC_PERIPHCLK_ADF1) { /* Check the parameters */ assert_param(IS_RCC_ADF1CLKSOURCE(PeriphClkInit->Adf1ClockSelection)); switch (PeriphClkInit->Adf1ClockSelection) { case RCC_ADF1CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for ADF1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* ADF1 clock source configuration done later after clock selection check */ break; case RCC_ADF1CLKSOURCE_PLL3P: /* PLL3_P is used as clock source for ADF1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_PCLK); /* ADF1 clock source configuration done later after clock selection check */ break; case RCC_ADF1CLKSOURCE_HCLK: /* HCLK is used as clock source for ADF1 */ case RCC_ADF1CLKSOURCE_PIN: /* External I2S_CKIN is used as clock source for ADF1 */ case RCC_ADF1CLKSOURCE_CSI: /* CSI is used as clock source for ADF1 */ case RCC_ADF1CLKSOURCE_HSI: /* HSI is used as clock source for ADF1 */ /* ADF1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of ADF1 clock*/ __HAL_RCC_ADF1_CONFIG(PeriphClkInit->Adf1ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------- CEC configuration ---------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) { /* Check the parameters */ assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection)); /* Configure the CEC clock source */ __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection); } /*---------------------- ETH1 REF configuration --------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_ETH1REF) == RCC_PERIPHCLK_ETH1REF) { /* Check the parameters */ assert_param(IS_RCC_ETH1REFCLKSOURCE(PeriphClkInit->Eth1RefClockSelection)); /* Configure the ETH1 REF clock source */ __HAL_RCC_ETH1REF_CONFIG(PeriphClkInit->Eth1RefClockSelection); } /*---------------------- ETH1PHY configuration --------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_ETH1PHY) == RCC_PERIPHCLK_ETH1PHY) { /* Check the parameters */ assert_param(IS_RCC_ETH1PHYCLKSOURCE(PeriphClkInit->Eth1PhyClockSelection)); switch (PeriphClkInit->Eth1PhyClockSelection) { case RCC_ETH1PHYCLKSOURCE_HSE: /* HSE is used as clock source for ETH PHY */ /* ETH PHY clock source configuration done later after clock selection check */ break; case RCC_ETH1PHYCLKSOURCE_PLL3S: /* PLL3_S is used as clock source for ETH PHY */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_SCLK); /* ETH PHY clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of ETH PHY clock*/ __HAL_RCC_ETH1PHY_CONFIG(PeriphClkInit->Eth1PhyClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------- FDCAN configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_FDCAN) == RCC_PERIPHCLK_FDCAN) { /* Check the parameters */ assert_param(IS_RCC_FDCANCLKSOURCE(PeriphClkInit->FdcanClockSelection)); switch (PeriphClkInit->FdcanClockSelection) { case RCC_FDCANCLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for FDCAN kernel */ /* Enable FDCAN Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* FDCAN clock source configuration done later after clock selection check */ break; case RCC_FDCANCLKSOURCE_PLL2P: /* PLL2_P is used as clock source for FDCAN kernel */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* FDCAN clock source configuration done later after clock selection check */ break; case RCC_FDCANCLKSOURCE_HSE: /* HSE is used as clock source for FDCAN kernel */ /* FDCAN clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of FDCAN clock*/ __HAL_RCC_FDCAN_CONFIG(PeriphClkInit->FdcanClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------ I2C1/I3C1 Configuration ------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_I2C1_I3C1) == RCC_PERIPHCLK_I2C1_I3C1) { /* Check the parameters */ assert_param(IS_RCC_I2C1_I3C1CLKSOURCE(PeriphClkInit->I2c1_I3c1ClockSelection)); switch (PeriphClkInit->I2c1_I3c1ClockSelection) { case RCC_I2C1_I3C1CLKSOURCE_PLL3R: /* PLL3_R is used as clock source for I2C1/I3C1*/ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* I2C1/I3C1 clock source configuration done later after clock selection check */ break; case RCC_I2C1_I3C1CLKSOURCE_PCLK1: /* PCLK1 is used as clock source for I2C1/I3C1*/ case RCC_I2C1_I3C1CLKSOURCE_HSI: /* HSI is used as clock source for I2C1/I3C1*/ case RCC_I2C1_I3C1CLKSOURCE_CSI: /* CSI is used as clock source for I2C1/I3C1*/ /* I2C1/I3C1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of I2C1/I3C1 clock*/ __HAL_RCC_I2C1_I3C1_CONFIG(PeriphClkInit->I2c1_I3c1ClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------ I2C2/I2C3 Configuration -------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_I2C23) == RCC_PERIPHCLK_I2C23) { /* Check the parameters */ assert_param(IS_RCC_I2C23CLKSOURCE(PeriphClkInit->I2c23ClockSelection)); switch (PeriphClkInit->I2c23ClockSelection) { case RCC_I2C23CLKSOURCE_PLL3R: /* PLL3_R is used as clock source for I2C2/I2C3 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* I2C2/I2C3 clock source configuration done later after clock selection check */ break; case RCC_I2C23CLKSOURCE_PCLK1: /* PCLK1 is used as clock source for I2C2/I2C3 */ case RCC_I2C23CLKSOURCE_HSI: /* HSI is used as clock source for I2C2/I2C3 */ case RCC_I2C23CLKSOURCE_CSI: /* CSI is used as clock source for I2C2/I2C3 */ /* I2C2/I2C3 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of I2C2/I2C3 clock*/ __HAL_RCC_I2C23_CONFIG(PeriphClkInit->I2c23ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- LPTIM1 configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) { /* Check the parameters */ assert_param(IS_RCC_LPTIM1CLKSOURCE(PeriphClkInit->Lptim1ClockSelection)); switch (PeriphClkInit->Lptim1ClockSelection) { case RCC_LPTIM1CLKSOURCE_PCLK1: /* PCLK1 as clock source for LPTIM1 */ /* LPTIM1 clock source configuration done later after clock selection check */ break; case RCC_LPTIM1CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for LPTIM1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* LPTIM1 clock source configuration done later after clock selection check */ break; case RCC_LPTIM1CLKSOURCE_PLL3R: /* PLL3_R is used as clock source for LPTIM1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* LPTIM1 clock source configuration done later after clock selection check */ break; case RCC_LPTIM1CLKSOURCE_LSE: /* External low speed OSC clock is used as clock source for LPTIM1 */ /* LPTIM1 clock source configuration done later after clock selection check */ break; case RCC_LPTIM1CLKSOURCE_LSI: /* Internal low speed OSC clock is used as clock source for LPTIM1 */ /* LPTIM1 clock source configuration done later after clock selection check */ break; case RCC_LPTIM1CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as clock source for LPTIM1 */ /* LPTIM1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of LPTIM1 clock*/ __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- LPTIM2/LPTIM3 configuration -----------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_LPTIM23) == RCC_PERIPHCLK_LPTIM23) { switch (PeriphClkInit->Lptim23ClockSelection) { case RCC_LPTIM23CLKSOURCE_PCLK4: /* PCLK4 as clock source for LPTIM2/LPTIM3 */ /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; case RCC_LPTIM23CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for LPTIM2/LPTIM3 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; case RCC_LPTIM23CLKSOURCE_PLL3R: /* PLL3_R is used as clock source for LPTIM2/LPTIM3 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; case RCC_LPTIM23CLKSOURCE_LSE: /* External low speed OSC clock is used as clock source for LPTIM2/LPTIM3 */ /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; case RCC_LPTIM23CLKSOURCE_LSI: /* Internal low speed OSC clock is used as clock source for LPTIM2/LPTIM3 */ /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; case RCC_LPTIM23CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of LPTIM2 clock */ /* LPTIM2/LPTIM3 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of LPTIM2/LPTIM3 clock*/ __HAL_RCC_LPTIM23_CONFIG(PeriphClkInit->Lptim23ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- LPTIM4/LPTIM5 configuration -----------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_LPTIM45) == RCC_PERIPHCLK_LPTIM45) { switch (PeriphClkInit->Lptim45ClockSelection) { case RCC_LPTIM45CLKSOURCE_PCLK4: /* PCLK4 as clock source for LPTIM4/LPTIM5 */ /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; case RCC_LPTIM45CLKSOURCE_PLL2P: /* PLL2 is used as clock source for LPTIM4/LPTIM5 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; case RCC_LPTIM45CLKSOURCE_PLL3R: /* PLL3 is used as clock source for LPTIM4/LPTIM5 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; case RCC_LPTIM45CLKSOURCE_LSE: /* External low speed OSC clock is used as source of LPTIM4/LPTIM5 clock */ /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; case RCC_LPTIM45CLKSOURCE_LSI: /* Internal low speed OSC clock is used as source of LPTIM4/LPTIM5 clock */ /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; case RCC_LPTIM45CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of LPTIM4/LPTIM5 clock */ /* LPTIM4/LPTIM5 