/** ****************************************************************************** * @file stm32l5xx_ll_adc.h * @author MCD Application Team * @brief Header file of ADC LL module. ****************************************************************************** * @attention * * Copyright (c) 2019 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef STM32L5xx_LL_ADC_H #define STM32L5xx_LL_ADC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32l5xx.h" /** @addtogroup STM32L5xx_LL_Driver * @{ */ #if defined (ADC1) || defined (ADC2) /** @defgroup ADC_LL ADC * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @defgroup ADC_LL_Private_Constants ADC Private Constants * @{ */ /* Internal mask for ADC group regular sequencer: */ /* To select into literal LL_ADC_REG_RANK_x the relevant bits for: */ /* - sequencer register offset */ /* - sequencer rank bits position into the selected register */ /* Internal register offset for ADC group regular sequencer configuration */ /* (offset placed into a spare area of literal definition) */ #define ADC_SQR1_REGOFFSET (0x00000000UL) #define ADC_SQR2_REGOFFSET (0x00000100UL) #define ADC_SQR3_REGOFFSET (0x00000200UL) #define ADC_SQR4_REGOFFSET (0x00000300UL) #define ADC_REG_SQRX_REGOFFSET_MASK (ADC_SQR1_REGOFFSET | ADC_SQR2_REGOFFSET \ | ADC_SQR3_REGOFFSET | ADC_SQR4_REGOFFSET) #define ADC_SQRX_REGOFFSET_POS (8UL) /* Position of bits ADC_SQRx_REGOFFSET in ADC_REG_SQRX_REGOFFSET_MASK*/ #define ADC_REG_RANK_ID_SQRX_MASK (ADC_CHANNEL_ID_NUMBER_MASK_POSBIT0) /* Definition of ADC group regular sequencer bits information to be inserted */ /* into ADC group regular sequencer ranks literals definition. */ #define ADC_REG_RANK_1_SQRX_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_SQR1_SQ1" position in register */ #define ADC_REG_RANK_2_SQRX_BITOFFSET_POS (12UL) /* Equivalent to bitfield "ADC_SQR1_SQ2" position in register */ #define ADC_REG_RANK_3_SQRX_BITOFFSET_POS (18UL) /* Equivalent to bitfield "ADC_SQR1_SQ3" position in register */ #define ADC_REG_RANK_4_SQRX_BITOFFSET_POS (24UL) /* Equivalent to bitfield "ADC_SQR1_SQ4" position in register */ #define ADC_REG_RANK_5_SQRX_BITOFFSET_POS ( 0UL) /* Equivalent to bitfield "ADC_SQR2_SQ5" position in register */ #define ADC_REG_RANK_6_SQRX_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_SQR2_SQ6" position in register */ #define ADC_REG_RANK_7_SQRX_BITOFFSET_POS (12UL) /* Equivalent to bitfield "ADC_SQR2_SQ7" position in register */ #define ADC_REG_RANK_8_SQRX_BITOFFSET_POS (18UL) /* Equivalent to bitfield "ADC_SQR2_SQ8" position in register */ #define ADC_REG_RANK_9_SQRX_BITOFFSET_POS (24UL) /* Equivalent to bitfield "ADC_SQR2_SQ9" position in register */ #define ADC_REG_RANK_10_SQRX_BITOFFSET_POS ( 0UL) /* Equivalent to bitfield "ADC_SQR3_SQ10" position in register */ #define ADC_REG_RANK_11_SQRX_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_SQR3_SQ11" position in register */ #define ADC_REG_RANK_12_SQRX_BITOFFSET_POS (12UL) /* Equivalent to bitfield "ADC_SQR3_SQ12" position in register */ #define ADC_REG_RANK_13_SQRX_BITOFFSET_POS (18UL) /* Equivalent to bitfield "ADC_SQR3_SQ13" position in register */ #define ADC_REG_RANK_14_SQRX_BITOFFSET_POS (24UL) /* Equivalent to bitfield "ADC_SQR3_SQ14" position in register */ #define ADC_REG_RANK_15_SQRX_BITOFFSET_POS ( 0UL) /* Equivalent to bitfield "ADC_SQR4_SQ15" position in register */ #define ADC_REG_RANK_16_SQRX_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_SQR4_SQ16" position in register */ /* Internal mask for ADC group injected sequencer: */ /* To select into literal LL_ADC_INJ_RANK_x the relevant bits for: */ /* - data register offset */ /* - sequencer rank bits position into the selected register */ /* Internal register offset for ADC group injected data register */ /* (offset placed into a spare area of literal definition) */ #define ADC_JDR1_REGOFFSET (0x00000000UL) #define ADC_JDR2_REGOFFSET (0x00000100UL) #define ADC_JDR3_REGOFFSET (0x00000200UL) #define ADC_JDR4_REGOFFSET (0x00000300UL) #define ADC_INJ_JDRX_REGOFFSET_MASK (ADC_JDR1_REGOFFSET | ADC_JDR2_REGOFFSET \ | ADC_JDR3_REGOFFSET | ADC_JDR4_REGOFFSET) #define ADC_INJ_RANK_ID_JSQR_MASK (ADC_CHANNEL_ID_NUMBER_MASK_POSBIT0) #define ADC_JDRX_REGOFFSET_POS (8UL) /* Position of bits ADC_JDRx_REGOFFSET in ADC_INJ_JDRX_REGOFFSET_MASK*/ /* Definition of ADC group injected sequencer bits information to be inserted */ /* into ADC group injected sequencer ranks literals definition. */ #define ADC_INJ_RANK_1_JSQR_BITOFFSET_POS ( 8UL) /* Equivalent to bitfield "ADC_JSQR_JSQ1" position in register */ #define ADC_INJ_RANK_2_JSQR_BITOFFSET_POS (14UL) /* Equivalent to bitfield "ADC_JSQR_JSQ2" position in register */ #define ADC_INJ_RANK_3_JSQR_BITOFFSET_POS (20UL) /* Equivalent to bitfield "ADC_JSQR_JSQ3" position in register */ #define ADC_INJ_RANK_4_JSQR_BITOFFSET_POS (26UL) /* Equivalent to bitfield "ADC_JSQR_JSQ4" position in register */ /* Internal mask for ADC group regular trigger: */ /* To select into literal LL_ADC_REG_TRIG_x the relevant bits for: */ /* - regular trigger source */ /* - regular trigger edge */ #define ADC_REG_TRIG_EXT_EDGE_DEFAULT (ADC_CFGR_EXTEN_0) /* Trigger edge set to rising edge (default setting for compatibility with some ADC on other STM32 series having this setting set by HW default value) */ /* Mask containing trigger source masks for each of possible */ /* trigger edge selection duplicated with shifts [0; 4; 8; 12] */ /* corresponding to {SW start; ext trigger; ext trigger; ext trigger}. */ #define ADC_REG_TRIG_SOURCE_MASK (((LL_ADC_REG_TRIG_SOFTWARE & ADC_CFGR_EXTSEL) << (4U * 0UL)) | \ ((ADC_CFGR_EXTSEL) << (4U * 1UL)) | \ ((ADC_CFGR_EXTSEL) << (4U * 2UL)) | \ ((ADC_CFGR_EXTSEL) << (4U * 3UL)) ) /* Mask containing trigger edge masks for each of possible */ /* trigger edge selection duplicated with shifts [0; 4; 8; 12] */ /* corresponding to {SW start; ext trigger; ext trigger; ext trigger}. */ #define ADC_REG_TRIG_EDGE_MASK (((LL_ADC_REG_TRIG_SOFTWARE & ADC_CFGR_EXTEN) << (4U * 0UL)) | \ ((ADC_REG_TRIG_EXT_EDGE_DEFAULT) << (4U * 1UL)) | \ ((ADC_REG_TRIG_EXT_EDGE_DEFAULT) << (4U * 2UL)) | \ ((ADC_REG_TRIG_EXT_EDGE_DEFAULT) << (4U * 3UL)) ) /* Definition of ADC group regular trigger bits information. */ #define ADC_REG_TRIG_EXTSEL_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_CFGR_EXTSEL" position in register */ #define ADC_REG_TRIG_EXTEN_BITOFFSET_POS (10UL) /* Equivalent to bitfield "ADC_CFGR_EXTEN" position in register */ /* Internal mask for ADC group injected trigger: */ /* To select into literal LL_ADC_INJ_TRIG_x the relevant bits for: */ /* - injected trigger source */ /* - injected trigger edge */ #define ADC_INJ_TRIG_EXT_EDGE_DEFAULT (ADC_JSQR_JEXTEN_0) /* Trigger edge set to rising edge (default setting for compatibility with some ADC on other STM32 series having this setting set by HW default value) */ /* Mask containing trigger source masks for each of possible */ /* trigger edge selection duplicated with shifts [0; 4; 8; 12] */ /* corresponding to {SW start; ext trigger; ext trigger; ext trigger}. */ #define ADC_INJ_TRIG_SOURCE_MASK (((LL_ADC_INJ_TRIG_SOFTWARE & ADC_JSQR_JEXTSEL) << (4U * 0UL)) | \ ((ADC_JSQR_JEXTSEL) << (4U * 1UL)) | \ ((ADC_JSQR_JEXTSEL) << (4U * 2UL)) | \ ((ADC_JSQR_JEXTSEL) << (4U * 3UL)) ) /* Mask containing trigger edge masks for each of possible */ /* trigger edge selection duplicated with shifts [0; 4; 8; 12] */ /* corresponding to {SW start; ext trigger; ext trigger; ext trigger}. */ #define ADC_INJ_TRIG_EDGE_MASK (((LL_ADC_INJ_TRIG_SOFTWARE & ADC_JSQR_JEXTEN) << (4U * 0UL)) | \ ((ADC_INJ_TRIG_EXT_EDGE_DEFAULT) << (4U * 1UL)) | \ ((ADC_INJ_TRIG_EXT_EDGE_DEFAULT) << (4U * 2UL)) | \ ((ADC_INJ_TRIG_EXT_EDGE_DEFAULT) << (4U * 3UL)) ) /* Definition of ADC group injected trigger bits information. */ #define ADC_INJ_TRIG_EXTSEL_BITOFFSET_POS ( 2UL) /* Equivalent to bitfield "ADC_JSQR_JEXTSEL" position in register */ #define ADC_INJ_TRIG_EXTEN_BITOFFSET_POS ( 6UL) /* Equivalent to bitfield "ADC_JSQR_JEXTEN" position in register */ /* Internal mask for ADC channel: */ /* To select into literal LL_ADC_CHANNEL_x the relevant bits for: */ /* - channel identifier defined by number */ /* - channel identifier defined by bitfield */ /* - channel differentiation between external channels (connected to */ /* GPIO pins) and internal channels (connected to internal paths) */ /* - channel sampling time defined by SMPRx register offset */ /* and SMPx bits positions into SMPRx register */ #define ADC_CHANNEL_ID_NUMBER_MASK (ADC_CFGR_AWD1CH) #define ADC_CHANNEL_ID_BITFIELD_MASK (ADC_AWD2CR_AWD2CH) #define ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS (26UL) /* Equivalent to bitfield "ADC_CHANNEL_ID_NUMBER_MASK" position in register */ #define ADC_CHANNEL_ID_MASK (ADC_CHANNEL_ID_NUMBER_MASK | ADC_CHANNEL_ID_BITFIELD_MASK \ | ADC_CHANNEL_ID_INTERNAL_CH_MASK) /* Equivalent mask of ADC_CHANNEL_NUMBER_MASK aligned on register LSB (bit 0) */ #define ADC_CHANNEL_ID_NUMBER_MASK_POSBIT0 (ADC_SQR2_SQ5) /* Equivalent to shift: (ADC_CHANNEL_NUMBER_MASK >> [Position of bitfield "ADC_CHANNEL_NUMBER_MASK" in register]) */ /* Channel differentiation between external and internal channels */ #define ADC_CHANNEL_ID_INTERNAL_CH (0x80000000UL) /* Marker of internal channel */ #define ADC_CHANNEL_ID_INTERNAL_CH_2 (0x00080000UL) /* Marker of internal channel for other ADC instances, in case of different ADC internal channels mapped on same channel number on different ADC instances */ #define ADC_CHANNEL_ID_INTERNAL_CH_MASK (ADC_CHANNEL_ID_INTERNAL_CH | ADC_CHANNEL_ID_INTERNAL_CH_2) /* Internal register offset for ADC channel sampling time configuration */ /* (offset placed into a spare area of literal definition) */ #define ADC_SMPR1_REGOFFSET (0x00000000UL) #define ADC_SMPR2_REGOFFSET (0x02000000UL) #define ADC_CHANNEL_SMPRX_REGOFFSET_MASK (ADC_SMPR1_REGOFFSET | ADC_SMPR2_REGOFFSET) #define ADC_SMPRX_REGOFFSET_POS (25UL) /* Position of bits ADC_SMPRx_REGOFFSET in ADC_CHANNEL_SMPRX_REGOFFSET_MASK */ #define ADC_CHANNEL_SMPx_BITOFFSET_MASK (0x01F00000UL) #define ADC_CHANNEL_SMPx_BITOFFSET_POS (20UL) /* Equivalent to bitfield "ADC_CHANNEL_SMPx_BITOFFSET_MASK" position in register */ /* Definition of channels ID number information to be inserted into */ /* channels literals definition. */ #define ADC_CHANNEL_0_NUMBER (0x00000000UL) #define ADC_CHANNEL_1_NUMBER (ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_2_NUMBER (ADC_CFGR_AWD1CH_1) #define ADC_CHANNEL_3_NUMBER (ADC_CFGR_AWD1CH_1 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_4_NUMBER (ADC_CFGR_AWD1CH_2) #define ADC_CHANNEL_5_NUMBER (ADC_CFGR_AWD1CH_2 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_6_NUMBER (ADC_CFGR_AWD1CH_2 | ADC_CFGR_AWD1CH_1) #define ADC_CHANNEL_7_NUMBER (ADC_CFGR_AWD1CH_2 | ADC_CFGR_AWD1CH_1 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_8_NUMBER (ADC_CFGR_AWD1CH_3) #define ADC_CHANNEL_9_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_10_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_1) #define ADC_CHANNEL_11_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_1 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_12_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_2) #define ADC_CHANNEL_13_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_2 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_14_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_2 | ADC_CFGR_AWD1CH_1) #define ADC_CHANNEL_15_NUMBER (ADC_CFGR_AWD1CH_3 | ADC_CFGR_AWD1CH_2 | \ ADC_CFGR_AWD1CH_1 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_16_NUMBER (ADC_CFGR_AWD1CH_4) #define ADC_CHANNEL_17_NUMBER (ADC_CFGR_AWD1CH_4 | ADC_CFGR_AWD1CH_0) #define ADC_CHANNEL_18_NUMBER (ADC_CFGR_AWD1CH_4 | ADC_CFGR_AWD1CH_1) /* Definition of channels ID bitfield information to be inserted into */ /* channels literals definition. */ #define ADC_CHANNEL_0_BITFIELD (ADC_AWD2CR_AWD2CH_0) #define ADC_CHANNEL_1_BITFIELD (ADC_AWD2CR_AWD2CH_1) #define ADC_CHANNEL_2_BITFIELD (ADC_AWD2CR_AWD2CH_2) #define ADC_CHANNEL_3_BITFIELD (ADC_AWD2CR_AWD2CH_3) #define ADC_CHANNEL_4_BITFIELD (ADC_AWD2CR_AWD2CH_4) #define ADC_CHANNEL_5_BITFIELD (ADC_AWD2CR_AWD2CH_5) #define ADC_CHANNEL_6_BITFIELD (ADC_AWD2CR_AWD2CH_6) #define ADC_CHANNEL_7_BITFIELD (ADC_AWD2CR_AWD2CH_7) #define ADC_CHANNEL_8_BITFIELD (ADC_AWD2CR_AWD2CH_8) #define ADC_CHANNEL_9_BITFIELD (ADC_AWD2CR_AWD2CH_9) #define ADC_CHANNEL_10_BITFIELD (ADC_AWD2CR_AWD2CH_10) #define ADC_CHANNEL_11_BITFIELD (ADC_AWD2CR_AWD2CH_11) #define ADC_CHANNEL_12_BITFIELD (ADC_AWD2CR_AWD2CH_12) #define ADC_CHANNEL_13_BITFIELD (ADC_AWD2CR_AWD2CH_13) #define ADC_CHANNEL_14_BITFIELD (ADC_AWD2CR_AWD2CH_14) #define ADC_CHANNEL_15_BITFIELD (ADC_AWD2CR_AWD2CH_15) #define ADC_CHANNEL_16_BITFIELD (ADC_AWD2CR_AWD2CH_16) #define ADC_CHANNEL_17_BITFIELD (ADC_AWD2CR_AWD2CH_17) #define ADC_CHANNEL_18_BITFIELD (ADC_AWD2CR_AWD2CH_18) /* Definition of channels sampling time information to be inserted into */ /* channels literals definition. */ /* Value shifted are equivalent to bitfield "ADC_SMPRx_SMPy" position */ /* in register. */ #define ADC_CHANNEL_0_SMP (ADC_SMPR1_REGOFFSET | (( 0UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_1_SMP (ADC_SMPR1_REGOFFSET | (( 3UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_2_SMP (ADC_SMPR1_REGOFFSET | (( 6UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_3_SMP (ADC_SMPR1_REGOFFSET | (( 9UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_4_SMP (ADC_SMPR1_REGOFFSET | ((12UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_5_SMP (ADC_SMPR1_REGOFFSET | ((15UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_6_SMP (ADC_SMPR1_REGOFFSET | ((18UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_7_SMP (ADC_SMPR1_REGOFFSET | ((21UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_8_SMP (ADC_SMPR1_REGOFFSET | ((24UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_9_SMP (ADC_SMPR1_REGOFFSET | ((27UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_10_SMP (ADC_SMPR2_REGOFFSET | (( 0UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_11_SMP (ADC_SMPR2_REGOFFSET | (( 3UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_12_SMP (ADC_SMPR2_REGOFFSET | (( 6UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_13_SMP (ADC_SMPR2_REGOFFSET | (( 9UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_14_SMP (ADC_SMPR2_REGOFFSET | ((12UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_15_SMP (ADC_SMPR2_REGOFFSET | ((15UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_16_SMP (ADC_SMPR2_REGOFFSET | ((18UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_17_SMP (ADC_SMPR2_REGOFFSET | ((21UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) #define ADC_CHANNEL_18_SMP (ADC_SMPR2_REGOFFSET | ((24UL) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) /* Internal mask for ADC mode single or differential ended: */ /* To select into literals LL_ADC_SINGLE_ENDED or LL_ADC_SINGLE_DIFFERENTIAL */ /* the relevant bits for: */ /* (concatenation of multiple bits used in different registers) */ /* - ADC calibration: calibration start, calibration factor get or set */ /* - ADC channels: set each ADC channel ending mode */ #define ADC_SINGLEDIFF_CALIB_START_MASK (ADC_CR_ADCALDIF) #define ADC_SINGLEDIFF_CALIB_FACTOR_MASK (ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S) #define ADC_SINGLEDIFF_CHANNEL_MASK (ADC_CHANNEL_ID_BITFIELD_MASK) /* Equivalent to ADC_DIFSEL_DIFSEL */ #define ADC_SINGLEDIFF_CHANNEL_SHIFT_MASK (ADC_CALFACT_CALFACT_S_4 | ADC_CALFACT_CALFACT_S_3) /* Bits chosen to perform of shift when single mode is selected, shift value out of channels bits range. */ #define ADC_SINGLEDIFF_CALIB_F_BIT_D_MASK (0x00010000UL) /* Selection of 1 bit to discriminate differential mode: mask of bit */ #define ADC_SINGLEDIFF_CALIB_F_BIT_D_POS (16UL) /* Selection of 1 bit to discriminate differential mode: position of bit */ #define ADC_SINGLEDIFF_CALIB_F_BIT_D_SHIFT4 (ADC_SINGLEDIFF_CALIB_F_BIT_D_POS - 4UL) /* Shift of bit ADC_SINGLEDIFF_CALIB_F_BIT_D to perform a shift of 4 ranks */ /* Internal mask for ADC analog watchdog: */ /* To select into literals LL_ADC_AWD_CHANNELx_xxx the relevant bits for: */ /* (concatenation of multiple bits used in different analog watchdogs, */ /* (feature of several watchdogs not available on all STM32 series)). */ /* - analog watchdog 1: monitored channel defined by number, */ /* selection of ADC group (ADC groups regular and-or injected). */ /* - analog watchdog 2 and 3: monitored channel defined by bitfield, no */ /* selection on groups. */ /* Internal register offset for ADC analog watchdog channel configuration */ #define ADC_AWD_CR1_REGOFFSET (0x00000000UL) #define ADC_AWD_CR2_REGOFFSET (0x00100000UL) #define ADC_AWD_CR3_REGOFFSET (0x00200000UL) /* Register offset gap between AWD1 and AWD2-AWD3 configuration registers */ /* (Set separately as ADC_AWD_CRX_REGOFFSET to spare 32 bits space */ #define ADC_AWD_CR12_REGOFFSETGAP_MASK (ADC_AWD2CR_AWD2CH_0) #define ADC_AWD_CR12_REGOFFSETGAP_VAL (0x00000024UL) #define ADC_AWD_CRX_REGOFFSET_MASK (ADC_AWD_CR1_REGOFFSET | ADC_AWD_CR2_REGOFFSET | ADC_AWD_CR3_REGOFFSET) #define ADC_AWD_CR1_CHANNEL_MASK (ADC_CFGR_AWD1CH | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) #define ADC_AWD_CR23_CHANNEL_MASK (ADC_AWD2CR_AWD2CH) #define ADC_AWD_CR_ALL_CHANNEL_MASK (ADC_AWD_CR1_CHANNEL_MASK | ADC_AWD_CR23_CHANNEL_MASK) #define ADC_AWD_CRX_REGOFFSET_POS (20UL) /* Position of bits ADC_AWD_CRx_REGOFFSET in ADC_AWD_CRX_REGOFFSET_MASK */ /* Internal register offset for ADC analog watchdog threshold configuration */ #define ADC_AWD_TR1_REGOFFSET (ADC_AWD_CR1_REGOFFSET) #define ADC_AWD_TR2_REGOFFSET (ADC_AWD_CR2_REGOFFSET) #define ADC_AWD_TR3_REGOFFSET (ADC_AWD_CR3_REGOFFSET) #define ADC_AWD_TRX_REGOFFSET_MASK (ADC_AWD_TR1_REGOFFSET | ADC_AWD_TR2_REGOFFSET | ADC_AWD_TR3_REGOFFSET) #define ADC_AWD_TRX_REGOFFSET_POS (ADC_AWD_CRX_REGOFFSET_POS) /* Position of bits ADC_SQRx_REGOFFSET in ADC_AWD_TRX_REGOFFSET_MASK */ #define ADC_AWD_TRX_BIT_HIGH_MASK (0x00010000UL) /* Selection of 1 bit to discriminate threshold high: mask of bit */ #define ADC_AWD_TRX_BIT_HIGH_POS (16UL) /* Selection of 1 bit to discriminate threshold high: position of bit */ #define ADC_AWD_TRX_BIT_HIGH_SHIFT4 (ADC_AWD_TRX_BIT_HIGH_POS - 4UL) /* Shift of bit ADC_AWD_TRX_BIT_HIGH to position to perform a shift of 4 ranks */ /* Internal mask for ADC offset: */ /* Internal register offset for ADC offset instance configuration */ #define ADC_OFR1_REGOFFSET (0x00000000UL) #define ADC_OFR2_REGOFFSET (0x00000001UL) #define ADC_OFR3_REGOFFSET (0x00000002UL) #define ADC_OFR4_REGOFFSET (0x00000003UL) #define ADC_OFRx_REGOFFSET_MASK (ADC_OFR1_REGOFFSET | ADC_OFR2_REGOFFSET \ | ADC_OFR3_REGOFFSET | ADC_OFR4_REGOFFSET) /* ADC registers bits positions */ #define ADC_CFGR_RES_BITOFFSET_POS ( 3UL) /* Equivalent to bitfield "ADC_CFGR_RES" position in register */ #define ADC_CFGR_AWD1SGL_BITOFFSET_POS (22UL) /* Equivalent to bitfield "ADC_CFGR_AWD1SGL" position in register */ #define ADC_CFGR_AWD1EN_BITOFFSET_POS (23UL) /* Equivalent to bitfield "ADC_CFGR_AWD1EN" position in register */ #define ADC_CFGR_JAWD1EN_BITOFFSET_POS (24UL) /* Equivalent to bitfield "ADC_CFGR_JAWD1EN" position in register */ #define ADC_TR1_HT1_BITOFFSET_POS (16UL) /* Equivalent to bitfield "ADC_TR1_HT1" position in register */ /* ADC registers bits groups */ #define ADC_CR_BITS_PROPERTY_RS (ADC_CR_ADCAL | ADC_CR_ADEN | ADC_CR_ADDIS \ | ADC_CR_JADSTART | ADC_CR_JADSTP \ | ADC_CR_ADSTART | ADC_CR_ADSTP) /* ADC register CR bits with HW property "rs": Software can read as well as set this bit. Writing '0' has no effect on the bit value. */ /* ADC internal channels related definitions */ /* Internal voltage reference VrefInt */ #define VREFINT_CAL_ADDR ((uint16_t*) (0x0BFA05AAUL)) /* Internal voltage reference, address of parameter VREFINT_CAL: VrefInt ADC raw data acquired at temperature 30 DegC (tolerance: +-5 DegC), Vref+ = 3.0 V (tolerance: +-10 mV). */ #define VREFINT_CAL_VREF (3000UL) /* Analog voltage reference (Vref+) value with which VrefInt has been calibrated in production (tolerance: +-10 mV) (unit: mV). */ /* Temperature sensor */ #define TEMPSENSOR_CAL1_ADDR ((uint16_t*) (0x0BFA05A8UL)) /* Address of parameter TS_CAL1: On STM32L5, temperature sensor ADC raw data acquired at temperature 30 DegC (tolerance: +-5 DegC), Vref+ = 3.0 V (tolerance: +-10 mV). */ #define TEMPSENSOR_CAL2_ADDR ((uint16_t*) (0x0BFA05CAUL)) /* Address of parameter TS_CAL2: On STM32L5, temperature sensor ADC raw data acquired at temperature 110 DegC (tolerance: +-5 DegC), Vref+ = 3.0 V (tolerance: +-10 mV). */ #define TEMPSENSOR_CAL1_TEMP (30L) /* Temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL1_ADDR (tolerance: +-5 DegC) (unit: DegC). */ #define TEMPSENSOR_CAL2_TEMP (110L) /* Temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL2_ADDR (tolerance: +-5 DegC) (unit: DegC). */ #define TEMPSENSOR_CAL_VREFANALOG (3000UL) /* Analog voltage reference (Vref+) value with which temperature sensor has been calibrated in production (tolerance +-10 mV) (unit: mV). */ /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @defgroup ADC_LL_Private_Macros ADC Private Macros * @{ */ /** * @brief Driver macro reserved for internal use: set a pointer to * a register from a register basis from which an offset * is applied. * @param __REG__ Register basis from which the offset is applied. * @param __REG_OFFFSET__ Offset to be applied (unit: number of registers). * @retval Pointer to register address */ #define __ADC_PTR_REG_OFFSET(__REG__, __REG_OFFFSET__) \ ((__IO uint32_t *)((uint32_t) ((uint32_t)(&(__REG__)) + ((__REG_OFFFSET__) << 2UL)))) /** * @} */ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup ADC_LL_ES_INIT ADC Exported Init structure * @{ */ /** * @brief Structure definition of some features of ADC common parameters * and multimode * (all ADC instances belonging to the same ADC common instance). * @note The setting of these parameters by function @ref LL_ADC_CommonInit() * is conditioned to ADC instances state (all ADC instances * sharing the same ADC common instance): * All ADC instances sharing the same ADC common instance must be * disabled. */ typedef struct { uint32_t CommonClock; /*!< Set parameter common to several ADC: Clock source and prescaler. This parameter can be a value of @ref ADC_LL_EC_COMMON_CLOCK_SOURCE @note On this STM32 series, if ADC group injected is used, some clock ratio constraints between ADC clock and AHB clock must be respected. Refer to reference manual. This feature can be modified afterwards using unitary function @ref LL_ADC_SetCommonClock(). */ #if defined(ADC_MULTIMODE_SUPPORT) uint32_t Multimode; /*!< Set ADC multimode configuration to operate in independent mode or multimode (for devices with several ADC instances). This parameter can be a value of @ref ADC_LL_EC_MULTI_MODE This feature can be modified afterwards using unitary function @ref LL_ADC_SetMultimode(). */ uint32_t MultiDMATransfer; /*!< Set ADC multimode conversion data transfer: no transfer or transfer by DMA. This parameter can be a value of @ref ADC_LL_EC_MULTI_DMA_TRANSFER This feature can be modified afterwards using unitary function @ref LL_ADC_SetMultiDMATransfer(). */ uint32_t MultiTwoSamplingDelay; /*!< Set ADC multimode delay between 2 sampling phases. This parameter can be a value of @ref ADC_LL_EC_MULTI_TWOSMP_DELAY This feature can be modified afterwards using unitary function @ref LL_ADC_SetMultiTwoSamplingDelay(). */ #endif /* ADC_MULTIMODE_SUPPORT */ } LL_ADC_CommonInitTypeDef; /** * @brief Structure definition of some features of ADC instance. * @note These parameters have an impact on ADC scope: ADC instance. * Affects both group regular and group injected (availability * of ADC group injected depends on STM32 series). * Refer to corresponding unitary functions into * @ref ADC_LL_EF_Configuration_ADC_Instance . * @note The setting of these parameters by function @ref LL_ADC_Init() * is conditioned to ADC state: * ADC instance must be disabled. * This condition is applied to all ADC features, for efficiency * and compatibility over all STM32 series. However, the different * features can be set under different ADC state conditions * (setting possible with ADC enabled without conversion on going, * ADC enabled with conversion on going, ...) * Each feature can be updated afterwards with a unitary function * and potentially with ADC in a different state than disabled, * refer to description of each function for setting * conditioned to ADC state. */ typedef struct { uint32_t Resolution; /*!< Set ADC resolution. This parameter can be a value of @ref ADC_LL_EC_RESOLUTION This feature can be modified afterwards using unitary function @ref LL_ADC_SetResolution(). */ uint32_t DataAlignment; /*!< Set ADC conversion data alignment. This parameter can be a value of @ref ADC_LL_EC_DATA_ALIGN This feature can be modified afterwards using unitary function @ref LL_ADC_SetDataAlignment(). */ uint32_t LowPowerMode; /*!< Set ADC low power mode. This parameter can be a value of @ref ADC_LL_EC_LP_MODE This feature can be modified afterwards using unitary function @ref LL_ADC_SetLowPowerMode(). */ } LL_ADC_InitTypeDef; /** * @brief Structure definition of some features of ADC group regular. * @note These parameters have an impact on ADC scope: ADC group regular. * Refer to corresponding unitary functions into * @ref ADC_LL_EF_Configuration_ADC_Group_Regular * (functions with prefix "REG"). * @note The setting of these parameters by function @ref LL_ADC_REG_Init() * is conditioned to ADC state: * ADC instance must be disabled. * This condition is applied to all ADC features, for efficiency * and compatibility over all STM32 series. However, the different * features can be set under different ADC state conditions * (setting possible with ADC enabled without conversion on going, * ADC enabled with conversion on going, ...) * Each feature can be updated afterwards with a unitary function * and potentially with ADC in a different state than disabled, * refer to description of each function for setting * conditioned to ADC state. */ typedef struct { uint32_t TriggerSource; /*!< Set ADC group regular conversion trigger source: internal (SW start) or from external peripheral (timer event, external interrupt line). This parameter can be a value of @ref ADC_LL_EC_REG_TRIGGER_SOURCE @note On this STM32 series, setting trigger source to external trigger also set trigger polarity to rising edge(default setting for compatibility with some ADC on other STM32 series having this setting set by HW default value). In case of need to modify trigger edge, use function @ref LL_ADC_REG_SetTriggerEdge(). This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetTriggerSource(). */ uint32_t SequencerLength; /*!< Set ADC group regular sequencer length. This parameter can be a value of @ref ADC_LL_EC_REG_SEQ_SCAN_LENGTH This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetSequencerLength(). */ uint32_t SequencerDiscont; /*!< Set ADC group regular sequencer discontinuous mode: sequence subdivided and scan conversions interrupted every selected number of ranks. This parameter can be a value of @ref ADC_LL_EC_REG_SEQ_DISCONT_MODE @note This parameter has an effect only if group regular sequencer is enabled (scan length of 2 ranks or more). This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetSequencerDiscont(). */ uint32_t ContinuousMode; /*!< Set ADC continuous conversion mode on ADC group regular, whether ADC conversions are performed in single mode (one conversion per trigger) or in continuous mode (after the first trigger, following conversions launched successively automatically). This parameter can be a value of @ref ADC_LL_EC_REG_CONTINUOUS_MODE Note: It is not possible to enable both ADC group regular continuous mode and discontinuous mode. This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetContinuousMode(). */ uint32_t DMATransfer; /*!< Set ADC group regular conversion data transfer: no transfer or transfer by DMA, and DMA requests mode. This parameter can be a value of @ref ADC_LL_EC_REG_DMA_TRANSFER This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetDMATransfer(). */ uint32_t Overrun; /*!