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of LPTIM4/LPTIM5 clock */ __HAL_RCC_LPTIM45_CONFIG(PeriphClkInit->Lptim45ClockSelection); } else { /* set overall return value */ status = ret; } } /*-------------------------- LPUART1 Configuration -------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1) { /* Check the parameters */ assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection)); switch (PeriphClkInit->Lpuart1ClockSelection) { case RCC_LPUART1CLKSOURCE_PCLK4: /* PCLK4 selected as clock source for LPUART1 */ /* LPUART1 clock source configuration done later after clock selection check */ break; case RCC_LPUART1CLKSOURCE_PLL2Q: /* PLL2_Q is used as clock source for LPUART1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_QCLK); /* LPUART1 clock source configuration done later after clock selection check */ break; case RCC_LPUART1CLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for LPUART1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* LPUART1 clock source configuration done later after clock selection check */ break; case RCC_LPUART1CLKSOURCE_HSI: /* HSI oscillator clock is used as source of LPUART1 clock */ /* LPUART1 clock source configuration done later after clock selection check */ break; case RCC_LPUART1CLKSOURCE_CSI: /* CSI oscillator clock is used as source of LPUART1 clock */ /* LPUART1 clock source configuration done later after clock selection check */ break; case RCC_LPUART1CLKSOURCE_LSE: /* LSE, oscillator is used as source of LPUART1 clock */ /* LPUART1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of LPUART1 clock */ __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection); } else { /* set overall return value */ status = ret; } } /*-------------------------- LTDC Configuration ----------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC) { /* LTDC internally connected to PLL3_R output clock */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); } /*---------------------------- PSSI configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_PSSI) == RCC_PERIPHCLK_PSSI) { /* Check the parameters */ assert_param(IS_RCC_PSSICLKSOURCE(PeriphClkInit->PssiClockSelection)); switch (PeriphClkInit->PssiClockSelection) { case RCC_PSSICLKSOURCE_PLL3R: /* PLL3_R is used as clock source for PSSI */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* PSSI clock source configuration done later after clock selection check */ break; case RCC_PSSICLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of PSSI clock */ /* PSSI clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of PSSI clock*/ __HAL_RCC_PSSI_CONFIG(PeriphClkInit->PssiClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SAI1 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) { /* Check the parameters */ assert_param(IS_RCC_SAI1CLKSOURCE(PeriphClkInit->Sai1ClockSelection)); switch (PeriphClkInit->Sai1ClockSelection) { case RCC_SAI1CLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for SAI1 */ /* Enable SAI Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* SAI1 clock source configuration done later after clock selection check */ break; case RCC_SAI1CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for SAI1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* SAI1 clock source configuration done later after clock selection check */ break; case RCC_SAI1CLKSOURCE_PLL3P: /* PLL3_P is used as clock source for SAI1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_PCLK); /* SAI1 clock source configuration done later after clock selection check */ break; case RCC_SAI1CLKSOURCE_PIN: /* External clock is used as source of SAI1 clock */ /* SAI1 clock source configuration done later after clock selection check */ break; case RCC_SAI1CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of SAI1 clock */ /* SAI1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SAI1 clock*/ __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SAI2 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) { /* Check the parameters */ assert_param(IS_RCC_SAI2CLKSOURCE(PeriphClkInit->Sai2ClockSelection)); switch (PeriphClkInit->Sai2ClockSelection) { case RCC_SAI2CLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for SAI2 */ /* Enable SAI Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* SAI2 clock source configuration done later after clock selection check */ break; case RCC_SAI2CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for SAI2 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* SAI2 clock source configuration done later after clock selection check */ break; case RCC_SAI2CLKSOURCE_PLL3P: /* PLL3_P is used as clock source for SAI2 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_PCLK); /* SAI2 clock source configuration done later after clock selection check */ break; case RCC_SAI2CLKSOURCE_PIN: /* External clock is used as source of SAI2 clock */ /* SAI2 clock source configuration done later after clock selection check */ break; case RCC_SAI2CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of SAI2 clock */ /* SAI2 clock source configuration done later after clock selection check */ break; case RCC_SAI2CLKSOURCE_SPDIF: /* SPDIF clock is used as source of SAI2 clock */ /* SAI2 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SAI2 clock*/ __HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SPDIFRX configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) { /* Check the parameters */ assert_param(IS_RCC_SPDIFRXCLKSOURCE(PeriphClkInit->SpdifrxClockSelection)); switch (PeriphClkInit->SpdifrxClockSelection) { case RCC_SPDIFRXCLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for SPDIFRX */ /* Enable PLL1Q Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPDIFRX clock source configuration done later after clock selection check */ break; case RCC_SPDIFRXCLKSOURCE_PLL2R: /* PLL2_R is used as clock source for SPDIFRX */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_RCLK); /* SPDIFRX clock source configuration done later after clock selection check */ break; case RCC_SPDIFRXCLKSOURCE_PLL3R: /* PLL3_R is used as clock source for SPDIFRX */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_RCLK); /* SPDIFRX clock source configuration done later after clock selection check */ break; case RCC_SPDIFRXCLKSOURCE_HSI: /* Internal OSC clock is used as source of SPDIFRX clock*/ /* SPDIFRX clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SPDIFRX clock */ __HAL_RCC_SPDIFRX_CONFIG(PeriphClkInit->SpdifrxClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SPI1 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SPI1) == RCC_PERIPHCLK_SPI1) { /* Check the parameters */ assert_param(IS_RCC_SPI1CLKSOURCE(PeriphClkInit->Spi1ClockSelection)); switch (PeriphClkInit->Spi1ClockSelection) { case RCC_SPI1CLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for SPI1 */ /* Enable SPI Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI1 clock source configuration done later after clock selection check */ break; case RCC_SPI1CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for SPI1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* SPI1 clock source configuration done later after clock selection check */ break; case RCC_SPI1CLKSOURCE_PLL3P: /* PLL3_P is used as clock source for SPI1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_PCLK); /* SPI1 clock source configuration done later after clock selection check */ break; case RCC_SPI1CLKSOURCE_PIN: /* External I2S_CKIN is used as clock source for SPI1 */ /* SPI1 clock source configuration done later after clock selection check */ break; case RCC_SPI1CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of SPI1 clock */ /* SPI1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SPI1 clock*/ __HAL_RCC_SPI1_CONFIG(PeriphClkInit->Spi1ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SPI2/SPI3 configuration ---------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SPI23) == RCC_PERIPHCLK_SPI23) { /* Check the parameters */ assert_param(IS_RCC_SPI23CLKSOURCE(PeriphClkInit->Spi23ClockSelection)); switch (PeriphClkInit->Spi23ClockSelection) { case RCC_SPI23CLKSOURCE_PLL1Q: /* PLL1_Q is used as clock source for SPI2/SPI3 */ /* Enable SPI Clock output generated form System PLL . */ __HAL_RCC_PLL1CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI2/SPI3 clock source configuration done later after clock selection check */ break; case RCC_SPI23CLKSOURCE_PLL2P: /* PLL2_P is used as clock source for SPI2/SPI3 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_PCLK); /* SPI2/SPI3 clock source configuration done later after clock selection check */ break; case RCC_SPI23CLKSOURCE_PLL3P: /* PLL3_P is used as clock source for SPI2/SPI3 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_PCLK); /* SPI2/SPI3 clock source configuration done later after clock selection check */ break; case RCC_SPI23CLKSOURCE_PIN: /* External clock I2S_CKIN is used as clock source for SPI2/SPI3 */ /* SPI2/SPI3 clock source configuration done later after