< Set ADC group regular behavior in case of overrun: data preserved or overwritten. This parameter can be a value of @ref ADC_LL_EC_REG_OVR_DATA_BEHAVIOR This feature can be modified afterwards using unitary function @ref LL_ADC_REG_SetOverrun(). */ } LL_ADC_REG_InitTypeDef; /** * @brief Structure definition of some features of ADC group injected. * @note These parameters have an impact on ADC scope: ADC group injected. * Refer to corresponding unitary functions into * @ref ADC_LL_EF_Configuration_ADC_Group_Regular * (functions with prefix "INJ"). * @note The setting of these parameters by function @ref LL_ADC_INJ_Init() * is conditioned to ADC state: * ADC instance must be disabled. * This condition is applied to all ADC features, for efficiency * and compatibility over all STM32 series. However, the different * features can be set under different ADC state conditions * (setting possible with ADC enabled without conversion on going, * ADC enabled with conversion on going, ...) * Each feature can be updated afterwards with a unitary function * and potentially with ADC in a different state than disabled, * refer to description of each function for setting * conditioned to ADC state. */ typedef struct { uint32_t TriggerSource; /*!< Set ADC group injected conversion trigger source: internal (SW start) or from external peripheral (timer event, external interrupt line). This parameter can be a value of @ref ADC_LL_EC_INJ_TRIGGER_SOURCE @note On this STM32 series, setting trigger source to external trigger also set trigger polarity to rising edge (default setting for compatibility with some ADC on other STM32 series having this setting set by HW default value). In case of need to modify trigger edge, use function @ref LL_ADC_INJ_SetTriggerEdge(). This feature can be modified afterwards using unitary function @ref LL_ADC_INJ_SetTriggerSource(). */ uint32_t SequencerLength; /*!< Set ADC group injected sequencer length. This parameter can be a value of @ref ADC_LL_EC_INJ_SEQ_SCAN_LENGTH This feature can be modified afterwards using unitary function @ref LL_ADC_INJ_SetSequencerLength(). */ uint32_t SequencerDiscont; /*!< Set ADC group injected sequencer discontinuous mode: sequence subdivided and scan conversions interrupted every selected number of ranks. This parameter can be a value of @ref ADC_LL_EC_INJ_SEQ_DISCONT_MODE @note This parameter has an effect only if group injected sequencer is enabled (scan length of 2 ranks or more). This feature can be modified afterwards using unitary function @ref LL_ADC_INJ_SetSequencerDiscont(). */ uint32_t TrigAuto; /*!< Set ADC group injected conversion trigger: independent or from ADC group regular. This parameter can be a value of @ref ADC_LL_EC_INJ_TRIG_AUTO Note: This parameter must be set to set to independent trigger if injected trigger source is set to an external trigger. This feature can be modified afterwards using unitary function @ref LL_ADC_INJ_SetTrigAuto(). */ } LL_ADC_INJ_InitTypeDef; /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup ADC_LL_Exported_Constants ADC Exported Constants * @{ */ /** @defgroup ADC_LL_EC_FLAG ADC flags * @brief Flags defines which can be used with LL_ADC_ReadReg function * @{ */ #define LL_ADC_FLAG_ADRDY ADC_ISR_ADRDY /*!< ADC flag ADC instance ready */ #define LL_ADC_FLAG_EOC ADC_ISR_EOC /*!< ADC flag ADC group regular end of unitary conversion */ #define LL_ADC_FLAG_EOS ADC_ISR_EOS /*!< ADC flag ADC group regular end of sequence conversions */ #define LL_ADC_FLAG_OVR ADC_ISR_OVR /*!< ADC flag ADC group regular overrun */ #define LL_ADC_FLAG_EOSMP ADC_ISR_EOSMP /*!< ADC flag ADC group regular end of sampling phase */ #define LL_ADC_FLAG_JEOC ADC_ISR_JEOC /*!< ADC flag ADC group injected end of unitary conversion */ #define LL_ADC_FLAG_JEOS ADC_ISR_JEOS /*!< ADC flag ADC group injected end of sequence conversions */ #define LL_ADC_FLAG_JQOVF ADC_ISR_JQOVF /*!< ADC flag ADC group injected contexts queue overflow */ #define LL_ADC_FLAG_AWD1 ADC_ISR_AWD1 /*!< ADC flag ADC analog watchdog 1 */ #define LL_ADC_FLAG_AWD2 ADC_ISR_AWD2 /*!< ADC flag ADC analog watchdog 2 */ #define LL_ADC_FLAG_AWD3 ADC_ISR_AWD3 /*!< ADC flag ADC analog watchdog 3 */ #if defined(ADC_MULTIMODE_SUPPORT) #define LL_ADC_FLAG_ADRDY_MST ADC_CSR_ADRDY_MST /*!< ADC flag ADC multimode master instance ready */ #define LL_ADC_FLAG_ADRDY_SLV ADC_CSR_ADRDY_SLV /*!< ADC flag ADC multimode slave instance ready */ #define LL_ADC_FLAG_EOC_MST ADC_CSR_EOC_MST /*!< ADC flag ADC multimode master group regular end of unitary conversion */ #define LL_ADC_FLAG_EOC_SLV ADC_CSR_EOC_SLV /*!< ADC flag ADC multimode slave group regular end of unitary conversion */ #define LL_ADC_FLAG_EOS_MST ADC_CSR_EOS_MST /*!< ADC flag ADC multimode master group regular end of sequence conversions */ #define LL_ADC_FLAG_EOS_SLV ADC_CSR_EOS_SLV /*!< ADC flag ADC multimode slave group regular end of sequence conversions */ #define LL_ADC_FLAG_OVR_MST ADC_CSR_OVR_MST /*!< ADC flag ADC multimode master group regular overrun */ #define LL_ADC_FLAG_OVR_SLV ADC_CSR_OVR_SLV /*!< ADC flag ADC multimode slave group regular overrun */ #define LL_ADC_FLAG_EOSMP_MST ADC_CSR_EOSMP_MST /*!< ADC flag ADC multimode master group regular end of sampling phase */ #define LL_ADC_FLAG_EOSMP_SLV ADC_CSR_EOSMP_SLV /*!< ADC flag ADC multimode slave group regular end of sampling phase */ #define LL_ADC_FLAG_JEOC_MST ADC_CSR_JEOC_MST /*!< ADC flag ADC multimode master group injected end of unitary conversion */ #define LL_ADC_FLAG_JEOC_SLV ADC_CSR_JEOC_SLV /*!< ADC flag ADC multimode slave group injected end of unitary conversion */ #define LL_ADC_FLAG_JEOS_MST ADC_CSR_JEOS_MST /*!< ADC flag ADC multimode master group injected end of sequence conversions */ #define LL_ADC_FLAG_JEOS_SLV ADC_CSR_JEOS_SLV /*!< ADC flag ADC multimode slave group injected end of sequence conversions */ #define LL_ADC_FLAG_JQOVF_MST ADC_CSR_JQOVF_MST /*!< ADC flag ADC multimode master group injected contexts queue overflow */ #define LL_ADC_FLAG_JQOVF_SLV ADC_CSR_JQOVF_SLV /*!< ADC flag ADC multimode slave group injected contexts queue overflow */ #define LL_ADC_FLAG_AWD1_MST ADC_CSR_AWD1_MST /*!< ADC flag ADC multimode master analog watchdog 1 of the ADC master */ #define LL_ADC_FLAG_AWD1_SLV ADC_CSR_AWD1_SLV /*!< ADC flag ADC multimode slave analog watchdog 1 of the ADC slave */ #define LL_ADC_FLAG_AWD2_MST ADC_CSR_AWD2_MST /*!< ADC flag ADC multimode master analog watchdog 2 of the ADC master */ #define LL_ADC_FLAG_AWD2_SLV ADC_CSR_AWD2_SLV /*!< ADC flag ADC multimode slave analog watchdog 2 of the ADC slave */ #define LL_ADC_FLAG_AWD3_MST ADC_CSR_AWD3_MST /*!< ADC flag ADC multimode master analog watchdog 3 of the ADC master */ #define LL_ADC_FLAG_AWD3_SLV ADC_CSR_AWD3_SLV /*!< ADC flag ADC multimode slave analog watchdog 3 of the ADC slave */ #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EC_IT ADC interruptions for configuration (interruption enable or disable) * @brief IT defines which can be used with LL_ADC_ReadReg and LL_ADC_WriteReg functions * @{ */ #define LL_ADC_IT_ADRDY ADC_IER_ADRDYIE /*!< ADC interruption ADC instance ready */ #define LL_ADC_IT_EOC ADC_IER_EOCIE /*!< ADC interruption ADC group regular end of unitary conversion */ #define LL_ADC_IT_EOS ADC_IER_EOSIE /*!< ADC interruption ADC group regular end of sequence conversions */ #define LL_ADC_IT_OVR ADC_IER_OVRIE /*!< ADC interruption ADC group regular overrun */ #define LL_ADC_IT_EOSMP ADC_IER_EOSMPIE /*!< ADC interruption ADC group regular end of sampling phase */ #define LL_ADC_IT_JEOC ADC_IER_JEOCIE /*!< ADC interruption ADC group injected end of unitary conversion */ #define LL_ADC_IT_JEOS ADC_IER_JEOSIE /*!< ADC interruption ADC group injected end of sequence conversions */ #define LL_ADC_IT_JQOVF ADC_IER_JQOVFIE /*!< ADC interruption ADC group injected contexts queue overflow */ #define LL_ADC_IT_AWD1 ADC_IER_AWD1IE /*!< ADC interruption ADC analog watchdog 1 */ #define LL_ADC_IT_AWD2 ADC_IER_AWD2IE /*!< ADC interruption ADC analog watchdog 2 */ #define LL_ADC_IT_AWD3 ADC_IER_AWD3IE /*!< ADC interruption ADC analog watchdog 3 */ /** * @} */ /** @defgroup ADC_LL_EC_REGISTERS ADC registers compliant with specific purpose * @{ */ /* List of ADC registers intended to be used (most commonly) with */ /* DMA transfer. */ /* Refer to function @ref LL_ADC_DMA_GetRegAddr(). */ #define LL_ADC_DMA_REG_REGULAR_DATA (0x00000000UL) /* ADC group regular conversion data register (corresponding to register DR) to be used with ADC configured in independent mode. Without DMA transfer, register accessed by LL function @ref LL_ADC_REG_ReadConversionData32() and other functions @ref LL_ADC_REG_ReadConversionDatax() */ #if defined(ADC_MULTIMODE_SUPPORT) #define LL_ADC_DMA_REG_REGULAR_DATA_MULTI (0x00000001UL) /* ADC group regular conversion data register (corresponding to register CDR) to be used with ADC configured in multimode (available on STM32 devices with several ADC instances). Without DMA transfer, register accessed by LL function @ref LL_ADC_REG_ReadMultiConversionData32() */ #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EC_COMMON_CLOCK_SOURCE ADC common - Clock source * @{ */ #define LL_ADC_CLOCK_SYNC_PCLK_DIV1 (ADC_CCR_CKMODE_0) /*!< ADC synchronous clock derived from AHB clock without prescaler */ #define LL_ADC_CLOCK_SYNC_PCLK_DIV2 (ADC_CCR_CKMODE_1) /*!< ADC synchronous clock derived from AHB clock with prescaler division by 2 */ #define LL_ADC_CLOCK_SYNC_PCLK_DIV4 (ADC_CCR_CKMODE_1 | ADC_CCR_CKMODE_0) /*!< ADC synchronous clock derived from AHB clock with prescaler division by 4 */ #define LL_ADC_CLOCK_ASYNC_DIV1 (0x00000000UL) /*!< ADC asynchronous clock without prescaler */ #define LL_ADC_CLOCK_ASYNC_DIV2 (ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 2 */ #define LL_ADC_CLOCK_ASYNC_DIV4 (ADC_CCR_PRESC_1) /*!< ADC asynchronous clock with prescaler division by 4 */ #define LL_ADC_CLOCK_ASYNC_DIV6 (ADC_CCR_PRESC_1 | ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 6 */ #define LL_ADC_CLOCK_ASYNC_DIV8 (ADC_CCR_PRESC_2) /*!< ADC asynchronous clock with prescaler division by 8 */ #define LL_ADC_CLOCK_ASYNC_DIV10 (ADC_CCR_PRESC_2 | ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 10 */ #define LL_ADC_CLOCK_ASYNC_DIV12 (ADC_CCR_PRESC_2 | ADC_CCR_PRESC_1) /*!< ADC asynchronous clock with prescaler division by 12 */ #define LL_ADC_CLOCK_ASYNC_DIV16 (ADC_CCR_PRESC_2 | ADC_CCR_PRESC_1 \ | ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 16 */ #define LL_ADC_CLOCK_ASYNC_DIV32 (ADC_CCR_PRESC_3) /*!< ADC asynchronous clock with prescaler division by 32 */ #define LL_ADC_CLOCK_ASYNC_DIV64 (ADC_CCR_PRESC_3 | ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 64 */ #define LL_ADC_CLOCK_ASYNC_DIV128 (ADC_CCR_PRESC_3 | ADC_CCR_PRESC_1) /*!< ADC asynchronous clock with prescaler division by 128 */ #define LL_ADC_CLOCK_ASYNC_DIV256 (ADC_CCR_PRESC_3 | ADC_CCR_PRESC_1 \ | ADC_CCR_PRESC_0) /*!< ADC asynchronous clock with prescaler division by 256 */ /** * @} */ /** @defgroup ADC_LL_EC_COMMON_PATH_INTERNAL ADC common - Measurement path to internal channels * @{ */ /* Note: Other measurement paths to internal channels may be available */ /* (connections to other peripherals). */ /* If they are not listed below, they do not require any specific */ /* path enable. In this case, Access to measurement path is done */ /* only by selecting the corresponding ADC internal channel. */ #define LL_ADC_PATH_INTERNAL_NONE (0x00000000UL) /*!< ADC measurement paths all disabled */ #define LL_ADC_PATH_INTERNAL_VREFINT (ADC_CCR_VREFEN) /*!< ADC measurement path to internal channel VrefInt */ #define LL_ADC_PATH_INTERNAL_TEMPSENSOR (ADC_CCR_TSEN) /*!< ADC measurement path to internal channel temperature sensor */ #define LL_ADC_PATH_INTERNAL_VBAT (ADC_CCR_VBATEN) /*!< ADC measurement path to internal channel Vbat */ /** * @} */ /** @defgroup ADC_LL_EC_RESOLUTION ADC instance - Resolution * @{ */ #define LL_ADC_RESOLUTION_12B (0x00000000UL) /*!< ADC resolution 12 bits */ #define LL_ADC_RESOLUTION_10B ( ADC_CFGR_RES_0) /*!< ADC resolution 10 bits */ #define LL_ADC_RESOLUTION_8B (ADC_CFGR_RES_1 ) /*!< ADC resolution 8 bits */ #define LL_ADC_RESOLUTION_6B (ADC_CFGR_RES_1 | ADC_CFGR_RES_0) /*!< ADC resolution 6 bits */ /** * @} */ /** @defgroup ADC_LL_EC_DATA_ALIGN ADC instance - Data alignment * @{ */ #define LL_ADC_DATA_ALIGN_RIGHT (0x00000000UL) /*!< ADC conversion data alignment: right aligned (alignment on data register LSB bit 0)*/ #define LL_ADC_DATA_ALIGN_LEFT (ADC_CFGR_ALIGN) /*!< ADC conversion data alignment: left aligned (alignment on data register MSB bit 15)*/ /** * @} */ /** @defgroup ADC_LL_EC_LP_MODE ADC instance - Low power mode * @{ */ #define LL_ADC_LP_MODE_NONE (0x00000000UL) /*!< No ADC low power mode activated */ #define LL_ADC_LP_AUTOWAIT (ADC_CFGR_AUTDLY) /*!< ADC low power mode auto delay: Dynamic low power mode, ADC conversions are performed only when necessary (when previous ADC conversion data is read). See description with function @ref LL_ADC_SetLowPowerMode(). */ /** * @} */ /** @defgroup ADC_LL_EC_OFFSET_NB ADC instance - Offset instance * @{ */ #define LL_ADC_OFFSET_1 ADC_OFR1_REGOFFSET /*!< ADC offset instance 1: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or injected) */ #define LL_ADC_OFFSET_2 ADC_OFR2_REGOFFSET /*!< ADC offset instance 2: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or injected) */ #define LL_ADC_OFFSET_3 ADC_OFR3_REGOFFSET /*!< ADC offset instance 3: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or injected) */ #define LL_ADC_OFFSET_4 ADC_OFR4_REGOFFSET /*!< ADC offset instance 4: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or injected) */ /** * @} */ /** @defgroup ADC_LL_EC_OFFSET_STATE ADC instance - Offset state * @{ */ #define LL_ADC_OFFSET_DISABLE (0x00000000UL) /*!< ADC offset disabled (setting offset instance wise) */ #define LL_ADC_OFFSET_ENABLE (ADC_OFR1_OFFSET1_EN) /*!< ADC offset enabled (setting offset instance wise) */ /** * @} */ /** @defgroup ADC_LL_EC_GROUPS ADC instance - Groups * @{ */ #define LL_ADC_GROUP_REGULAR (0x00000001UL) /*!< ADC group regular (available on all STM32 devices) */ #define LL_ADC_GROUP_INJECTED (0x00000002UL) /*!< ADC group injected (not available on all STM32 devices)*/ #define LL_ADC_GROUP_REGULAR_INJECTED (0x00000003UL) /*!< ADC both groups regular and injected */ /** * @} */ /** @defgroup ADC_LL_EC_CHANNEL ADC instance - Channel number * @{ */ #define LL_ADC_CHANNEL_0 (ADC_CHANNEL_0_NUMBER | ADC_CHANNEL_0_SMP \ | ADC_CHANNEL_0_BITFIELD) /*!< ADC channel ADCx_IN0 */ #define LL_ADC_CHANNEL_1 (ADC_CHANNEL_1_NUMBER | ADC_CHANNEL_1_SMP \ | ADC_CHANNEL_1_BITFIELD) /*!< ADC channel ADCx_IN1 */ #define LL_ADC_CHANNEL_2 (ADC_CHANNEL_2_NUMBER | ADC_CHANNEL_2_SMP \ | ADC_CHANNEL_2_BITFIELD) /*!< ADC channel ADCx_IN2 */ #define LL_ADC_CHANNEL_3 (ADC_CHANNEL_3_NUMBER | ADC_CHANNEL_3_SMP \ | ADC_CHANNEL_3_BITFIELD) /*!< ADC channel ADCx_IN3 */ #define LL_ADC_CHANNEL_4 (ADC_CHANNEL_4_NUMBER | ADC_CHANNEL_4_SMP \ | ADC_CHANNEL_4_BITFIELD) /*!< ADC channel ADCx_IN4 */ #define LL_ADC_CHANNEL_5 (ADC_CHANNEL_5_NUMBER | ADC_CHANNEL_5_SMP \ | ADC_CHANNEL_5_BITFIELD) /*!< ADC channel ADCx_IN5 */ #define LL_ADC_CHANNEL_6 (ADC_CHANNEL_6_NUMBER | ADC_CHANNEL_6_SMP \ | ADC_CHANNEL_6_BITFIELD) /*!< ADC channel ADCx_IN6 */ #define LL_ADC_CHANNEL_7 (ADC_CHANNEL_7_NUMBER | ADC_CHANNEL_7_SMP \ | ADC_CHANNEL_7_BITFIELD) /*!< ADC channel ADCx_IN7 */ #define LL_ADC_CHANNEL_8 (ADC_CHANNEL_8_NUMBER | ADC_CHANNEL_8_SMP \ | ADC_CHANNEL_8_BITFIELD) /*!< ADC channel ADCx_IN8 */ #define LL_ADC_CHANNEL_9 (ADC_CHANNEL_9_NUMBER | ADC_CHANNEL_9_SMP \ | ADC_CHANNEL_9_BITFIELD) /*!< ADC channel ADCx_IN9 */ #define LL_ADC_CHANNEL_10 (ADC_CHANNEL_10_NUMBER | ADC_CHANNEL_10_SMP \ | ADC_CHANNEL_10_BITFIELD) /*!< ADC channel ADCx_IN10 */ #define LL_ADC_CHANNEL_11 (ADC_CHANNEL_11_NUMBER | ADC_CHANNEL_11_SMP \ | ADC_CHANNEL_11_BITFIELD) /*!< ADC channel ADCx_IN11 */ #define LL_ADC_CHANNEL_12 (ADC_CHANNEL_12_NUMBER | ADC_CHANNEL_12_SMP \ | ADC_CHANNEL_12_BITFIELD) /*!< ADC channel ADCx_IN12 */ #define LL_ADC_CHANNEL_13 (ADC_CHANNEL_13_NUMBER | ADC_CHANNEL_13_SMP \ | ADC_CHANNEL_13_BITFIELD) /*!< ADC channel ADCx_IN13 */ #define LL_ADC_CHANNEL_14 (ADC_CHANNEL_14_NUMBER | ADC_CHANNEL_14_SMP \ | ADC_CHANNEL_14_BITFIELD) /*!< ADC channel ADCx_IN14 */ #define LL_ADC_CHANNEL_15 (ADC_CHANNEL_15_NUMBER | ADC_CHANNEL_15_SMP \ | ADC_CHANNEL_15_BITFIELD) /*!< ADC channel ADCx_IN15 */ #define LL_ADC_CHANNEL_16 (ADC_CHANNEL_16_NUMBER | ADC_CHANNEL_16_SMP | \ ADC_CHANNEL_16_BITFIELD) /*!< ADC channel ADCx_IN16 */ #define LL_ADC_CHANNEL_17 (ADC_CHANNEL_17_NUMBER | ADC_CHANNEL_17_SMP | \ ADC_CHANNEL_17_BITFIELD) /*!< ADC channel ADCx_IN17 */ #define LL_ADC_CHANNEL_18 (ADC_CHANNEL_18_NUMBER | ADC_CHANNEL_18_SMP | \ ADC_CHANNEL_18_BITFIELD) /*!< ADC channel ADCx_IN18 */ #define LL_ADC_CHANNEL_VREFINT (LL_ADC_CHANNEL_0 | ADC_CHANNEL_ID_INTERNAL_CH) /*!< ADC internal channel connected to VrefInt: Internal voltage reference, channel specific to ADC1.*/ #define LL_ADC_CHANNEL_TEMPSENSOR (LL_ADC_CHANNEL_17 | ADC_CHANNEL_ID_INTERNAL_CH) /*!< ADC internal channel connected to internal temperature sensor, channel specific to ADC1. */ #define LL_ADC_CHANNEL_VBAT (LL_ADC_CHANNEL_18 | ADC_CHANNEL_ID_INTERNAL_CH) /*!< ADC internal channel connected to Vbat/2: Vbat voltage through a divider ladder of factor 1/2 to have channel voltage always below Vdda, channel specific to ADC1. */ #define LL_ADC_CHANNEL_DAC1CH1_ADC2 (LL_ADC_CHANNEL_17 | ADC_CHANNEL_ID_INTERNAL_CH | \ ADC_CHANNEL_ID_INTERNAL_CH_2) /*!< ADC internal channel connected to DAC1 channel 1, channel specific to ADC2. */ #define LL_ADC_CHANNEL_DAC1CH2_ADC2 (LL_ADC_CHANNEL_18 | ADC_CHANNEL_ID_INTERNAL_CH | \ ADC_CHANNEL_ID_INTERNAL_CH_2) /*!< ADC internal channel connected to DAC1 channel 2, channel specific to ADC2. */ /** * @} */ /** @defgroup ADC_LL_EC_REG_TRIGGER_SOURCE ADC group regular - Trigger source * @{ */ #define LL_ADC_REG_TRIG_SOFTWARE (0x00000000UL) /*!< ADC group regular conversion trigger internal: SW start. */ #define LL_ADC_REG_TRIG_EXT_TIM1_TRGO (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_0 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM1 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM1_TRGO2 (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_1 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM1 TRGO2. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM1_CH1 (ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM1_CH2 (ADC_CFGR_EXTSEL_0 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 2 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM1_CH3 (ADC_CFGR_EXTSEL_1 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 3 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM2_TRGO (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_1 | \ ADC_CFGR_EXTSEL_0 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM2 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM2_CH2 (ADC_CFGR_EXTSEL_1 | ADC_CFGR_EXTSEL_0 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM2 channel 2 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM3_TRGO (ADC_CFGR_EXTSEL_2 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM3 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM3_CH4 (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_2 | \ ADC_CFGR_EXTSEL_1 | ADC_CFGR_EXTSEL_0 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM3 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM4_TRGO (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_2 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM4 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM4_CH4 (ADC_CFGR_EXTSEL_2 | ADC_CFGR_EXTSEL_0 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM4 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM6_TRGO (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_2 | \ ADC_CFGR_EXTSEL_0 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM6 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM8_TRGO (ADC_CFGR_EXTSEL_2 | ADC_CFGR_EXTSEL_1 | \ ADC_CFGR_EXTSEL_0 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM8 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM8_TRGO2 (ADC_CFGR_EXTSEL_3 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM8 TRGO2. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_TIM15_TRGO (ADC_CFGR_EXTSEL_3 | ADC_CFGR_EXTSEL_2 | \ ADC_CFGR_EXTSEL_1 | ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: TIM15 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_REG_TRIG_EXT_EXTI_LINE11 (ADC_CFGR_EXTSEL_2 | ADC_CFGR_EXTSEL_1 | \ ADC_REG_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group regular conversion trigger from external peripheral: external interrupt line 11. Trigger edge set to rising edge (default setting). */ /** * @} */ /** @defgroup ADC_LL_EC_REG_TRIGGER_EDGE ADC group regular - Trigger edge * @{ */ #define LL_ADC_REG_TRIG_EXT_RISING (ADC_CFGR_EXTEN_0) /*!< ADC group regular conversion trigger polarity set to rising edge */ #define LL_ADC_REG_TRIG_EXT_FALLING (ADC_CFGR_EXTEN_1) /*!< ADC group regular conversion trigger polarity set to falling edge */ #define LL_ADC_REG_TRIG_EXT_RISINGFALLING (ADC_CFGR_EXTEN_1 | ADC_CFGR_EXTEN_0) /*!< ADC group regular conversion trigger polarity set to both rising and falling edges */ /** * @} */ /** @defgroup ADC_LL_EC_REG_CONTINUOUS_MODE ADC group regular - Continuous mode * @{ */ #define LL_ADC_REG_CONV_SINGLE (0x00000000UL) /*!< ADC conversions performed in single mode: one conversion per trigger */ #define LL_ADC_REG_CONV_CONTINUOUS (ADC_CFGR_CONT) /*!< ADC conversions performed in continuous mode: after the first trigger, following conversions launched successively automatically */ /** * @} */ /** @defgroup ADC_LL_EC_REG_DMA_TRANSFER ADC group regular - DMA transfer of ADC conversion data * @{ */ #define LL_ADC_REG_DMA_TRANSFER_NONE (0x00000000UL) /*!< ADC conversions are not transferred by DMA */ #define LL_ADC_REG_DMA_TRANSFER_LIMITED (ADC_CFGR_DMAEN) /*!< ADC conversion data are transferred by DMA in limited mode (one shot mode): DMA transfer requests are stopped when number of DMA data transfers (number of ADC conversions) is reached. This ADC mode is intended to be used with DMA mode non-circular. */ #define LL_ADC_REG_DMA_TRANSFER_UNLIMITED (ADC_CFGR_DMACFG | ADC_CFGR_DMAEN) /*!< ADC conversion data are transferred by DMA, in unlimited mode: DMA transfer requests are unlimited, whatever number of DMA data transferred (number of ADC conversions). This ADC mode is intended to be used with DMA mode circular. */ /** * @} */ #if defined(DFSDM1_Channel0) /** @defgroup ADC_LL_EC_REG_DFSDM_TRANSFER ADC group regular - DFSDM transfer of ADC conversion data * @{ */ #define LL_ADC_REG_DFSDM_TRANSFER_NONE (0x00000000UL) /*!< ADC conversions are not transferred by DFSDM. */ #define LL_ADC_REG_DFSDM_TRANSFER_ENABLE (ADC_CFGR_DFSDMCFG) /*!< ADC conversion data are transferred to DFSDM for post processing. The ADC conversion data format must be 16-bit signed and right aligned, refer to reference manual. DFSDM transfer cannot be used if DMA transfer is enabled. */ /** * @} */ #endif /* ADC_CFGR_DFSDMCFG */ #if defined(ADC_SMPR1_SMPPLUS) /** @defgroup ADC_LL_EC_SAMPLINGTIME_COMMON_CONFIG ADC instance - ADC sampling time common configuration * @{ */ #define LL_ADC_SAMPLINGTIME_COMMON_DEFAULT (0x00000000UL) /*!< ADC sampling time let to default settings. */ #define LL_ADC_SAMPLINGTIME_COMMON_3C5_REPL_2C5 (ADC_SMPR1_SMPPLUS) /*!< ADC additional sampling time 3.5 ADC clock cycles replacing 2.5 ADC clock cycles (this applies to all channels mapped with selection sampling time 2.5 ADC clock cycles, whatever channels mapped on ADC groups regular or injected). */ /** * @} */ #endif /* ADC_SMPR1_SMPPLUS */ /** @defgroup ADC_LL_EC_REG_OVR_DATA_BEHAVIOR ADC group regular - Overrun behavior on conversion data * @{ */ #define LL_ADC_REG_OVR_DATA_PRESERVED (0x00000000UL) /*!< ADC group regular behavior in case of overrun: data preserved */ #define LL_ADC_REG_OVR_DATA_OVERWRITTEN (ADC_CFGR_OVRMOD) /*!< ADC group regular behavior in case of overrun: data overwritten */ /** * @} */ /** @defgroup ADC_LL_EC_REG_SEQ_SCAN_LENGTH ADC group regular - Sequencer scan length * @{ */ #define LL_ADC_REG_SEQ_SCAN_DISABLE (0x00000000UL) /*!< ADC group regular sequencer disable (equivalent to sequencer of 1 rank: ADC conversion on only 1 channel) */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_2RANKS (ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 2 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS (ADC_SQR1_L_1) /*!< ADC group regular sequencer enable with 3 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_4RANKS (ADC_SQR1_L_1 | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 4 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_5RANKS (ADC_SQR1_L_2) /*!< ADC group regular sequencer enable with 5 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_6RANKS (ADC_SQR1_L_2 | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 6 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_7RANKS (ADC_SQR1_L_2 | ADC_SQR1_L_1) /*!< ADC group regular sequencer enable with 7 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_8RANKS (ADC_SQR1_L_2 | ADC_SQR1_L_1 \ | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 8 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_9RANKS (ADC_SQR1_L_3) /*!< ADC group regular sequencer enable with 9 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_10RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 10 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_11RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_1) /*!< ADC group regular sequencer enable with 11 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_12RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_1 \ | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 12 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_13RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_2) /*!< ADC group regular sequencer enable with 13 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_14RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_2 \ | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 14 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_15RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_2 \ | ADC_SQR1_L_1) /*!< ADC group regular sequencerenable with 15 ranks in the sequence */ #define LL_ADC_REG_SEQ_SCAN_ENABLE_16RANKS (ADC_SQR1_L_3 | ADC_SQR1_L_2 \ | ADC_SQR1_L_1 | ADC_SQR1_L_0) /*!< ADC group regular sequencer enable with 16 ranks in the sequence */ /** * @} */ /** @defgroup ADC_LL_EC_REG_SEQ_DISCONT_MODE ADC group regular - Sequencer discontinuous mode * @{ */ #define LL_ADC_REG_SEQ_DISCONT_DISABLE (0x00000000UL) /*!< ADC group regular sequencer discontinuous mode disable */ #define LL_ADC_REG_SEQ_DISCONT_1RANK (ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every rank */ #define LL_ADC_REG_SEQ_DISCONT_2RANKS (ADC_CFGR_DISCNUM_0 | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enabled with sequence interruption every 2 ranks */ #define LL_ADC_REG_SEQ_DISCONT_3RANKS (ADC_CFGR_DISCNUM_1 | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 3 ranks */ #define LL_ADC_REG_SEQ_DISCONT_4RANKS (ADC_CFGR_DISCNUM_1 | ADC_CFGR_DISCNUM_0 \ | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 4 ranks */ #define LL_ADC_REG_SEQ_DISCONT_5RANKS (ADC_CFGR_DISCNUM_2 | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 5 ranks */ #define LL_ADC_REG_SEQ_DISCONT_6RANKS (ADC_CFGR_DISCNUM_2 | ADC_CFGR_DISCNUM_0 \ | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 6 ranks */ #define LL_ADC_REG_SEQ_DISCONT_7RANKS (ADC_CFGR_DISCNUM_2 | ADC_CFGR_DISCNUM_1 \ | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 7 ranks */ #define LL_ADC_REG_SEQ_DISCONT_8RANKS (ADC_CFGR_DISCNUM_2 | ADC_CFGR_DISCNUM_1 \ | ADC_CFGR_DISCNUM_0 | ADC_CFGR_DISCEN) /*!