clock selection check */ break; case RCC_SPI23CLKSOURCE_CLKP: /* HSI, HSE, or CSI oscillator is used as source of SPI2/SPI3 clock */ /* SPI2/SPI3 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SPI2/SPI3 clock*/ __HAL_RCC_SPI23_CONFIG(PeriphClkInit->Spi23ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SPI4/5 configuration -------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SPI45) == RCC_PERIPHCLK_SPI45) { /* Check the parameters */ assert_param(IS_RCC_SPI45CLKSOURCE(PeriphClkInit->Spi45ClockSelection)); switch (PeriphClkInit->Spi45ClockSelection) { case RCC_SPI45CLKSOURCE_PCLK2: /* PCLK2 as clock source for SPI4/SPI5 */ /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; case RCC_SPI45CLKSOURCE_PLL2Q: /* PLL2_Q is used as clock source for SPI4/SPI5 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; case RCC_SPI45CLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for SPI4/SPI5 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; case RCC_SPI45CLKSOURCE_HSI: /* HSI oscillator clock is used as source of SPI4/SPI5 */ /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; case RCC_SPI45CLKSOURCE_CSI: /* CSI oscillator clock is used as source of SPI4/SPI5 */ /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; case RCC_SPI45CLKSOURCE_HSE: /* HSE oscillator clock is used as source of SPI4/SPI5 */ /* SPI4/SPI5 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SPI4/SPI5 clock */ __HAL_RCC_SPI45_CONFIG(PeriphClkInit->Spi45ClockSelection); } else { /* set overall return value */ status = ret; } } /*---------------------------- SPI6 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_SPI6) == RCC_PERIPHCLK_SPI6) { /* Check the parameters */ assert_param(IS_RCC_SPI6CLKSOURCE(PeriphClkInit->Spi6ClockSelection)); switch (PeriphClkInit->Spi6ClockSelection) { case RCC_SPI6CLKSOURCE_PCLK4: /* PCLK4 as clock source for SPI6 */ /* SPI6 clock source configuration done later after clock selection check */ break; case RCC_SPI6CLKSOURCE_PLL2Q: /* PLL2_Q is used as clock source for SPI6 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI6 clock source configuration done later after clock selection check */ break; case RCC_SPI6CLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for SPI6 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* SPI6 clock source configuration done later after clock selection check */ break; case RCC_SPI6CLKSOURCE_HSI: /* HSI oscillator clock is used as source for SPI6 */ /* SPI6 clock source configuration done later after clock selection check */ break; case RCC_SPI6CLKSOURCE_CSI: /* CSI oscillator clock is used as source for SPI6 */ /* SPI6 clock source configuration done later after clock selection check */ break; case RCC_SPI6CLKSOURCE_HSE: /* HSE oscillator is used as source for SPI6 */ /* SPI6 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of SPI6 clock*/ __HAL_RCC_SPI6_CONFIG(PeriphClkInit->Spi6ClockSelection); } else { /* set overall return value */ status = ret; } } /*-------------------------- USART1 configuration --------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) { /* Check the parameters */ assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); switch (PeriphClkInit->Usart1ClockSelection) { case RCC_USART1CLKSOURCE_PCLK2: /* PCLK2 as clock source for USART1 */ /* USART1 clock source configuration done later after clock selection check */ break; case RCC_USART1CLKSOURCE_PLL2Q: /* PLL2_Q is used as clock source for USART1 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_QCLK); /* USART1 clock source configuration done later after clock selection check */ break; case RCC_USART1CLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for USART1 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* USART1 clock source configuration done later after clock selection check */ break; case RCC_USART1CLKSOURCE_HSI: /* HSI oscillator clock is used as source for USART1 */ /* USART1 clock source configuration done later after clock selection check */ break; case RCC_USART1CLKSOURCE_CSI: /* CSI oscillator clock is used as source for USART1 */ /* USART1 clock source configuration done later after clock selection check */ break; case RCC_USART1CLKSOURCE_LSE: /* LSE oscillator is used as source for USART1 */ /* USART1 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of USART1 clock */ __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); } else { /* set overall return value */ status = ret; } } /*------------- USART2/USART3/UART4/UART5/UART7/UART8 Configuration --------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_USART234578) == RCC_PERIPHCLK_USART234578) { /* Check the parameters */ assert_param(IS_RCC_USART234578CLKSOURCE(PeriphClkInit->Usart234578ClockSelection)); switch (PeriphClkInit->Usart234578ClockSelection) { case RCC_USART234578CLKSOURCE_PCLK1: /* PCLK1 as clock source for USART2/USART3/UART4/UART5/UART7/UART8 */ /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; case RCC_USART234578CLKSOURCE_PLL2Q: /* PLL2_Q is used as clock source for USART2/USART3/UART4/UART5/UART7/UART8 */ __HAL_RCC_PLL2CLKOUT_ENABLE(RCC_PLL_QCLK); /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; case RCC_USART234578CLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for USART2/USART3/UART4/UART5/UART7/UART8 */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; case RCC_USART234578CLKSOURCE_HSI: /* HSI oscillator clock is used as source of USART2/USART3/UART4/UART5/UART7/UART8 clock */ /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; case RCC_USART234578CLKSOURCE_CSI: /* CSI oscillator clock is used as source of USART2/USART3/UART4/UART5/UART7/UART8 clock */ /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; case RCC_USART234578CLKSOURCE_LSE: /* LSE, oscillator is used as source of USART2/USART3/UART4/UART5/UART7/UART8 clock */ /* USART2/USART3/UART4/UART5/UART7/UART8 clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of USART2/USART3/UART4/UART5/UART7/UART8 clock */ __HAL_RCC_USART234578_CONFIG(PeriphClkInit->Usart234578ClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------ USBPHYC Configuration ---------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_USBPHYC) == RCC_PERIPHCLK_USBPHYC) { /* Check the parameters */ assert_param(IS_RCC_USBPHYCCLKSOURCE(PeriphClkInit->UsbPhycClockSelection)); switch (PeriphClkInit->UsbPhycClockSelection) { case RCC_USBPHYCCLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for USBPHYC */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* USBPHYC clock source configuration done later after clock selection check */ break; case RCC_USBPHYCCLKSOURCE_HSE: /* HSE is used as clock source for USBPHYC */ case RCC_USBPHYCCLKSOURCE_HSE_DIV2: /* HSE divided by 2 is used as clock source for USBPHYC */ /* USBPHYC clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of USBPHYC clock*/ __HAL_RCC_USBPHYC_CONFIG(PeriphClkInit->UsbPhycClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------ USBOTGFS Configuration ---------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_USBOTGFS) == RCC_PERIPHCLK_USBOTGFS) { /* Check the parameters */ assert_param(IS_RCC_USBOTGFSCLKSOURCE(PeriphClkInit->UsbOtgFsClockSelection)); switch (PeriphClkInit->UsbOtgFsClockSelection) { case RCC_USBOTGFSCLKSOURCE_PLL3Q: /* PLL3_Q is used as clock source for USB OTG FS */ __HAL_RCC_PLL3CLKOUT_ENABLE(RCC_PLL_QCLK); /* USB OTG FS clock source configuration done later after clock selection check */ break; case RCC_USBOTGFSCLKSOURCE_HSI48: /* HSI48 is used as clock source for USB OTG FS */ case RCC_USBOTGFSCLKSOURCE_HSE: /* HSE is used as clock source for USB OTG FS */ case RCC_USBOTGFSCLKSOURCE_CLK48: /* USBPHYC CLK48 is used as clock source for USB OTG FS */ /* USB OTG FS clock source configuration done later after clock selection check */ break; default: ret = HAL_ERROR; break; } if (ret == HAL_OK) { /* Set the source of USBPHYC clock*/ __HAL_RCC_USBOTGFS_CONFIG(PeriphClkInit->UsbOtgFsClockSelection); } else { /* set overall return value */ status = ret; } } /*------------------------------------ TIM configuration --------------------------------------*/ if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_TIM) == RCC_PERIPHCLK_TIM) { /* Check the parameters */ assert_param(IS_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection)); /* Configure Timer Prescaler */ __HAL_RCC_TIMCLKPRESCALER_CONFIG(PeriphClkInit->TIMPresSelection); } if (status == HAL_OK) { return HAL_OK; } return HAL_ERROR; } /** * @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers. * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that * returns the configuration information for the Extended Peripherals clocks : * (SDMMC12, CKPER, FMC, ADC, ADF1, CEC, FDCAN, I2C2/I2C3, I3C1, LPTIM1, * LPTIM2/LPTIM3, LPTIM4/LPTIM5, LTDC, LPUART1, XSPI1, XSPI2, PSSI, RTC, SAI1, SAI2, * SPDIF, SPI1, SPI2/SPI3, SPI4/SPI5, SPI6, TIM, USART1, USART2/USART3/UART4/UART5/UART7/UART8 * USBPHYC, USB OTGFS). * @retval None */ void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) { /* Set all possible values for the extended clock type parameter------------*/ PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_ADF1 | RCC_PERIPHCLK_CEC | \ RCC_PERIPHCLK_CKPER | RCC_PERIPHCLK_ETH1REF | RCC_PERIPHCLK_ETH1PHY | \ RCC_PERIPHCLK_FDCAN | RCC_PERIPHCLK_FMC | RCC_PERIPHCLK_I2C1_I3C1 | \ RCC_PERIPHCLK_I2C23 | RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM23 | \ RCC_PERIPHCLK_LPTIM45 | RCC_PERIPHCLK_LTDC | RCC_PERIPHCLK_LPUART1 | \ RCC_PERIPHCLK_XSPI1 | RCC_PERIPHCLK_XSPI2 | RCC_PERIPHCLK_PSSI | \ RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | \ RCC_PERIPHCLK_SDMMC12 | RCC_PERIPHCLK_SPDIFRX | RCC_PERIPHCLK_SPI1 | \ RCC_PERIPHCLK_SPI23 | RCC_PERIPHCLK_SPI45 | RCC_PERIPHCLK_SPI6 | \ RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART234578 | \ RCC_PERIPHCLK_USBPHYC | RCC_PERIPHCLK_USBOTGFS; /* Get the ADC clock source ------------------------------------------------*/ PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE(); /* Get the ADF1 clock source -----------------------------------------------*/ PeriphClkInit->Adf1ClockSelection = __HAL_RCC_GET_ADF1_SOURCE(); /* Get the CEC clock source ------------------------------------------------*/ PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE(); /* Get the CKPER clock source ----------------------------------------------*/ PeriphClkInit->CkperClockSelection = __HAL_RCC_GET_CLKP_SOURCE(); /* Get the ETH1 clock source ----------------------------------------------*/ PeriphClkInit->Eth1RefClockSelection = __HAL_RCC_GET_ETH1REF_SOURCE(); /* Get the ETH1PHY clock source ----------------------------------------------*/ PeriphClkInit->Eth1PhyClockSelection = __HAL_RCC_GET_ETH1PHY_SOURCE(); /* Get the FDCAN kernel clock source ---------------------------------------*/ PeriphClkInit->FdcanClockSelection = __HAL_RCC_GET_FDCAN_SOURCE(); /* Get the FMC kernel clock source -----------------------------------------*/ PeriphClkInit->FmcClockSelection = __HAL_RCC_GET_FMC_SOURCE(); /* Get the I2C1 clock source -----------------------------------------------*/ PeriphClkInit->I2c1_I3c1ClockSelection = __HAL_RCC_GET_I2C1_I3C1_SOURCE(); /* Get the I2C2/I2C3 clock source ------------------------------------------*/ PeriphClkInit->I2c23ClockSelection = __HAL_RCC_GET_I2C23_SOURCE(); /* Get the LPTIM1 clock source ---------------------------------------------*/ PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE(); /* Get the LPTIM2/LPTIM3 clock source --------------------------------------*/ PeriphClkInit->Lptim23ClockSelection = __HAL_RCC_GET_LPTIM23_SOURCE(); /* Get the LPTIM4/LPTIM5 clock source --------------------------------------*/ PeriphClkInit->Lptim45ClockSelection = __HAL_RCC_GET_LPTIM45_SOURCE(); /* Get the LPUART1 clock source --------------------------------------------*/ PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE(); /* Get the LTDC clock source -----------------------------------------------*/ PeriphClkInit->LtdcClockSelection = __HAL_RCC_GET_LTDC_SOURCE(); /* Get the XSPI1 clock source -----------------------------------------------*/ PeriphClkInit->Xspi1ClockSelection = __HAL_RCC_GET_XSPI1_SOURCE(); /* Get the XSPI2 clock source -----------------------------------------------*/ PeriphClkInit->Xspi2ClockSelection = __HAL_RCC_GET_XSPI2_SOURCE(); /* Get the PSSI clock source -----------------------------------------------*/ PeriphClkInit->PssiClockSelection = __HAL_RCC_GET_PSSI_SOURCE(); /* Get the RTC clock source -----------------------------------------------*/ PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE(); /* Get the SAI1 clock source -----------------------------------------------*/ PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE(); /* Get the SAI2 clock source -----------------------------------------------*/ PeriphClkInit->Sai2ClockSelection = __HAL_RCC_GET_SAI2_SOURCE(); /* Get the SDMMC clock source ----------------------------------------------*/ PeriphClkInit->Sdmmc12ClockSelection = __HAL_RCC_GET_SDMMC12_SOURCE(); /* Get the SPDIFRX clock source --------------------------------------------*/ PeriphClkInit->SpdifrxClockSelection = __HAL_RCC_GET_SPDIFRX_SOURCE(); /* Get the SPI1 clock source -----------------------------------------------*/ PeriphClkInit->Spi1ClockSelection = __HAL_RCC_GET_SPI1_SOURCE(); /* Get the SPI2/SPI3 clock source ------------------------------------------*/ PeriphClkInit->Spi23ClockSelection = __HAL_RCC_GET_SPI23_SOURCE(); /* Get the SPI4/SPI5 clock source ------------------------------------------*/ PeriphClkInit->Spi45ClockSelection = __HAL_RCC_GET_SPI45_SOURCE(); /* Get the SPI6 clock source -----------------------------------------------*/ PeriphClkInit->Spi6ClockSelection = __HAL_RCC_GET_SPI6_SOURCE(); /* Get the TIM Prescaler configuration -------------------------------------*/ if ((RCC->CFGR & RCC_CFGR_TIMPRE) == 0U) { PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DISABLE; } else { PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ENABLE; } /* Get the USART1 configuration --------------------------------------------*/ PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); /* Get the USART2/USART3/UART4/UART5/UART7/UART8 clock source --------------*/ PeriphClkInit->Usart234578ClockSelection = __HAL_RCC_GET_USART234578_SOURCE(); /* Get the USBPHYC clock source --------------------------------------------*/ PeriphClkInit->UsbPhycClockSelection = __HAL_RCC_GET_USBPHYC_SOURCE(); /* Get the USB OTG FS clock source -----------------------------------------*/ PeriphClkInit->UsbOtgFsClockSelection = __HAL_RCC_GET_USBOTGFS_SOURCE(); } /** * @brief Return the peripheral clock frequency for a given peripheral (SAI..) * @note Return 0 if peripheral clock identifier not managed by this API or * if the selected clock source is not enabled (HSI, PLLs clock output..) * @param PeriphClk: Peripheral clock identifier * This parameter can be one of the following values: * @arg RCC_PERIPHCLK_FMC : FMC peripheral clock * @arg RCC_PERIPHCLK_XSPI1 : Xspi1 peripheral clock * @arg RCC_PERIPHCLK_XSPI2 : Xspi2 peripheral clock * @arg RCC_PERIPHCLK_CKPER : CKPER peripheral clock * @arg RCC_PERIPHCLK_ADC : ADC peripheral clock * @arg RCC_PERIPHCLK_ADF1 : ADF1 peripheral clock * @arg RCC_PERIPHCLK_CEC : CEC peripheral clock * @arg RCC_PERIPHCLK_ETH1REF : ETH1REF peripheral clock * @arg RCC_PERIPHCLK_ETH1PHY : ETH1PHY peripheral clock * @arg RCC_PERIPHCLK_FDCAN : FDCAN peripheral clock * @arg RCC_PERIPHCLK_I2C23 : I2C2/I2C3 peripheral clock * @arg RCC_PERIPHCLK_I2C1_I3C1 : I2C1/I3C1 peripheral clock * @arg RCC_PERIPHCLK_LPTIM1 : LPTIM1 peripheral clock * @arg RCC_PERIPHCLK_LPTIM23 : LPTIM23 peripheral clock * @arg RCC_PERIPHCLK_LPTIM45 : LPTIM45 peripheral clock * @arg RCC_PERIPHCLK_LPUART1 : LPUART1 peripheral clock * @arg RCC_PERIPHCLK_LTDC : LTDC peripheral clock * @arg RCC_PERIPHCLK_PSSI : PSSI peripheral clock * @arg RCC_PERIPHCLK_RTC : RTC peripheral clock * @arg RCC_PERIPHCLK_SAI1 : SAI1 peripheral clock * @arg RCC_PERIPHCLK_SAI2 : SAI2 peripheral clock * @arg RCC_PERIPHCLK_SDMMC12 : SDMMC12 peripheral clock * @arg RCC_PERIPHCLK_SPDIFRX : SPDIFRX peripheral clock * @arg RCC_PERIPHCLK_SPI1 : SPI1 peripheral clock * @arg RCC_PERIPHCLK_SPI23 : SPI2/SPI3 peripheral clock * @arg RCC_PERIPHCLK_SPI45 : SPI4/SPI5 peripheral clock * @arg RCC_PERIPHCLK_SPI6 : SPI6 peripheral clock * @arg RCC_PERIPHCLK_USART1 : USART1 peripheral clock * @arg RCC_PERIPHCLK_USART234578 : USART2/3/5/7/8 peripheral clock * @arg RCC_PERIPHCLK_USBOTGFS : USBOTGFS peripheral clock * @retval Frequency in KHz */ uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) { uint32_t frequency = 0; /* Set to 0 for returned value if no source clock */ uint32_t clocksource; uint32_t ethclocksource; uint32_t prescaler; switch (PeriphClk) { case RCC_PERIPHCLK_FMC: clocksource = __HAL_RCC_GET_FMC_SOURCE(); switch (clocksource) { case RCC_FMCCLKSOURCE_HCLK: /* HCLK is the clock source for FMC kernel peripheral clock */ frequency = HAL_RCC_GetHCLKFreq(); break; case RCC_FMCCLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for FMC kernel peripheral clock */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_FMCCLKSOURCE_PLL2R: /* PLL2 'R' is the clock source for FMC kernel peripheral clock */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL2RFreq(); } break; case RCC_FMCCLKSOURCE_HSI: /* HSI is the clock source for FMC kernel peripheral clock */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_FMCCLKSOURCE_HCLK_DIV4: /* HCLK/4 is the clock source for FMC kernel peripheral clock */ frequency = (HAL_RCC_GetHCLKFreq() / 4U); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_XSPI1: clocksource = __HAL_RCC_GET_XSPI1_SOURCE(); switch (clocksource) { case RCC_XSPI1CLKSOURCE_HCLK: /* HCLK is the clock source for XSPI1 kernel peripheral clock */ frequency = HAL_RCC_GetHCLKFreq(); break; case RCC_XSPI1CLKSOURCE_PLL2S: /* PLL2 'S' is the clock source for XSPI1 kernel peripheral clock */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_SCLK) != 0U) { frequency = HAL_RCC_GetPLL2SFreq(); } break; case RCC_XSPI1CLKSOURCE_PLL2T: /* PLL2 'T' is the clock source for XSPI1 kernel peripheral clock */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_TCLK) != 0U) { frequency = HAL_RCC_GetPLL2TFreq(); } break; case RCC_XSPI1CLKSOURCE_HCLK_DIV4: /* HCLK/4 is the clock source for XSPI1 kernel peripheral clock */ frequency = (HAL_RCC_GetHCLKFreq() / 4U); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_XSPI2: clocksource = __HAL_RCC_GET_XSPI2_SOURCE(); switch (clocksource) { case RCC_XSPI2CLKSOURCE_HCLK: /* HCLK is the clock source for XSPI2 kernel peripheral clock */ frequency = HAL_RCC_GetHCLKFreq(); break; case RCC_XSPI2CLKSOURCE_PLL2S: /* PLL2 'S' is the clock source for XSPI2 kernel peripheral clock */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_SCLK) != 0U) { frequency = HAL_RCC_GetPLL2SFreq(); } break; case RCC_XSPI2CLKSOURCE_PLL2T: /* PLL2 'T' is the clock source for XSPI2 kernel peripheral clock */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_TCLK) != 0U) { frequency = HAL_RCC_GetPLL2TFreq(); } break; case RCC_XSPI2CLKSOURCE_HCLK_DIV4: /* HCLK/4 is the clock source for XSPI2 kernel peripheral clock */ frequency = (HAL_RCC_GetHCLKFreq() / 4U); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_CKPER: clocksource = __HAL_RCC_GET_CLKP_SOURCE(); switch (clocksource) { case RCC_CLKPSOURCE_HSI: /* HSI is the clock source for CKPER */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_CLKPSOURCE_CSI: /* CSI is the clock source for CKPER */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_CLKPSOURCE_HSE: /* HSE is the clock source for CKPER */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_ADC: clocksource = __HAL_RCC_GET_ADC_SOURCE(); switch (clocksource) { case RCC_ADCCLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for ADC */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_ADCCLKSOURCE_PLL3R: /* PLL3 'R' is the clock source for ADC */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_ADCCLKSOURCE_CLKP: /* CKPER is the clock source for ADC */ frequency = RCC_GetCLKPFreq(); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_ADF1: clocksource = __HAL_RCC_GET_ADF1_SOURCE(); switch (clocksource) { case RCC_ADF1CLKSOURCE_HCLK: /* HCLK is the clock source for ADF1 */ frequency = HAL_RCC_GetHCLKFreq(); break; case RCC_ADF1CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for ADF1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_ADF1CLKSOURCE_PLL3P: /* PLL3 'P' is the clock source for ADF1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL3PFreq(); } break; case RCC_ADF1CLKSOURCE_PIN: /* External I2S_CKIN is used as clock source for ADF1 */ frequency = EXTERNAL_CLOCK_VALUE; break; case RCC_ADF1CLKSOURCE_CSI: /* CSI is the clock source for ADF1 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_ADF1CLKSOURCE_HSI: /* HSI is the clock source for ADF1 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_CEC: clocksource = __HAL_RCC_GET_CEC_SOURCE(); switch (clocksource) { case RCC_CECCLKSOURCE_LSE: /* LSE is the clock source for CEC */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; case RCC_CECCLKSOURCE_LSI: /* LSI is the clock source for CEC */ if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) { frequency = LSI_VALUE; } break; case RCC_CECCLKSOURCE_CSI: /* CSI is the clock source for CEC */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_ETH1REF: clocksource = __HAL_RCC_GET_ETH1REF_SOURCE(); switch (clocksource) { case RCC_ETH1REFCLKSOURCE_PHY: /* PHY is the clock source for ETH1REF */ /* Can't retrieve this source's frequency, it is by default set to 0 */ break; case RCC_ETH1REFCLKSOURCE_HSE: /* HSE is the clock source for ETH1REF */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_ETH1REFCLKSOURCE_ETH: /* ETH is the clock source for ETH1REF */ ethclocksource = __HAL_RCC_GET_ETH1PHY_SOURCE(); switch (ethclocksource) { case RCC_ETH1PHYCLKSOURCE_HSE: if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_ETH1PHYCLKSOURCE_PLL3S: if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_SCLK) != 0U) { frequency = HAL_RCC_GetPLL3SFreq(); } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_ETH1PHY: clocksource = __HAL_RCC_GET_ETH1PHY_SOURCE(); switch (clocksource) { case RCC_ETH1PHYCLKSOURCE_HSE: if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_ETH1PHYCLKSOURCE_PLL3S: if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_SCLK) != 0U) { frequency = HAL_RCC_GetPLL3SFreq(); } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_FDCAN: clocksource = __HAL_RCC_GET_FDCAN_SOURCE(); switch (clocksource) { case RCC_FDCANCLKSOURCE_HSE: /*!< HSE is the clock source for FDCAN */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_FDCANCLKSOURCE_PLL1Q: /*!< PLL1 'Q' ois the clock source for FDCAN */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_FDCANCLKSOURCE_PLL2P: /*!< PLL2 'P' is the clock source for FDCAN */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_I2C23: clocksource = __HAL_RCC_GET_I2C23_SOURCE(); switch (clocksource) { case RCC_I2C23CLKSOURCE_PCLK1: /*!< PCLK1 is the clock source for I2C23 */ frequency = HAL_RCC_GetPCLK1Freq(); break; case RCC_I2C23CLKSOURCE_PLL3R: /*!< PLL3R is the clock source for I2C23 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_I2C23CLKSOURCE_HSI: /*!< HSI is the clock source for I2C23 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_I2C23CLKSOURCE_CSI: /*!< CSI is the clock source for I2C23 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_I2C1_I3C1: clocksource = __HAL_RCC_GET_I2C1_I3C1_SOURCE(); switch (clocksource) { case RCC_I2C1_I3C1CLKSOURCE_PCLK1: /*!< PCLK1 is the clock source for I2C1/I3C1 */ frequency = HAL_RCC_GetPCLK1Freq(); break; case RCC_I2C1_I3C1CLKSOURCE_PLL3R: /*!< PLL3 'R' is the clock source for I2C1/I3C1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_I2C1_I3C1CLKSOURCE_HSI: /*!< HSI is the clock source for I2C1/I3C1 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_I2C1_I3C1CLKSOURCE_CSI: /*!< CSI is the clock source for I2C1/I3C1 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_LPTIM1: clocksource = __HAL_RCC_GET_LPTIM1_SOURCE(); switch (clocksource) { case RCC_LPTIM1CLKSOURCE_PCLK1: /* PCLK1 is the clock source for LPTIM1 */ frequency = HAL_RCC_GetPCLK1Freq(); break; case RCC_LPTIM1CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for LPTIM1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_LPTIM1CLKSOURCE_PLL3R: /* PLL3 'R' is the clock source for LPTIM1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_LPTIM1CLKSOURCE_LSE: /* LSE is the clock source for LPTIM1 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; case RCC_LPTIM1CLKSOURCE_LSI: /* LSI is the clock source for LPTIM1 */ if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) { frequency = LSI_VALUE; } break; case RCC_LPTIM1CLKSOURCE_CLKP: /* CKPER is the clock source for LPTIM1 */ frequency = RCC_GetCLKPFreq(); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_LPTIM23: clocksource = __HAL_RCC_GET_LPTIM23_SOURCE(); switch (clocksource) { case RCC_LPTIM23CLKSOURCE_PCLK4: /* PCLK4 is the clock source for LPTIM2/LPTIM3 */ frequency = HAL_RCC_GetPCLK4Freq(); break; case RCC_LPTIM23CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for LPTIM2/LPTIM3 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_LPTIM23CLKSOURCE_PLL3R: /* PLL3 'R' is the clock source for LPTIM2/LPTIM3 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_LPTIM23CLKSOURCE_LSE: /* LSE is the clock source for LPTIM2/LPTIM3 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; case RCC_LPTIM23CLKSOURCE_LSI: /* LSI is the clock source for LPTIM2/LPTIM3 */ if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) { frequency = LSI_VALUE; } break; case RCC_LPTIM23CLKSOURCE_CLKP: /* CKPER is the clock source for LPTIM2/LPTIM3 */ frequency = RCC_GetCLKPFreq(); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_LPTIM45: clocksource = __HAL_RCC_GET_LPTIM45_SOURCE(); switch (clocksource) { case RCC_LPTIM45CLKSOURCE_PCLK4: /* PCLK4 is the clock source for LPTIM4/LPTIM5 */ frequency = HAL_RCC_GetPCLK4Freq(); break; case RCC_LPTIM45CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for LPTIM4/LPTIM5 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_LPTIM45CLKSOURCE_PLL3R: /* PLL3 'R' is the clock source for LPTIM4/LPTIM5 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_LPTIM45CLKSOURCE_LSE: /* LSE is the clock source for LPTIM4/LPTIM5 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; case RCC_LPTIM45CLKSOURCE_LSI: /* LSI is the clock source for LPTIM4/LPTIM5 */ if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) { frequency = LSI_VALUE; } break; case RCC_LPTIM45CLKSOURCE_CLKP: /* CKPER is the clock source for LPTIM4/LPTIM5 */ frequency = RCC_GetCLKPFreq(); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_LPUART1: clocksource = __HAL_RCC_GET_LPUART1_SOURCE(); switch (clocksource) { case RCC_LPUART1CLKSOURCE_PCLK4: /*!