< ADC group regular sequencer discontinuous mode enable with sequence interruption every 8 ranks */ /** * @} */ /** @defgroup ADC_LL_EC_REG_SEQ_RANKS ADC group regular - Sequencer ranks * @{ */ #define LL_ADC_REG_RANK_1 (ADC_SQR1_REGOFFSET | ADC_REG_RANK_1_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 1 */ #define LL_ADC_REG_RANK_2 (ADC_SQR1_REGOFFSET | ADC_REG_RANK_2_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 2 */ #define LL_ADC_REG_RANK_3 (ADC_SQR1_REGOFFSET | ADC_REG_RANK_3_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 3 */ #define LL_ADC_REG_RANK_4 (ADC_SQR1_REGOFFSET | ADC_REG_RANK_4_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 4 */ #define LL_ADC_REG_RANK_5 (ADC_SQR2_REGOFFSET | ADC_REG_RANK_5_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 5 */ #define LL_ADC_REG_RANK_6 (ADC_SQR2_REGOFFSET | ADC_REG_RANK_6_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 6 */ #define LL_ADC_REG_RANK_7 (ADC_SQR2_REGOFFSET | ADC_REG_RANK_7_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 7 */ #define LL_ADC_REG_RANK_8 (ADC_SQR2_REGOFFSET | ADC_REG_RANK_8_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 8 */ #define LL_ADC_REG_RANK_9 (ADC_SQR2_REGOFFSET | ADC_REG_RANK_9_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 9 */ #define LL_ADC_REG_RANK_10 (ADC_SQR3_REGOFFSET | ADC_REG_RANK_10_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 10 */ #define LL_ADC_REG_RANK_11 (ADC_SQR3_REGOFFSET | ADC_REG_RANK_11_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 11 */ #define LL_ADC_REG_RANK_12 (ADC_SQR3_REGOFFSET | ADC_REG_RANK_12_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 12 */ #define LL_ADC_REG_RANK_13 (ADC_SQR3_REGOFFSET | ADC_REG_RANK_13_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 13 */ #define LL_ADC_REG_RANK_14 (ADC_SQR3_REGOFFSET | ADC_REG_RANK_14_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 14 */ #define LL_ADC_REG_RANK_15 (ADC_SQR4_REGOFFSET | ADC_REG_RANK_15_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 15 */ #define LL_ADC_REG_RANK_16 (ADC_SQR4_REGOFFSET | ADC_REG_RANK_16_SQRX_BITOFFSET_POS) /*!< ADC group regular sequencer rank 16 */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_TRIGGER_SOURCE ADC group injected - Trigger source * @{ */ #define LL_ADC_INJ_TRIG_SOFTWARE (0x00000000UL) /*!< ADC group injected conversion trigger internal: SW start. */ #define LL_ADC_INJ_TRIG_EXT_TIM1_TRGO (ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM1 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2 (ADC_JSQR_JEXTSEL_3 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM1 TRGO2. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM1_CH4 (ADC_JSQR_JEXTSEL_0 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM1 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM2_TRGO (ADC_JSQR_JEXTSEL_1 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM2 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM2_CH1 (ADC_JSQR_JEXTSEL_1 | ADC_JSQR_JEXTSEL_0 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM2 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM3_TRGO (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_2 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM3 TRGO. Trigger edge set t rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM3_CH1 (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_2 | \ ADC_JSQR_JEXTSEL_0 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM3_CH3 (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_1 | \ ADC_JSQR_JEXTSEL_0 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 3 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM3_CH4 (ADC_JSQR_JEXTSEL_2 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM4_TRGO (ADC_JSQR_JEXTSEL_2 | ADC_JSQR_JEXTSEL_0 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM4 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM6_TRGO (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_2 | \ ADC_JSQR_JEXTSEL_1 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM6 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM8_CH4 (ADC_JSQR_JEXTSEL_2 | ADC_JSQR_JEXTSEL_1 | \ ADC_JSQR_JEXTSEL_0 | ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM8 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM8_TRGO (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_0 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM8 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2 (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_1 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM8 TRGO2. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_TIM15_TRGO (ADC_JSQR_JEXTSEL_3 | ADC_JSQR_JEXTSEL_2 | \ ADC_JSQR_JEXTSEL_1 | ADC_JSQR_JEXTSEL_0 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: TIM15 TRGO. Trigger edge set to rising edge (default setting). */ #define LL_ADC_INJ_TRIG_EXT_EXTI_LINE15 (ADC_JSQR_JEXTSEL_2 | ADC_JSQR_JEXTSEL_1 | \ ADC_INJ_TRIG_EXT_EDGE_DEFAULT) /*!< ADC group injected conversion trigger from external peripheral: external interrupt line 15. Trigger edge set to rising edge (default setting). */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_TRIGGER_EDGE ADC group injected - Trigger edge * @{ */ #define LL_ADC_INJ_TRIG_EXT_RISING ( ADC_JSQR_JEXTEN_0) /*!< ADC group injected conversion trigger polarity set to rising edge */ #define LL_ADC_INJ_TRIG_EXT_FALLING (ADC_JSQR_JEXTEN_1 ) /*!< ADC group injected conversion trigger polarity set to falling edge */ #define LL_ADC_INJ_TRIG_EXT_RISINGFALLING (ADC_JSQR_JEXTEN_1 | ADC_JSQR_JEXTEN_0) /*!< ADC group injected conversion trigger polarity set to both rising and falling edges */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_TRIG_AUTO ADC group injected - Automatic trigger mode * @{ */ #define LL_ADC_INJ_TRIG_INDEPENDENT (0x00000000UL) /*!< ADC group injected conversion trigger independent. Setting mandatory if ADC group injected injected trigger source is set to an external trigger. */ #define LL_ADC_INJ_TRIG_FROM_GRP_REGULAR (ADC_CFGR_JAUTO) /*!< ADC group injected conversion trigger from ADC group regular. Setting compliant only with group injected trigger source set to SW start, without any further action on ADC group injected conversion start or stop: in this case, ADC group injected is controlled only from ADC group regular. */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_CONTEXT_QUEUE ADC group injected - Context queue mode * @{ */ #define LL_ADC_INJ_QUEUE_2CONTEXTS_LAST_ACTIVE (0x00000000UL) /* Group injected sequence context queue is enabled and can contain up to 2 contexts. When all contexts have been processed, the queue maintains the last context active perpetually. */ #define LL_ADC_INJ_QUEUE_2CONTEXTS_END_EMPTY (ADC_CFGR_JQM) /* Group injected sequence context queue is enabled and can contain up to 2 contexts. When all contexts have been processed, the queue is empty and injected group triggers are disabled. */ #define LL_ADC_INJ_QUEUE_DISABLE (ADC_CFGR_JQDIS) /* Group injected sequence context queue is disabled: only 1 sequence can be configured and is active perpetually. */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_SEQ_SCAN_LENGTH ADC group injected - Sequencer scan length * @{ */ #define LL_ADC_INJ_SEQ_SCAN_DISABLE (0x00000000UL) /*!< ADC group injected sequencer disable (equivalent to sequencer of 1 rank: ADC conversion on only 1 channel) */ #define LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS ( ADC_JSQR_JL_0) /*!< ADC group injected sequencer enable with 2 ranks in the sequence */ #define LL_ADC_INJ_SEQ_SCAN_ENABLE_3RANKS (ADC_JSQR_JL_1 ) /*!< ADC group injected sequencer enable with 3 ranks in the sequence */ #define LL_ADC_INJ_SEQ_SCAN_ENABLE_4RANKS (ADC_JSQR_JL_1 | ADC_JSQR_JL_0) /*!< ADC group injected sequencer enable with 4 ranks in the sequence */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_SEQ_DISCONT_MODE ADC group injected - Sequencer discontinuous mode * @{ */ #define LL_ADC_INJ_SEQ_DISCONT_DISABLE (0x00000000UL) /*!< ADC group injected sequencer discontinuous mode disable */ #define LL_ADC_INJ_SEQ_DISCONT_1RANK (ADC_CFGR_JDISCEN) /*!< ADC group injected sequencer discontinuous mode enable with sequence interruption every rank */ /** * @} */ /** @defgroup ADC_LL_EC_INJ_SEQ_RANKS ADC group injected - Sequencer ranks * @{ */ #define LL_ADC_INJ_RANK_1 (ADC_JDR1_REGOFFSET \ | ADC_INJ_RANK_1_JSQR_BITOFFSET_POS) /*!< ADC group inj. sequencer rank 1 */ #define LL_ADC_INJ_RANK_2 (ADC_JDR2_REGOFFSET \ | ADC_INJ_RANK_2_JSQR_BITOFFSET_POS) /*!< ADC group inj. sequencer rank 2 */ #define LL_ADC_INJ_RANK_3 (ADC_JDR3_REGOFFSET \ | ADC_INJ_RANK_3_JSQR_BITOFFSET_POS) /*!< ADC group inj. sequencer rank 3 */ #define LL_ADC_INJ_RANK_4 (ADC_JDR4_REGOFFSET \ | ADC_INJ_RANK_4_JSQR_BITOFFSET_POS) /*!< ADC group inj. sequencer rank 4 */ /** * @} */ /** @defgroup ADC_LL_EC_CHANNEL_SAMPLINGTIME Channel - Sampling time * @{ */ #define LL_ADC_SAMPLINGTIME_2CYCLES_5 (0x00000000UL) /*!< Sampling time 2.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_6CYCLES_5 (ADC_SMPR2_SMP10_0) /*!< Sampling time 6.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_12CYCLES_5 (ADC_SMPR2_SMP10_1) /*!< Sampling time 12.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_24CYCLES_5 (ADC_SMPR2_SMP10_1 \ | ADC_SMPR2_SMP10_0) /*!< Sampling time 24.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_47CYCLES_5 (ADC_SMPR2_SMP10_2) /*!< Sampling time 47.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_92CYCLES_5 (ADC_SMPR2_SMP10_2 \ | ADC_SMPR2_SMP10_0) /*!< Sampling time 92.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_247CYCLES_5 (ADC_SMPR2_SMP10_2 \ | ADC_SMPR2_SMP10_1) /*!< Sampling time 247.5 ADC clock cycles */ #define LL_ADC_SAMPLINGTIME_640CYCLES_5 (ADC_SMPR2_SMP10_2 \ | ADC_SMPR2_SMP10_1 \ | ADC_SMPR2_SMP10_0) /*!< Sampling time 640.5 ADC clock cycles */ /** * @} */ /** @defgroup ADC_LL_EC_CHANNEL_SINGLE_DIFF_ENDING Channel - Single or differential ending * @{ */ #define LL_ADC_SINGLE_ENDED ( ADC_CALFACT_CALFACT_S) /*!< ADC channel ending set to single ended (literal also used to set calibration mode) */ #define LL_ADC_DIFFERENTIAL_ENDED (ADC_CR_ADCALDIF | ADC_CALFACT_CALFACT_D) /*!< ADC channel ending set to differential (literal also used to set calibration mode) */ #define LL_ADC_BOTH_SINGLE_DIFF_ENDED (LL_ADC_SINGLE_ENDED | LL_ADC_DIFFERENTIAL_ENDED) /*!< ADC channel ending set to both single ended and differential (literal used only to set calibration factors) */ /** * @} */ /** @defgroup ADC_LL_EC_AWD_NUMBER Analog watchdog - Analog watchdog number * @{ */ #define LL_ADC_AWD1 (ADC_AWD_CR1_CHANNEL_MASK \ | ADC_AWD_CR1_REGOFFSET) /*!< ADC analog watchdog number 1 */ #define LL_ADC_AWD2 (ADC_AWD_CR23_CHANNEL_MASK \ | ADC_AWD_CR2_REGOFFSET) /*!< ADC analog watchdog number 2 */ #define LL_ADC_AWD3 (ADC_AWD_CR23_CHANNEL_MASK \ | ADC_AWD_CR3_REGOFFSET) /*!< ADC analog watchdog number 3 */ /** * @} */ /** @defgroup ADC_LL_EC_AWD_CHANNELS Analog watchdog - Monitored channels * @{ */ #define LL_ADC_AWD_DISABLE (0x00000000UL) /*!< ADC analog watchdog monitoring disabled */ #define LL_ADC_AWD_ALL_CHANNELS_REG (ADC_AWD_CR23_CHANNEL_MASK \ | ADC_CFGR_AWD1EN) /*!< ADC analog watchdog monitoring of all channels, converted by group regular only */ #define LL_ADC_AWD_ALL_CHANNELS_INJ (ADC_AWD_CR23_CHANNEL_MASK \ | ADC_CFGR_JAWD1EN) /*!< ADC analog watchdog monitoring of all channels, converted by group injected only */ #define LL_ADC_AWD_ALL_CHANNELS_REG_INJ (ADC_AWD_CR23_CHANNEL_MASK \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN) /*!< ADC analog watchdog monitoring of all channels, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_0_REG ((LL_ADC_CHANNEL_0 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN0, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_0_INJ ((LL_ADC_CHANNEL_0 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN0, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_0_REG_INJ ((LL_ADC_CHANNEL_0 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN0, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_1_REG ((LL_ADC_CHANNEL_1 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN1, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_1_INJ ((LL_ADC_CHANNEL_1 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN1, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_1_REG_INJ ((LL_ADC_CHANNEL_1 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN1, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_2_REG ((LL_ADC_CHANNEL_2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN2, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_2_INJ ((LL_ADC_CHANNEL_2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN2, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_2_REG_INJ ((LL_ADC_CHANNEL_2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN2, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_3_REG ((LL_ADC_CHANNEL_3 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN3, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_3_INJ ((LL_ADC_CHANNEL_3 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN3, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_3_REG_INJ ((LL_ADC_CHANNEL_3 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN3, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_4_REG ((LL_ADC_CHANNEL_4 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN4, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_4_INJ ((LL_ADC_CHANNEL_4 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN4, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_4_REG_INJ ((LL_ADC_CHANNEL_4 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN4, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_5_REG ((LL_ADC_CHANNEL_5 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN5, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_5_INJ ((LL_ADC_CHANNEL_5 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN5, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_5_REG_INJ ((LL_ADC_CHANNEL_5 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN5, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_6_REG ((LL_ADC_CHANNEL_6 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN6, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_6_INJ ((LL_ADC_CHANNEL_6 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN6, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_6_REG_INJ ((LL_ADC_CHANNEL_6 