< PCLK4 is the clock source for LPUART1 */ frequency = HAL_RCC_GetPCLK4Freq(); break; case RCC_LPUART1CLKSOURCE_PLL2Q: /*!< PLL2 'Q' is the clock source for LPUART1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL2QFreq(); } break; case RCC_LPUART1CLKSOURCE_PLL3Q: /*!< PLL3 'Q' is the clock source for LPUART1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_LPUART1CLKSOURCE_HSI: /*!< HSI is the clock source for LPUART1 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_LPUART1CLKSOURCE_CSI: /*!< CSI is the clock source for LPUART1 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_LPUART1CLKSOURCE_LSE: /*!< LSE is the clock source for LPUART1 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_LTDC: /* Unique PLL3 'R' clock source */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_PERIPHCLK_PSSI: clocksource = __HAL_RCC_GET_PSSI_SOURCE(); switch (clocksource) { case RCC_PSSICLKSOURCE_PLL3R: /*!< PLL3 'R' is the clock source for PSSI */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_PSSICLKSOURCE_CLKP: /*!< CLKP is the clock source for PSSI */ frequency = RCC_GetCLKPFreq(); break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_RTC: clocksource = __HAL_RCC_GET_RTC_SOURCE(); switch (clocksource) { case RCC_RTCCLKSOURCE_DISABLE: /* Nothing to do, frequency is by default set to 0 */ break; case RCC_RTCCLKSOURCE_LSE: /*!< LSE is the clock source for RTC */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; case RCC_RTCCLKSOURCE_LSI: /*!< LSI is the clock source for RTC */ if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) { frequency = LSI_VALUE; } break; default: if (READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL) == RCC_BDCR_RTCSEL) /*!< HSE is the clock source for RTC */ { if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { prescaler = READ_BIT(RCC->CFGR, RCC_CFGR_RTCPRE) >> RCC_CFGR_RTCPRE_Pos; if (prescaler > 1U) { frequency = HSE_VALUE / prescaler; } } } else { /* Nothing to do, frequency is by default set to 0 */ } break; } break; case RCC_PERIPHCLK_SAI1: clocksource = __HAL_RCC_GET_SAI1_SOURCE(); switch (clocksource) { case RCC_SAI1CLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for SAI1 */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_SAI1CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for SAI1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_SAI1CLKSOURCE_PLL3P: /* PLL3 'P' is the clock source for SAI1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL3PFreq(); } break; case RCC_SAI1CLKSOURCE_CLKP: /* CKPER is the clock source for SAI1 */ frequency = RCC_GetCLKPFreq(); break; case RCC_SAI1CLKSOURCE_PIN: /* External clock is the clock source for SAI1 */ frequency = EXTERNAL_CLOCK_VALUE; break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SAI2: clocksource = __HAL_RCC_GET_SAI2_SOURCE(); switch (clocksource) { case RCC_SAI2CLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for SAI2 */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_SAI2CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for SAI2 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_SAI2CLKSOURCE_PLL3P: /* PLL3 'P' is the clock source for SAI2 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL3PFreq(); } break; case RCC_SAI2CLKSOURCE_CLKP: /* CKPER is the clock source for SAI2 */ frequency = RCC_GetCLKPFreq(); break; case RCC_SAI2CLKSOURCE_SPDIF: /* Can't retrieve this source's frequency, it is by default set to 0 */ break; case RCC_SAI2CLKSOURCE_PIN: /* External clock is the clock source for SAI2 */ frequency = EXTERNAL_CLOCK_VALUE; break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SDMMC12: /* SDMMC1 and SDMMC2 */ clocksource = __HAL_RCC_GET_SDMMC12_SOURCE(); if (clocksource == RCC_SDMMC12CLKSOURCE_PLL2S) /* PLL2 'S' is the clock source for SDMMC1 and SDMMC2 kernel peripheral clock */ { if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_SCLK) != 0U) { frequency = HAL_RCC_GetPLL2SFreq(); } } else /* PLL2 'T' is the clock source for SDMMC1 and SDMMC2 kernel peripheral clock */ { if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_TCLK) != 0U) { frequency = HAL_RCC_GetPLL2TFreq(); } } break; case RCC_PERIPHCLK_SPDIFRX: clocksource = __HAL_RCC_GET_SPDIFRX_SOURCE(); switch (clocksource) { case RCC_SPDIFRXCLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for SPDIFRX */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_SPDIFRXCLKSOURCE_PLL2R: /* PLL2 'R' is the clock source for SPDIFRX */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL2RFreq(); } break; case RCC_SPDIFRXCLKSOURCE_PLL3R: /* PLL3 'R' is the clock source for SPDIFRX */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_RCLK) != 0U) { frequency = HAL_RCC_GetPLL3RFreq(); } break; case RCC_SPDIFRXCLKSOURCE_HSI: /* HSI is the clock source for SPDIFRX */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SPI1: clocksource = __HAL_RCC_GET_SPI1_SOURCE(); switch (clocksource) { case RCC_SPI1CLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for SPI1 */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_SPI1CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for SPI1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_SPI1CLKSOURCE_PLL3P: /* PLL3 'P' is the clock source for SPI1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL3PFreq(); } break; case RCC_SPI1CLKSOURCE_CLKP: /* CKPER is the clock source for SPI1 */ frequency = RCC_GetCLKPFreq(); break; case RCC_SPI1CLKSOURCE_PIN: /* External I2S_CKIN is used as clock source for SPI1 */ frequency = EXTERNAL_CLOCK_VALUE; break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SPI23: clocksource = __HAL_RCC_GET_SPI23_SOURCE(); switch (clocksource) { case RCC_SPI23CLKSOURCE_PLL1Q: /* PLL1 'Q' is the clock source for SPI2/SPI3 */ if (__HAL_RCC_GET_PLL1CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL1QFreq(); } break; case RCC_SPI23CLKSOURCE_PLL2P: /* PLL2 'P' is the clock source for SPI2/SPI3 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL2PFreq(); } break; case RCC_SPI23CLKSOURCE_PLL3P: /* PLL3 'P' is the clock source for SPI2/SPI3 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_PCLK) != 0U) { frequency = HAL_RCC_GetPLL3PFreq(); } break; case RCC_SPI23CLKSOURCE_CLKP: /* CKPER is the clock source for SPI2/SPI3 */ frequency = RCC_GetCLKPFreq(); break; case RCC_SPI23CLKSOURCE_PIN: /* External I2S_CKIN is used as clock source for SPI2/SPI3 */ frequency = EXTERNAL_CLOCK_VALUE; break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SPI45: clocksource = __HAL_RCC_GET_SPI45_SOURCE(); switch (clocksource) { case RCC_SPI45CLKSOURCE_PCLK2: /* PCLK2 is the clock source for SPI4/SPI5 */ frequency = HAL_RCC_GetPCLK2Freq(); break; case RCC_SPI45CLKSOURCE_PLL2Q: /* PLL2 'Q' is the clock source for SPI4/SPI5 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL2QFreq(); } break; case RCC_SPI45CLKSOURCE_PLL3Q: /* PLL3 'Q' is the clock source for SPI4/SPI5 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_SPI45CLKSOURCE_HSI: /* HSI is the clock source for SPI4/SPI5 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_SPI45CLKSOURCE_CSI: /* CSI is the clock source for SPI4/SPI5 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_SPI45CLKSOURCE_HSE: /* HSE is the clock source for SPI4/SPI5 */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_SPI6: clocksource = __HAL_RCC_GET_SPI6_SOURCE(); switch (clocksource) { case RCC_SPI6CLKSOURCE_PCLK4: /* PCLK4 is the clock source for SPI6 */ frequency = HAL_RCC_GetPCLK4Freq(); break; case RCC_SPI6CLKSOURCE_PLL2Q: /* PLL2 'Q' is the clock source for SPI6 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL2QFreq(); } break; case RCC_SPI6CLKSOURCE_PLL3Q: /* PLL3 'Q' is the clock source for SPI6 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_SPI6CLKSOURCE_HSI: /* HSI is the clock source for SPI6 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_SPI6CLKSOURCE_CSI: /* CSI is the clock source for SPI6 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_SPI6CLKSOURCE_HSE: /* HSE is the clock source for SPI6 */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_USART1: clocksource = __HAL_RCC_GET_USART1_SOURCE(); switch (clocksource) { case RCC_USART1CLKSOURCE_PCLK2: /*!< PCLK2 is the clock source for USART1 */ frequency = HAL_RCC_GetPCLK2Freq(); break; case RCC_USART1CLKSOURCE_PLL2Q: /*!< PLL2 'Q' is the clock source for USART1 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL2QFreq(); } break; case RCC_USART1CLKSOURCE_PLL3Q: /*!< PLL3 'Q' is the clock source for USART1 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_USART1CLKSOURCE_HSI: /*!< HSI is the clock source for USART1 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_USART1CLKSOURCE_CSI: /*!< CSI is the clock source for USART1 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_USART1CLKSOURCE_LSE: /*!< LSE is the clock source for USART1 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_USART234578: clocksource = __HAL_RCC_GET_USART234578_SOURCE(); switch (clocksource) { case RCC_USART234578CLKSOURCE_PCLK1: /*!