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN6, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_7_REG ((LL_ADC_CHANNEL_7 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN7, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_7_INJ ((LL_ADC_CHANNEL_7 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN7, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_7_REG_INJ ((LL_ADC_CHANNEL_7 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN7, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_8_REG ((LL_ADC_CHANNEL_8 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN8, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_8_INJ ((LL_ADC_CHANNEL_8 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN8, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_8_REG_INJ ((LL_ADC_CHANNEL_8 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN8, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_9_REG ((LL_ADC_CHANNEL_9 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN9, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_9_INJ ((LL_ADC_CHANNEL_9 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN9, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_9_REG_INJ ((LL_ADC_CHANNEL_9 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN9, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_10_REG ((LL_ADC_CHANNEL_10 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN10, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_10_INJ ((LL_ADC_CHANNEL_10 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN10, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_10_REG_INJ ((LL_ADC_CHANNEL_10 & ADC_CHANNEL_ID_MASK)\ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN10, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_11_REG ((LL_ADC_CHANNEL_11 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN11, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_11_INJ ((LL_ADC_CHANNEL_11 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN11, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_11_REG_INJ ((LL_ADC_CHANNEL_11 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN11, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_12_REG ((LL_ADC_CHANNEL_12 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN12, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_12_INJ ((LL_ADC_CHANNEL_12 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN12, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_12_REG_INJ ((LL_ADC_CHANNEL_12 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN12, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_13_REG ((LL_ADC_CHANNEL_13 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN13, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_13_INJ ((LL_ADC_CHANNEL_13 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN13, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_13_REG_INJ ((LL_ADC_CHANNEL_13 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN13, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_14_REG ((LL_ADC_CHANNEL_14 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN14, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_14_INJ ((LL_ADC_CHANNEL_14 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN14, converted by group only */ #define LL_ADC_AWD_CHANNEL_14_REG_INJ ((LL_ADC_CHANNEL_14 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN14, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_15_REG ((LL_ADC_CHANNEL_15 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring monitoring of ADC channel ADCx_IN15, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_15_INJ ((LL_ADC_CHANNEL_15 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN15, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_15_REG_INJ ((LL_ADC_CHANNEL_15 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN15, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_16_REG ((LL_ADC_CHANNEL_16 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN16, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_16_INJ ((LL_ADC_CHANNEL_16 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN16, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_16_REG_INJ ((LL_ADC_CHANNEL_16 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN16, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_17_REG ((LL_ADC_CHANNEL_17 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN17, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_17_INJ ((LL_ADC_CHANNEL_17 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN17, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_17_REG_INJ ((LL_ADC_CHANNEL_17 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN17, converted by either group regular or injected */ #define LL_ADC_AWD_CHANNEL_18_REG ((LL_ADC_CHANNEL_18 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN18, converted by group regular only */ #define LL_ADC_AWD_CHANNEL_18_INJ ((LL_ADC_CHANNEL_18 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN18, converted by group injected only */ #define LL_ADC_AWD_CHANNEL_18_REG_INJ ((LL_ADC_CHANNEL_18 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC channel ADCx_IN18, converted by either group regular or injected */ #define LL_ADC_AWD_CH_VREFINT_REG ((LL_ADC_CHANNEL_VREFINT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to VrefInt: Internal voltage reference, channel specific to ADC1, converted by group regular only */ #define LL_ADC_AWD_CH_VREFINT_INJ ((LL_ADC_CHANNEL_VREFINT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to VrefInt: Internal voltage reference, channel specific to ADC1, converted by group injected only */ #define LL_ADC_AWD_CH_VREFINT_REG_INJ ((LL_ADC_CHANNEL_VREFINT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to VrefInt: Internal voltage reference, channel specific to ADC1, converted by either group regular or injected */ #define LL_ADC_AWD_CH_TEMPSENSOR_REG ((LL_ADC_CHANNEL_TEMPSENSOR & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to internal temperature sensor, channel specific to ADC1, converted by group regular only */ #define LL_ADC_AWD_CH_TEMPSENSOR_INJ ((LL_ADC_CHANNEL_TEMPSENSOR & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to internal temperature sensor, channel specific to ADC1, converted by group injected only */ #define LL_ADC_AWD_CH_TEMPSENSOR_REG_INJ ((LL_ADC_CHANNEL_TEMPSENSOR & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to internal temperature sensor, channel specific to ADC1, converted by either group regular or injected */ #define LL_ADC_AWD_CH_VBAT_REG ((LL_ADC_CHANNEL_VBAT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to Vbat/3: Vbat voltage through a divider ladder of factor 1/3 to have channel voltage always below Vdda, channel specific to ADC1, converted by group regular only */ #define LL_ADC_AWD_CH_VBAT_INJ ((LL_ADC_CHANNEL_VBAT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to Vbat/3: Vbat voltage through a divider ladder of factor 1/3 to have channel voltage always below Vdda, channel specific to ADC1, converted by group injected only */ #define LL_ADC_AWD_CH_VBAT_REG_INJ ((LL_ADC_CHANNEL_VBAT & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to Vbat/3: Vbat voltage through a divider ladder of factor 1/3 to have channel voltage always below Vdda, channel specific to ADC1 */ #define LL_ADC_AWD_CH_DAC1CH1_ADC2_REG ((LL_ADC_CHANNEL_DAC1CH1_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 1, channel specific to ADC2, converted by group regular only */ #define LL_ADC_AWD_CH_DAC1CH1_ADC2_INJ ((LL_ADC_CHANNEL_DAC1CH1_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 1, channel specific to ADC2, converted by group injected only */ #define LL_ADC_AWD_CH_DAC1CH1_ADC2_REG_INJ ((LL_ADC_CHANNEL_DAC1CH1_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 1, channel specific to ADC2, converted by either group regular or injected */ #define LL_ADC_AWD_CH_DAC1CH2_ADC2_REG ((LL_ADC_CHANNEL_DAC1CH2_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 2, channel specific to ADC2, converted by group regular only */ #define LL_ADC_AWD_CH_DAC1CH2_ADC2_INJ ((LL_ADC_CHANNEL_DAC1CH2_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 2, channel specific to ADC2, converted by group injected only */ #define LL_ADC_AWD_CH_DAC1CH2_ADC2_REG_INJ ((LL_ADC_CHANNEL_DAC1CH2_ADC2 & ADC_CHANNEL_ID_MASK) \ | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN \ | ADC_CFGR_AWD1SGL) /*!< ADC analog watchdog monitoring of ADC internal channel connected to DAC1 channel 2, channel specific to ADC2, converted by either group regular or injected */ /** * @} */ /** @defgroup ADC_LL_EC_AWD_THRESHOLDS Analog watchdog - Thresholds * @{ */ #define LL_ADC_AWD_THRESHOLD_HIGH (ADC_TR1_HT1) /*!< ADC analog watchdog threshold high */ #define LL_ADC_AWD_THRESHOLD_LOW (ADC_TR1_LT1) /*!< ADC analog watchdog threshold low */ #define LL_ADC_AWD_THRESHOLDS_HIGH_LOW (ADC_TR1_HT1 \ | ADC_TR1_LT1) /*!< ADC analog watchdog both thresholds high and low concatenated into the same data */ /** * @} */ /** @defgroup ADC_LL_EC_OVS_SCOPE Oversampling - Oversampling scope * @{ */ #define LL_ADC_OVS_DISABLE (0x00000000UL) /*!< ADC oversampling disabled. */ #define LL_ADC_OVS_GRP_REGULAR_CONTINUED (ADC_CFGR2_ROVSE) /*!< ADC oversampling on conversions of ADC group regular. If group injected interrupts group regular: when ADC group injected is triggered, the oversampling on ADC group regular is temporary stopped and continued afterwards. */ #define LL_ADC_OVS_GRP_REGULAR_RESUMED (ADC_CFGR2_ROVSM | ADC_CFGR2_ROVSE) /*!< ADC oversampling on conversions of ADC group regular. If group injected interrupts group regular: when ADC group injected is triggered, the oversampling on ADC group regular is resumed from start (oversampler buffer reset). */ #define LL_ADC_OVS_GRP_INJECTED (ADC_CFGR2_JOVSE) /*!< ADC oversampling on conversions of ADC group injected. */ #define LL_ADC_OVS_GRP_INJ_REG_RESUMED (ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE) /*!< ADC oversampling on conversions of both ADC groups regular and injected. If group injected interrupting group regular: when ADC group injected is triggered, the oversampling on ADC group regular is resumed from start (oversampler buffer reset). */ /** * @} */ /** @defgroup ADC_LL_EC_OVS_DISCONT_MODE Oversampling - Discontinuous mode * @{ */ #define LL_ADC_OVS_REG_CONT (0x00000000UL) /*!< ADC oversampling discontinuous mode: continuous mode (all conversions of oversampling ratio are done from 1 trigger) */ #define LL_ADC_OVS_REG_DISCONT (ADC_CFGR2_TROVS) /*!< ADC oversampling discontinuous mode: discontinuous mode (each conversion of oversampling ratio needs a trigger) */ /** * @} */ /** @defgroup ADC_LL_EC_OVS_RATIO Oversampling - Ratio * @{ */ #define LL_ADC_OVS_RATIO_2 (0x00000000UL) /*!< ADC oversampling ratio of 2 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_4 (ADC_CFGR2_OVSR_0) /*!< ADC oversampling ratio of 4 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_8 (ADC_CFGR2_OVSR_1) /*!< ADC oversampling ratio of 8 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_16 (ADC_CFGR2_OVSR_1 | ADC_CFGR2_OVSR_0) /*!< ADC oversampling ratio of 16 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_32 (ADC_CFGR2_OVSR_2) /*!< ADC oversampling ratio of 32 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_64 (ADC_CFGR2_OVSR_2 | ADC_CFGR2_OVSR_0) /*!< ADC oversampling ratio of 64 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_128 (ADC_CFGR2_OVSR_2 | ADC_CFGR2_OVSR_1) /*!< ADC oversampling ratio of 128 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ #define LL_ADC_OVS_RATIO_256 (ADC_CFGR2_OVSR_2 | ADC_CFGR2_OVSR_1 \ | ADC_CFGR2_OVSR_0) /*!< ADC oversampling ratio of 256 (sum of conversions data computed to result as oversampling conversion data (before potential shift) */ /** * @} */ /** @defgroup ADC_LL_EC_OVS_SHIFT Oversampling - Data right shift * @{ */ #define LL_ADC_OVS_SHIFT_NONE (0x00000000UL) /*!< ADC oversampling no shift (sum of the ADC conversions data is not divided to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_1 (ADC_CFGR2_OVSS_0) /*!< ADC oversampling right shift of 1 (sum of the ADC conversions data (after OVS ratio) is divided by 2 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_2 (ADC_CFGR2_OVSS_1) /*!< ADC oversampling right shift of 2 (sum of the ADC conversions data (after OVS ratio) is divided by 4 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_3 (ADC_CFGR2_OVSS_1 | ADC_CFGR2_OVSS_0) /*!< ADC oversampling right shift of 3 (sum of the ADC conversions data (after OVS ratio) is divided by 8 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_4 (ADC_CFGR2_OVSS_2) /*!< ADC oversampling right shift of 4 (sum of the ADC conversions data (after OVS ratio) is divided by 16 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_5 (ADC_CFGR2_OVSS_2 | ADC_CFGR2_OVSS_0) /*!< ADC oversampling right shift of 5 (sum of the ADC conversions data (after OVS ratio) is divided by 32 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_6 (ADC_CFGR2_OVSS_2 | ADC_CFGR2_OVSS_1) /*!< ADC oversampling right shift of 6 (sum of the ADC conversions data (after OVS ratio) is divided by 64 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_7 (ADC_CFGR2_OVSS_2 | ADC_CFGR2_OVSS_1 \ | ADC_CFGR2_OVSS_0) /*!< ADC oversampling right shift of 7 (sum of the ADC conversions data (after OVS ratio) is divided by 128 to result as oversampling conversion data) */ #define LL_ADC_OVS_SHIFT_RIGHT_8 (ADC_CFGR2_OVSS_3) /*!< ADC oversampling right shift of 8 (sum of the ADC conversions data (after OVS ratio) is divided by 256 to result as oversampling conversion data) */ /** * @} */ #if defined(ADC_MULTIMODE_SUPPORT) /** @defgroup ADC_LL_EC_MULTI_MODE Multimode - Mode * @{ */ #define LL_ADC_MULTI_INDEPENDENT (0x00000000UL) /*!< ADC dual mode disabled (ADC independent mode) */ #define LL_ADC_MULTI_DUAL_REG_SIMULT (ADC_CCR_DUAL_2 | ADC_CCR_DUAL_1) /*!< ADC dual mode enabled: group regular simultaneous */ #define LL_ADC_MULTI_DUAL_REG_INTERL (ADC_CCR_DUAL_2 | ADC_CCR_DUAL_1 \ | ADC_CCR_DUAL_0) /*!< ADC dual mode enabled: Combined group regular interleaved */ #define LL_ADC_MULTI_DUAL_INJ_SIMULT (ADC_CCR_DUAL_2 | ADC_CCR_DUAL_0) /*!< ADC dual mode enabled: group injected simultaneous */ #define LL_ADC_MULTI_DUAL_INJ_ALTERN (ADC_CCR_DUAL_3 | ADC_CCR_DUAL_0) /*!< ADC dual mode enabled: group injected alternate trigger. Works only with external triggers (not SW start) */ #define LL_ADC_MULTI_DUAL_REG_SIM_INJ_SIM (ADC_CCR_DUAL_0) /*!< ADC dual mode enabled: Combined group regular simultaneous + group injected simultaneous */ #define LL_ADC_MULTI_DUAL_REG_SIM_INJ_ALT (ADC_CCR_DUAL_1) /*!< ADC dual mode enabled: Combined group regular simultaneous + group injected alternate trigger */ #define LL_ADC_MULTI_DUAL_REG_INT_INJ_SIM (ADC_CCR_DUAL_1 | ADC_CCR_DUAL_0) /*!< ADC dual mode enabled: Combined group regular interleaved + group injected simultaneous */ /** * @} */ /** @defgroup ADC_LL_EC_MULTI_DMA_TRANSFER Multimode - DMA transfer * @{ */ #define LL_ADC_MULTI_REG_DMA_EACH_ADC (0x00000000UL) /*!< ADC multimode group regular conversions are transferred by DMA: each ADC uses its own DMA channel, with its individual DMA transfer settings */ #define LL_ADC_MULTI_REG_DMA_LIMIT_RES12_10B (ADC_CCR_MDMA_1) /*!< ADC multimode group regular conversions are transferred by DMA, one DMA channel for both ADC(DMA of ADC master), in limited mode (one shot mode): DMA transfer requests are stopped when number of DMA data transfers (number of ADC conversions) is reached. This ADC mode is intended to be used with DMA mode non-circular. Setting for ADC resolution of 12 and 10 bits */ #define LL_ADC_MULTI_REG_DMA_LIMIT_RES8_6B (ADC_CCR_MDMA_1 | ADC_CCR_MDMA_0) /*!< ADC multimode group regular conversions are transferred by DMA, one DMA channel for both ADC(DMA of ADC master), in limited mode (one shot mode): DMA transfer requests are stopped when number of DMA data transfers (number of ADC conversions) is reached. This ADC mode is intended to be used with DMA mode non-circular. Setting for ADC resolution of 8 and 6 bits */ #define LL_ADC_MULTI_REG_DMA_UNLMT_RES12_10B (ADC_CCR_DMACFG | ADC_CCR_MDMA_1) /*!< ADC multimode group regular conversions are transferred by DMA, one DMA channel for both ADC(DMA of ADC master), in unlimited mode: DMA transfer requests are unlimited, whatever number of DMA data transferred (number of ADC conversions). This ADC mode is intended to be used with DMA mode circular. Setting for ADC resolution of 12 and 10 bits */ #define LL_ADC_MULTI_REG_DMA_UNLMT_RES8_6B (ADC_CCR_DMACFG | ADC_CCR_MDMA_1 \ | ADC_CCR_MDMA_0) /*!< ADC multimode group regular conversions are transferred by DMA, one DMA channel for both ADC (DMA of ADC master), in unlimited mode: DMA transfer requests are unlimited, whatever number of DMA data transferred (number of ADC conversions). This ADC mode is intended to be used with DMA mode circular. Setting for ADC resolution of 8 and 6 bits */ /** * @} */ /** @defgroup ADC_LL_EC_MULTI_TWOSMP_DELAY Multimode - Delay between two sampling phases * @{ */ #define LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE (0x00000000UL) /*!< ADC multimode delay between two sampling phases: 1 ADC clock cycle */ #define LL_ADC_MULTI_TWOSMP_DELAY_2CYCLES (ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 2 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_3CYCLES (ADC_CCR_DELAY_1) /*!< ADC multimode delay between two sampling phases: 3 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES (ADC_CCR_DELAY_1 | ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 4 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES (ADC_CCR_DELAY_2) /*!< ADC multimode delay between two sampling phases: 5 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES (ADC_CCR_DELAY_2 | ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 6 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_7CYCLES (ADC_CCR_DELAY_2 | ADC_CCR_DELAY_1) /*!< ADC multimode delay between two sampling phases: 7 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_8CYCLES (ADC_CCR_DELAY_2 | ADC_CCR_DELAY_1 \ | ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 8 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_9CYCLES (ADC_CCR_DELAY_3) /*!< ADC multimode delay between two sampling phases: 9 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_10CYCLES (ADC_CCR_DELAY_3 | ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 10 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_11CYCLES (ADC_CCR_DELAY_3 | ADC_CCR_DELAY_1) /*!< ADC multimode delay between two sampling phases: 11 ADC clock cycles */ #define LL_ADC_MULTI_TWOSMP_DELAY_12CYCLES (ADC_CCR_DELAY_3 | ADC_CCR_DELAY_1 \ | ADC_CCR_DELAY_0) /*!< ADC multimode delay between two sampling phases: 12 ADC clock cycles */ /** * @} */ /** @defgroup ADC_LL_EC_MULTI_MASTER_SLAVE Multimode - ADC master or slave * @{ */ #define LL_ADC_MULTI_MASTER (ADC_CDR_RDATA_MST) /*!< In multimode, selection among several ADC instances: ADC master */ #define LL_ADC_MULTI_SLAVE (ADC_CDR_RDATA_SLV) /*!< In multimode, selection among several ADC instances: ADC slave */ #define LL_ADC_MULTI_MASTER_SLAVE (ADC_CDR_RDATA_SLV \ | ADC_CDR_RDATA_MST) /*!< In multimode, selection among several ADC instances: both ADC master and ADC slave */ /** * @} */ #endif /* ADC_MULTIMODE_SUPPORT */ /** @defgroup ADC_LL_EC_HELPER_MACRO Definitions of constants used by helper macro * @{ */ #define LL_ADC_TEMPERATURE_CALC_ERROR ((int16_t)0x7FFF) /* Temperature calculation error using helper macro @ref __LL_ADC_CALC_TEMPERATURE(), due to issue on calibration parameters. This value is coded on 16 bits (to fit on signed word or double word) and corresponds to an inconsistent temperature value. */ /** * @} */ /** @defgroup ADC_LL_EC_HW_DELAYS Definitions of ADC hardware constraints delays * @note Only ADC peripheral HW delays are defined in ADC LL driver driver, * not timeout values. * For details on delays values, refer to descriptions in source code * above each literal definition. * @{ */ /* Note: Only ADC peripheral HW delays are defined in ADC LL driver driver, */ /* not timeout values. */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Indications for estimation of ADC timeout delays, for this */ /* STM32 series: */ /* - ADC calibration time: maximum delay is 112/fADC. */ /* (refer to device datasheet, parameter "tCAL") */ /* - ADC enable time: maximum delay is 1 conversion cycle. */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: duration depending on ADC clock and ADC */ /* configuration. */ /* (refer to device reference manual, section "Timing") */ /* Delay for ADC stabilization time (ADC voltage regulator start-up time) */ /* Delay set to maximum value (refer to device datasheet, */ /* parameter "tADCVREG_STUP"). */ /* Unit: us */ #define LL_ADC_DELAY_INTERNAL_REGUL_STAB_US ( 20UL) /*!< Delay for ADC stabilization time (ADC voltage regulator start-up time) */ /* Delay for internal voltage reference stabilization time. */ /* Delay set to maximum value (refer to device datasheet, */ /* parameter "tstart_vrefint"). */ /* Unit: us */ #define LL_ADC_DELAY_VREFINT_STAB_US ( 12UL) /*!< Delay for internal voltage reference stabilization time */ /* Delay for temperature sensor stabilization time. */ /* Literal set to maximum value (refer to device datasheet, */ /* parameter "tSTART"). */ /* Unit: us */ #define LL_ADC_DELAY_TEMPSENSOR_STAB_US (120UL) /*!< Delay for temperature sensor stabilization time */ #define LL_ADC_DELAY_TEMPSENSOR_BUFFER_STAB_US ( 15UL) /*!< Delay for temperature sensor buffer stabilization time (starting from ADC enable, refer to @ref LL_ADC_Enable()) */ /* Delay required between ADC end of calibration and ADC enable. */ /* Note: On this STM32 series, a minimum number of ADC clock cycles */ /* are required between ADC end of calibration and ADC enable. */ /* Wait time can be computed in user application by waiting for the */ /* equivalent number of CPU cycles, by taking into account */ /* ratio of CPU clock versus ADC clock prescalers. */ /* Unit: ADC clock cycles. */ #define LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES ( 4UL) /*!< Delay required between ADC end of calibration and ADC enable */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup ADC_LL_Exported_Macros ADC Exported Macros * @{ */ /** @defgroup ADC_LL_EM_WRITE_READ Common write and read registers Macros * @{ */ /** * @brief Write a value in ADC register * @param __INSTANCE__ ADC Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_ADC_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in ADC register * @param __INSTANCE__ ADC Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_ADC_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** @defgroup ADC_LL_EM_HELPER_MACRO ADC helper macro * @{ */ /** * @brief Helper macro to get ADC channel number in decimal format * from literals LL_ADC_CHANNEL_x. * @note Example: * __LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_CHANNEL_4) * will return decimal number "4". * @note The input can be a value from functions where a channel * number is returned, either defined with number * or with bitfield (only one bit must be set). * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval Value between Min_Data=0 and Max_Data=18 */ #define __LL_ADC_CHANNEL_TO_DECIMAL_NB(__CHANNEL__) \ ((((__CHANNEL__) & ADC_CHANNEL_ID_BITFIELD_MASK) == 0UL) ? \ ( \ ((__CHANNEL__) & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS \ ) \ : \ ( \ (uint32_t)POSITION_VAL((__CHANNEL__)) \ ) \ ) /** * @brief Helper macro to get ADC channel in literal format LL_ADC_CHANNEL_x * from number in decimal format. * @note Example: * __LL_ADC_DECIMAL_NB_TO_CHANNEL(4) * will return a data equivalent to "LL_ADC_CHANNEL_4". * @param __DECIMAL_NB__ Value between Min_Data=0 and Max_Data=18 * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 (7) * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT (1) * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR (4) * @arg @ref LL_ADC_CHANNEL_VBAT (4) * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to * 4.21 Ms/s)).\n * (1, 2, 3, 4) For ADC channel read back from ADC register, * comparison with internal channel parameter to be done * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). */ #define __LL_ADC_DECIMAL_NB_TO_CHANNEL(__DECIMAL_NB__) \ (((__DECIMAL_NB__) <= 9UL) ? \ ( \ ((__DECIMAL_NB__) << ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) | \ (ADC_AWD2CR_AWD2CH_0 << (__DECIMAL_NB__)) | \ (ADC_SMPR1_REGOFFSET | (((3UL * (__DECIMAL_NB__))) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) \ ) \ : \ ( \ ((__DECIMAL_NB__) << ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) | \ (ADC_AWD2CR_AWD2CH_0 << (__DECIMAL_NB__)) | \ (ADC_SMPR2_REGOFFSET | (((3UL * ((__DECIMAL_NB__) - 10UL))) << ADC_CHANNEL_SMPx_BITOFFSET_POS)) \ ) \ ) /** * @brief Helper macro to determine whether the selected channel * corresponds to literal definitions of driver. * @note The different literal definitions of ADC channels are: * - ADC internal channel: * LL_ADC_CHANNEL_VREFINT, LL_ADC_CHANNEL_TEMPSENSOR, ... * - ADC external channel (channel connected to a GPIO pin): * LL_ADC_CHANNEL_1, LL_ADC_CHANNEL_2, ... * @note The channel parameter must be a value defined from literal * definition of a ADC internal channel (LL_ADC_CHANNEL_VREFINT, * LL_ADC_CHANNEL_TEMPSENSOR, ...), * ADC external channel (LL_ADC_CHANNEL_1, LL_ADC_CHANNEL_2, ...), * must not be a value from functions where a channel number is * returned from ADC registers, * because internal and external channels share the same channel * number in ADC registers. The differentiation is made only with * parameters definitions of driver. * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval Value "0" if the channel corresponds to a parameter definition of a ADC external channel (channel connected to a GPIO pin). * Value "1" if the channel corresponds to a parameter definition of a ADC internal channel. */ #define __LL_ADC_IS_CHANNEL_INTERNAL(__CHANNEL__) \ (((__CHANNEL__) & ADC_CHANNEL_ID_INTERNAL_CH_MASK) != 0UL) /** * @brief Helper macro to convert a channel defined from parameter * definition of a ADC internal channel (LL_ADC_CHANNEL_VREFINT, * LL_ADC_CHANNEL_TEMPSENSOR, ...), * to its equivalent parameter definition of a ADC external channel * (LL_ADC_CHANNEL_1, LL_ADC_CHANNEL_2, ...). * @note The channel parameter can be, additionally to a value * defined from parameter definition of a ADC internal channel * (LL_ADC_CHANNEL_VREFINT, LL_ADC_CHANNEL_TEMPSENSOR, ...), * a value defined from parameter definition of * ADC external channel (LL_ADC_CHANNEL_1, LL_ADC_CHANNEL_2, ...) * or a value from functions where a channel number is returned * from ADC registers. * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 * @arg @ref LL_ADC_CHANNEL_2 * @arg @ref LL_ADC_CHANNEL_3 * @arg @ref LL_ADC_CHANNEL_4 * @arg @ref LL_ADC_CHANNEL_5 * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 */ #define __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(__CHANNEL__) \ ((__CHANNEL__) & ~ADC_CHANNEL_ID_INTERNAL_CH_MASK) /** * @brief Helper macro to determine whether the internal channel * selected is available on the ADC instance selected. * @note The channel parameter must be a value defined from parameter * definition of a ADC internal channel (LL_ADC_CHANNEL_VREFINT, * LL_ADC_CHANNEL_TEMPSENSOR, ...), * must not be a value defined from parameter definition of * ADC external channel (LL_ADC_CHANNEL_1, LL_ADC_CHANNEL_2, ...) * or a value from functions where a channel number is * returned from ADC registers, * because internal and external channels share the same channel * number in ADC registers. The differentiation is made only with * parameters definitions of driver. * @param __ADC_INSTANCE__ ADC instance * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 * @retval Value "0" if the internal channel selected is not available on the ADC instance selected. * Value "1" if the internal channel selected is available on the ADC instance selected. */ #define __LL_ADC_IS_CHANNEL_INTERNAL_AVAILABLE(__ADC_INSTANCE__, __CHANNEL__) \ (((__ADC_INSTANCE__) == ADC1) ? \ ( \ ((__CHANNEL__) == LL_ADC_CHANNEL_VREFINT) || \ ((__CHANNEL__) == LL_ADC_CHANNEL_TEMPSENSOR) || \ ((__CHANNEL__) == LL_ADC_CHANNEL_VBAT) \ ) \ : \ ((__ADC_INSTANCE__) == ADC2) ? \ ( \ ((__CHANNEL__) == LL_ADC_CHANNEL_DAC1CH1_ADC2) || \ ((__CHANNEL__) == LL_ADC_CHANNEL_DAC1CH2_ADC2) \ ) \ : \ (0UL) \ ) /** * @brief Helper macro to define ADC analog watchdog parameter: * define a single channel to monitor with analog watchdog * from sequencer channel and groups definition. * @note To be used with function @ref LL_ADC_SetAnalogWDMonitChannels(). * Example: * LL_ADC_SetAnalogWDMonitChannels( * ADC1, LL_ADC_AWD1, * __LL_ADC_ANALOGWD_CHANNEL_GROUP(LL_ADC_CHANNEL4, LL_ADC_GROUP_REGULAR)) * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 (7) * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT (1) * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR (4) * @arg @ref LL_ADC_CHANNEL_VBAT (4) * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to * 4.21 Ms/s)).