< PCLK2 is the clock source for USART234578 */ frequency = HAL_RCC_GetPCLK1Freq(); break; case RCC_USART234578CLKSOURCE_PLL2Q: /*!< PLL2 'Q' is the clock source for USART234578 */ if (__HAL_RCC_GET_PLL2CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL2QFreq(); } break; case RCC_USART234578CLKSOURCE_PLL3Q: /*!< PLL3 'Q' is the clock source for USART234578 */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_USART234578CLKSOURCE_HSI: /*!< HSI is the clock source for USART234578 */ if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } break; case RCC_USART234578CLKSOURCE_CSI: /*!< CSI is the clock source for USART234578 */ if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } break; case RCC_USART234578CLKSOURCE_LSE: /*!< LSE is the clock source for USART234578 */ if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) { frequency = LSE_VALUE; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_USBPHYC: clocksource = __HAL_RCC_GET_USBPHYC_SOURCE(); switch (clocksource) { case RCC_USBPHYCCLKSOURCE_HSE: /*!< HSE is the clock source for USBPHYC */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_USBPHYCCLKSOURCE_HSE_DIV2: /*!< HSE/2 is the clock source for USBPHYC */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = (HSE_VALUE >> 1UL); } break; case RCC_USBPHYCCLKSOURCE_PLL3Q: /*!< PLL3Q is the clock source for USBPHYC */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; case RCC_PERIPHCLK_USBOTGFS: clocksource = __HAL_RCC_GET_USBOTGFS_SOURCE(); switch (clocksource) { case RCC_USBOTGFSCLKSOURCE_HSI48: /*!< HSI48 is the clock source for USBOTGFS */ if (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) != 0U) { frequency = HSI48_VALUE; } break; case RCC_USBOTGFSCLKSOURCE_PLL3Q: /*!< PLL3Q is the clock source for USBOTGFS */ if (__HAL_RCC_GET_PLL3CLKOUT_CONFIG(RCC_PLL_QCLK) != 0U) { frequency = HAL_RCC_GetPLL3QFreq(); } break; case RCC_USBOTGFSCLKSOURCE_HSE: /*!< HSE is the clock source for USBOTGFS */ if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } break; case RCC_USBOTGFSCLKSOURCE_CLK48: /*!< CLK48 is the clock source for USBOTGFS */ /* Can't retrieve this source's frequency, it is by default set to 0 */ break; default: /* Nothing to do, frequency is by default set to 0 */ break; } break; default: /* Nothing to do, frequency is by default set to 0 */ break; } return frequency; } /** * @brief Enable clock protection. * @note When set, this prevents disabling accidentally clock related data. * @param ProtectClk Clock(s) to enable protection on * This parameter can be one or a combination of the following * @arg RCC_CLOCKPROTECT_FMC FMC clock protection * @arg RCC_CLOCKPROTECT_XSPI XSPIs clock protection * @retval None */ void HAL_RCCEx_EnableClockProtection(uint32_t ProtectClk) { /* Check the parameter */ assert_param(IS_RCC_CLOCKPROTECTION(ProtectClk)); SET_BIT(RCC->CKPROTR, ProtectClk); } /** * @brief Disable clock protection. * @param ProtectClk Clock(s) to disable protection on * This parameter can be one or a combination of the following * @arg RCC_CLOCKPROTECT_FMC FMC clock protection * @arg RCC_CLOCKPROTECT_XSPI XSPIs clock protection * @retval None */ void HAL_RCCEx_DisableClockProtection(uint32_t ProtectClk) { /* Check the parameter */ assert_param(IS_RCC_CLOCKPROTECTION(ProtectClk)); CLEAR_BIT(RCC->CKPROTR, ProtectClk); } /** * @} */ /** @defgroup RCCEx_Exported_Functions_Group2 Extended System Control functions * @brief Extended Peripheral Control functions * @{ */ /** * @brief Enables the LSE Clock Security System. * @note Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled * with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC * clock with HAL_RCCEx_PeriphCLKConfig(). * @note Backup domain access should be enabled * @retval None */ void HAL_RCCEx_EnableLSECSS(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; } /** * @brief Disables the LSE Clock Security System. * @note LSE Clock Security System can only be disabled after a LSE failure detection. * @note Backup domain access should be enabled * @retval None */ void HAL_RCCEx_DisableLSECSS(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; /* Disable LSE CSS IT if any */ __HAL_RCC_DISABLE_IT(RCC_IT_LSECSS); } /** * @brief Enable the LSE Clock Security System Interrupt & corresponding EXTI line. * @note LSE Clock Security System Interrupt is mapped on EXTI line 18 * @retval None */ void HAL_RCCEx_EnableLSECSS_IT(void) { /* Enable LSE CSS */ SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; /* Enable LSE CSS IT */ __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS); /* Enable IT on EXTI Line 18 */ __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE(); __HAL_RCC_LSECSS_EXTI_ENABLE_IT(); } /** * @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock * @param WakeUpClk: Wakeup clock * This parameter can be one of the following values: * @arg RCC_STOP_WAKEUPCLOCK_CSI: CSI oscillator selection * @arg RCC_STOP_WAKEUPCLOCK_HSI: HSI oscillator selection * @note This function shall not be called after the Clock Security System on HSE has been * enabled. * @retval None */ void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk) { assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk)); __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk); } /** * @brief Configure the oscillator Kernel clock source for wakeup from Stop * @param WakeUpClk: Kernel Wakeup clock * This parameter can be one of the following values: * @arg RCC_STOP_KERWAKEUPCLOCK_CSI: CSI oscillator selection * @arg RCC_STOP_KERWAKEUPCLOCK_HSI: HSI oscillator selection * @retval None */ void HAL_RCCEx_KerWakeUpStopCLKConfig(uint32_t WakeUpClk) { assert_param(IS_RCC_STOP_KERWAKEUPCLOCK(WakeUpClk)); __HAL_RCC_KERWAKEUPSTOP_CLK_CONFIG(WakeUpClk); } /** * @brief Handle the RCC LSE Clock Security System interrupt request. * @retval None */ void HAL_RCCEx_LSECSS_IRQHandler(void) { /* Check RCC LSE CSSF flag */ if (__HAL_RCC_GET_IT(RCC_IT_LSECSS)) { /* Clear RCC LSE CSS pending bit */ __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS); /* RCC LSE Clock Security System interrupt user callback */ HAL_RCCEx_LSECSS_Callback(); } } /** * @brief RCCEx LSE Clock Security System interrupt callback. * @retval none */ __weak void HAL_RCCEx_LSECSS_Callback(void) { /* NOTE : This function should not be modified, when the callback is needed, the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file */ } /** * @} */ /** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions * @brief Extended Clock Recovery System Control functions * @verbatim =============================================================================== ##### Extended Clock Recovery System Control functions ##### =============================================================================== [..] For devices with Clock Recovery System feature (CRS), RCC Extension HAL driver can be used as follows: (#) In System clock config, HSI48 needs to be enabled (#) Enable CRS clock (#) Call CRS functions as follows: (##) Prepare synchronization configuration necessary for HSI48 calibration (+++) Default values can be set for frequency Error Measurement (reload and error limit) and also HSI48 oscillator smooth trimming. (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate directly reload value with target and synchronization frequencies values (##) Call function HAL_RCCEx_CRSConfig which (+++) Resets CRS registers to their default values. (+++) Configures CRS registers with synchronization configuration (+++) Enables automatic calibration and frequency error counter feature Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF will not be generated by the host. No SYNC signal will therefore be provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs should be used as SYNC signal. (##) A polling function is provided to wait for complete synchronization (+++) Call function HAL_RCCEx_CRSWaitSynchronization() (+++) According to CRS status, user can decide to adjust again the calibration or continue application if synchronization is OK (#) User can retrieve information related to synchronization in calling function HAL_RCCEx_CRSGetSynchronizationInfo() (#) Regarding synchronization status and synchronization information, user can try a new calibration in changing synchronization configuration and call again HAL_RCCEx_CRSConfig. Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), it means that the actual frequency is lower than the target (and so, that the TRIM value should be incremented), while when it is detected during the upcounting phase it means that the actual frequency is higher (and that the TRIM value should be decremented). (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go through CRS Handler (CRS_IRQn/CRS_IRQHandler) (++) Call function HAL_RCCEx_CRSConfig() (++) Enable CRS_IRQn (thanks to NVIC functions) (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT) (++) Implement CRS status management in the following user callbacks called from HAL_RCCEx_CRS_IRQHandler(): (+++) HAL_RCCEx_CRS_SyncOkCallback() (+++) HAL_RCCEx_CRS_SyncWarnCallback() (+++) HAL_RCCEx_CRS_ExpectedSyncCallback() (+++) HAL_RCCEx_CRS_ErrorCallback() (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler) @endverbatim * @{ */ /** * @brief Start automatic synchronization for polling mode. * @param pInit Pointer on RCC_CRSInitTypeDef structure * @retval None */ void HAL_RCCEx_CRSConfig(const RCC_CRSInitTypeDef *pInit) { uint32_t value; /* Check the parameters */ assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler)); assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source)); assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity)); assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue)); assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue)); assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue)); /* CONFIGURATION */ /* Before configuration, reset CRS registers to their default values*/ __HAL_RCC_CRS_FORCE_RESET(); __HAL_RCC_CRS_RELEASE_RESET(); /* Set the SYNCDIV[2:0] bits according to Prescaler value */ /* Set the SYNCSRC[1:0] bits according to Source value */ /* Set the SYNCSPOL bit according to Polarity value */ value = (pInit->Prescaler | pInit->Source | pInit->Polarity); /* Set the RELOAD[15:0] bits according to ReloadValue value */ value |= pInit->ReloadValue; /* Set the FELIM[7:0] bits according to ErrorLimitValue value */ value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos); WRITE_REG(CRS->CFGR, value); /* Adjust HSI48 oscillator smooth trimming */ /* Set the TRIM[5:0] bits according to HSI48CalibrationValue value */ MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos)); /* START AUTOMATIC SYNCHRONIZATION*/ /* Enable Automatic trimming & Frequency error counter */ SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN); } /** * @brief Generate the software synchronization event. * @retval None */ void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void) { SET_BIT(CRS->CR, CRS_CR_SWSYNC); } /** * @brief Return synchronization info. * @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure * @retval None */ void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo) { /* Check the parameter */ assert_param(pSynchroInfo != (void *)NULL); /* Get the reload value */ pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD)); /* Get HSI48 oscillator smooth trimming */ pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos); /* Get Frequency error capture */ pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos); /* Get Frequency error direction */ pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR)); } /** * @brief Wait for CRS Synchronization status. * @param Timeout Duration of the timeout * @note Timeout is based on the maximum time to receive a SYNC event based on synchronization * frequency. * @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned. * @retval Combination of Synchronization status * This parameter can be a combination of the following values: * @arg @ref RCC_CRS_TIMEOUT * @arg @ref RCC_CRS_SYNCOK * @arg @ref RCC_CRS_SYNCWARN * @arg @ref RCC_CRS_SYNCERR * @arg @ref RCC_CRS_SYNCMISS * @arg @ref RCC_CRS_TRIMOVF */ uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout) { uint32_t crsstatus = RCC_CRS_NONE; uint32_t tickstart; /* Get timeout */ tickstart = HAL_GetTick(); /* Wait for CRS flag or timeout detection */ do { if (Timeout != HAL_MAX_DELAY) { if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) { crsstatus = RCC_CRS_TIMEOUT; } } /* Check CRS SYNCOK flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK)) { /* CRS SYNC event OK */ crsstatus |= RCC_CRS_SYNCOK; /* Clear CRS SYNC event OK bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK); } /* Check CRS SYNCWARN flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN)) { /* CRS SYNC warning */ crsstatus |= RCC_CRS_SYNCWARN; /* Clear CRS SYNCWARN bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN); } /* Check CRS TRIM overflow flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF)) { /* CRS SYNC Error */ crsstatus |= RCC_CRS_TRIMOVF; /* Clear CRS Error bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF); } /* Check CRS Error flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR)) { /* CRS SYNC Error */ crsstatus |= RCC_CRS_SYNCERR; /* Clear CRS Error bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR); } /* Check CRS SYNC Missed flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS)) { /* CRS SYNC Missed */ crsstatus |= RCC_CRS_SYNCMISS; /* Clear CRS SYNC Missed bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS); } /* Check CRS Expected SYNC flag */ if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC)) { /* frequency error counter reached a zero value */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC); } } while (RCC_CRS_NONE == crsstatus); return crsstatus; } /** * @brief Handle the Clock Recovery System interrupt request. * @retval None */ void HAL_RCCEx_CRS_IRQHandler(void) { uint32_t crserror = RCC_CRS_NONE; /* Get current IT flags and IT sources values */ uint32_t itflags = READ_REG(CRS->ISR); uint32_t itsources = READ_REG(CRS->CR); /* Check CRS SYNCOK flag */ if (((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U)) { /* Clear CRS SYNC event OK flag */ WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC); /* user callback */ HAL_RCCEx_CRS_SyncOkCallback(); } /* Check CRS SYNCWARN flag */ else if (((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U)) { /* Clear CRS SYNCWARN flag */ WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC); /* user callback */ HAL_RCCEx_CRS_SyncWarnCallback(); } /* Check CRS Expected SYNC flag */ else if (((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U)) { /* frequency error counter reached a zero value */ WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC); /* user callback */ HAL_RCCEx_CRS_ExpectedSyncCallback(); } /* Check CRS Error flags */ else { if (((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U)) { if ((itflags & RCC_CRS_FLAG_SYNCERR) != 0U) { crserror |= RCC_CRS_SYNCERR; } if ((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U) { crserror |= RCC_CRS_SYNCMISS; } if ((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U) { crserror |= RCC_CRS_TRIMOVF; } /* Clear CRS Error flags */ WRITE_REG(CRS->ICR, CRS_ICR_ERRC); /* user error callback */ HAL_RCCEx_CRS_ErrorCallback(crserror); } } } /** * @brief RCCEx Clock Recovery System SYNCOK interrupt callback. * @retval none */ __weak void HAL_RCCEx_CRS_SyncOkCallback(void) { /* NOTE : This function should not be modified, when the callback is needed, the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file */ } /** * @brief RCCEx Clock Recovery System SYNCWARN interrupt callback. * @retval none */ __weak void HAL_RCCEx_CRS_SyncWarnCallback(void) { /* NOTE : This function should not be modified, when the callback is needed, the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file */ } /** * @brief RCCEx Clock Recovery System Expected SYNC interrupt callback. * @retval none */ __weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void) { /* NOTE : This function should not be modified, when the callback is needed, the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file */ } /** * @brief RCCEx Clock Recovery System Error interrupt callback. * @param Error Combination of Error status. * This parameter can be a combination of the following values: * @arg @ref RCC_CRS_SYNCERR * @arg @ref RCC_CRS_SYNCMISS * @arg @ref RCC_CRS_TRIMOVF * @retval none */ __weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error) { /* Prevent unused argument(s) compilation warning */ UNUSED(Error); /* NOTE : This function should not be modified, when the callback is needed, the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file */ } /** * @} */ /* Private functions ---------------------------------------------------------*/ /** @addtogroup RCC_Private_Functions * @{ */ /** * @brief Compute PLL2 VCO output frequency * @retval Value of PLL2 VCO output frequency */ static uint32_t RCC_GetCLKPFreq(void) { uint32_t frequency = 0U; uint32_t ckpclocksource; ckpclocksource = __HAL_RCC_GET_CLKP_SOURCE(); if (ckpclocksource == RCC_CLKPSOURCE_HSI) { if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) { if (READ_BIT(RCC->CR, RCC_CR_HSIDIVF) != 0U) { frequency = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> RCC_CR_HSIDIV_Pos)); } else { /* Can't retrieve HSIDIV value */ } } } else if (ckpclocksource == RCC_CLKPSOURCE_CSI) { if (READ_BIT(RCC->CR, RCC_CR_CSIRDY) != 0U) { frequency = CSI_VALUE; } } else if (ckpclocksource == RCC_CLKPSOURCE_HSE) { if (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) { frequency = HSE_VALUE; } } else { /* Nothing to do, case the CKPER is disabled */ /* frequency is by default set to 0 */ } return frequency; } /** * @} */ /** * @} */ #endif /* HAL_RCC_MODULE_ENABLED */ /** * @} */ /** * @} */