\n * (1, 2, 3, 4) For ADC channel read back from ADC register, * comparison with internal channel parameter to be done * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). * @param __GROUP__ This parameter can be one of the following values: * @arg @ref LL_ADC_GROUP_REGULAR * @arg @ref LL_ADC_GROUP_INJECTED * @arg @ref LL_ADC_GROUP_REGULAR_INJECTED * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_AWD_DISABLE * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_INJ (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_0_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_1_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_2_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_3_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_4_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_5_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_6_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_7_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_8_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_9_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_10_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_11_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_12_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_13_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_14_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_15_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_16_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_17_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_18_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_REG_INJ * @arg @ref LL_ADC_AWD_CH_VREFINT_REG (0) * @arg @ref LL_ADC_AWD_CH_VREFINT_INJ (0) * @arg @ref LL_ADC_AWD_CH_VREFINT_REG_INJ * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_REG (0) * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_INJ (0) * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_REG_INJ * @arg @ref LL_ADC_AWD_CH_VBAT_REG (0) * @arg @ref LL_ADC_AWD_CH_VBAT_INJ (0) * @arg @ref LL_ADC_AWD_CH_VBAT_REG_INJ * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_REG (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_INJ (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_REG_INJ (1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_REG (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_INJ (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_REG_INJ (1) * * (0) On STM32L5, parameter available only on analog watchdog number: AWD1.\n * (1) On STM32L5, parameter available only on ADC instance: ADC2. */ #define __LL_ADC_ANALOGWD_CHANNEL_GROUP(__CHANNEL__, __GROUP__) \ (((__GROUP__) == LL_ADC_GROUP_REGULAR) \ ? (((__CHANNEL__) & ADC_CHANNEL_ID_MASK) | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) \ : \ ((__GROUP__) == LL_ADC_GROUP_INJECTED) \ ? (((__CHANNEL__) & ADC_CHANNEL_ID_MASK) | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1SGL) \ : \ (((__CHANNEL__) & ADC_CHANNEL_ID_MASK) | ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) \ ) /** * @brief Helper macro to set the value of ADC analog watchdog threshold high * or low in function of ADC resolution, when ADC resolution is * different of 12 bits. * @note To be used with function @ref LL_ADC_ConfigAnalogWDThresholds() * or @ref LL_ADC_SetAnalogWDThresholds(). * Example, with a ADC resolution of 8 bits, to set the value of * analog watchdog threshold high (on 8 bits): * LL_ADC_SetAnalogWDThresholds * (< ADCx param >, * __LL_ADC_ANALOGWD_SET_THRESHOLD_RESOLUTION(LL_ADC_RESOLUTION_8B, ) * ); * @param __ADC_RESOLUTION__ This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @param __AWD_THRESHOLD__ Value between Min_Data=0x000 and Max_Data=0xFFF * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ #define __LL_ADC_ANALOGWD_SET_THRESHOLD_RESOLUTION(__ADC_RESOLUTION__, __AWD_THRESHOLD__) \ ((__AWD_THRESHOLD__) << ((__ADC_RESOLUTION__) >> (ADC_CFGR_RES_BITOFFSET_POS - 1U ))) /** * @brief Helper macro to get the value of ADC analog watchdog threshold high * or low in function of ADC resolution, when ADC resolution is * different of 12 bits. * @note To be used with function @ref LL_ADC_GetAnalogWDThresholds(). * Example, with a ADC resolution of 8 bits, to get the value of * analog watchdog threshold high (on 8 bits): * < threshold_value_6_bits > = __LL_ADC_ANALOGWD_GET_THRESHOLD_RESOLUTION * (LL_ADC_RESOLUTION_8B, * LL_ADC_GetAnalogWDThresholds(, LL_ADC_AWD_THRESHOLD_HIGH) * ); * @param __ADC_RESOLUTION__ This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @param __AWD_THRESHOLD_12_BITS__ Value between Min_Data=0x000 and Max_Data=0xFFF * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ #define __LL_ADC_ANALOGWD_GET_THRESHOLD_RESOLUTION(__ADC_RESOLUTION__, __AWD_THRESHOLD_12_BITS__) \ ((__AWD_THRESHOLD_12_BITS__) >> ((__ADC_RESOLUTION__) >> (ADC_CFGR_RES_BITOFFSET_POS - 1U ))) /** * @brief Helper macro to get the ADC analog watchdog threshold high * or low from raw value containing both thresholds concatenated. * @note To be used with function @ref LL_ADC_GetAnalogWDThresholds(). * Example, to get analog watchdog threshold high from the register raw value: * __LL_ADC_ANALOGWD_THRESHOLDS_HIGH_LOW(LL_ADC_AWD_THRESHOLD_HIGH, ); * @param __AWD_THRESHOLD_TYPE__ This parameter can be one of the following values: * @arg @ref LL_ADC_AWD_THRESHOLD_HIGH * @arg @ref LL_ADC_AWD_THRESHOLD_LOW * @param __AWD_THRESHOLDS__ Value between Min_Data=0x00000000 and Max_Data=0xFFFFFFFF * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ #define __LL_ADC_ANALOGWD_THRESHOLDS_HIGH_LOW(__AWD_THRESHOLD_TYPE__, __AWD_THRESHOLDS__) \ (((__AWD_THRESHOLDS__) >> (((__AWD_THRESHOLD_TYPE__) & ADC_AWD_TRX_BIT_HIGH_MASK) >> ADC_AWD_TRX_BIT_HIGH_SHIFT4)) \ & LL_ADC_AWD_THRESHOLD_LOW) /** * @brief Helper macro to set the ADC calibration value with both single ended * and differential modes calibration factors concatenated. * @note To be used with function @ref LL_ADC_SetCalibrationFactor(). * Example, to set calibration factors single ended to 0x55 * and differential ended to 0x2A: * LL_ADC_SetCalibrationFactor( * ADC1, * __LL_ADC_CALIB_FACTOR_SINGLE_DIFF(0x55, 0x2A)) * @param __CALIB_FACTOR_SINGLE_ENDED__ Value between Min_Data=0x00 and Max_Data=0x7F * @param __CALIB_FACTOR_DIFFERENTIAL__ Value between Min_Data=0x00 and Max_Data=0x7F * @retval Value between Min_Data=0x00000000 and Max_Data=0xFFFFFFFF */ #define __LL_ADC_CALIB_FACTOR_SINGLE_DIFF(__CALIB_FACTOR_SINGLE_ENDED__, __CALIB_FACTOR_DIFFERENTIAL__) \ (((__CALIB_FACTOR_DIFFERENTIAL__) << ADC_CALFACT_CALFACT_D_Pos) | (__CALIB_FACTOR_SINGLE_ENDED__)) #if defined(ADC_MULTIMODE_SUPPORT) /** * @brief Helper macro to get the ADC multimode conversion data of ADC master * or ADC slave from raw value with both ADC conversion data concatenated. * @note This macro is intended to be used when multimode transfer by DMA * is enabled: refer to function @ref LL_ADC_SetMultiDMATransfer(). * In this case the transferred data need to processed with this macro * to separate the conversion data of ADC master and ADC slave. * @param __ADC_MULTI_MASTER_SLAVE__ This parameter can be one of the following values: * @arg @ref LL_ADC_MULTI_MASTER * @arg @ref LL_ADC_MULTI_SLAVE * @param __ADC_MULTI_CONV_DATA__ Value between Min_Data=0x000 and Max_Data=0xFFF * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ #define __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(__ADC_MULTI_MASTER_SLAVE__, __ADC_MULTI_CONV_DATA__) \ (((__ADC_MULTI_CONV_DATA__) >> ((ADC_CDR_RDATA_SLV_Pos) & ~(__ADC_MULTI_MASTER_SLAVE__))) & ADC_CDR_RDATA_MST) #endif /* ADC_MULTIMODE_SUPPORT */ #if defined(ADC_MULTIMODE_SUPPORT) /** * @brief Helper macro to select, from a ADC instance, to which ADC instance * it has a dependence in multimode (ADC master of the corresponding * ADC common instance). * @note In case of device with multimode available and a mix of * ADC instances compliant and not compliant with multimode feature, * ADC instances not compliant with multimode feature are * considered as master instances (do not depend to * any other ADC instance). * @param __ADCx__ ADC instance * @retval __ADCx__ ADC instance master of the corresponding ADC common instance */ #define __LL_ADC_MULTI_INSTANCE_MASTER(__ADCx__) \ ( ( ((__ADCx__) == ADC2) \ )? \ (ADC1) \ : \ (__ADCx__) \ ) #endif /* ADC_MULTIMODE_SUPPORT */ /** * @brief Helper macro to select the ADC common instance * to which is belonging the selected ADC instance. * @note ADC common register instance can be used for: * - Set parameters common to several ADC instances * - Multimode (for devices with several ADC instances) * Refer to functions having argument "ADCxy_COMMON" as parameter. * @param __ADCx__ ADC instance * @retval ADC common register instance */ #if defined(ADC1) && defined(ADC2) && defined(ADC3) #define __LL_ADC_COMMON_INSTANCE(__ADCx__) \ (ADC123_COMMON) #elif defined(ADC1) && defined(ADC2) #define __LL_ADC_COMMON_INSTANCE(__ADCx__) \ (ADC12_COMMON) #else #define __LL_ADC_COMMON_INSTANCE(__ADCx__) \ (ADC1_COMMON) #endif /* defined(ADC1) && defined(ADC2) && defined(ADC3) */ /** * @brief Helper macro to check if all ADC instances sharing the same * ADC common instance are disabled. * @note This check is required by functions with setting conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * Refer to functions having argument "ADCxy_COMMON" as parameter. * @note On devices with only 1 ADC common instance, parameter of this macro * is useless and can be ignored (parameter kept for compatibility * with devices featuring several ADC common instances). * @param __ADCXY_COMMON__ ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Value "0" if all ADC instances sharing the same ADC common instance * are disabled. * Value "1" if at least one ADC instance sharing the same ADC common instance * is enabled. */ #if defined(ADC1) && defined(ADC2) && defined(ADC3) #define __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__ADCXY_COMMON__) \ (LL_ADC_IsEnabled(ADC1) | \ LL_ADC_IsEnabled(ADC2) | \ LL_ADC_IsEnabled(ADC3) ) #elif defined(ADC1) && defined(ADC2) #define __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__ADCXY_COMMON__) \ (LL_ADC_IsEnabled(ADC1) | \ LL_ADC_IsEnabled(ADC2) ) #else #define __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__ADCXY_COMMON__) \ (LL_ADC_IsEnabled(ADC1)) #endif /* defined(ADC1) && defined(ADC2) && defined(ADC3) */ /** * @brief Helper macro to define the ADC conversion data full-scale digital * value corresponding to the selected ADC resolution. * @note ADC conversion data full-scale corresponds to voltage range * determined by analog voltage references Vref+ and Vref- * (refer to reference manual). * @param __ADC_RESOLUTION__ This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval ADC conversion data full-scale digital value (unit: digital value of ADC conversion data) */ #define __LL_ADC_DIGITAL_SCALE(__ADC_RESOLUTION__) \ (0xFFFUL >> ((__ADC_RESOLUTION__) >> (ADC_CFGR_RES_BITOFFSET_POS - 1UL))) /** * @brief Helper macro to convert the ADC conversion data from * a resolution to another resolution. * @param __DATA__ ADC conversion data to be converted * @param __ADC_RESOLUTION_CURRENT__ Resolution of the data to be converted * This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @param __ADC_RESOLUTION_TARGET__ Resolution of the data after conversion * This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval ADC conversion data to the requested resolution */ #define __LL_ADC_CONVERT_DATA_RESOLUTION(__DATA__,\ __ADC_RESOLUTION_CURRENT__,\ __ADC_RESOLUTION_TARGET__) \ (((__DATA__) \ << ((__ADC_RESOLUTION_CURRENT__) >> (ADC_CFGR_RES_BITOFFSET_POS - 1UL))) \ >> ((__ADC_RESOLUTION_TARGET__) >> (ADC_CFGR_RES_BITOFFSET_POS - 1UL)) \ ) /** * @brief Helper macro to calculate the voltage (unit: mVolt) * corresponding to a ADC conversion data (unit: digital value). * @note Analog reference voltage (Vref+) must be either known from * user board environment or can be calculated using ADC measurement * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). * @param __VREFANALOG_VOLTAGE__ Analog reference voltage (unit: mV) * @param __ADC_DATA__ ADC conversion data (resolution 12 bits) * (unit: digital value). * @param __ADC_RESOLUTION__ This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval ADC conversion data equivalent voltage value (unit: mVolt) */ #define __LL_ADC_CALC_DATA_TO_VOLTAGE(__VREFANALOG_VOLTAGE__,\ __ADC_DATA__,\ __ADC_RESOLUTION__) \ ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) \ / __LL_ADC_DIGITAL_SCALE(__ADC_RESOLUTION__) \ ) /** * @brief Helper macro to calculate analog reference voltage (Vref+) * (unit: mVolt) from ADC conversion data of internal voltage * reference VrefInt. * @note Computation is using VrefInt calibration value * stored in system memory for each device during production. * @note This voltage depends on user board environment: voltage level * connected to pin Vref+. * On devices with small package, the pin Vref+ is not present * and internally bonded to pin Vdda. * @note On this STM32 series, calibration data of internal voltage reference * VrefInt corresponds to a resolution of 12 bits, * this is the recommended ADC resolution to convert voltage of * internal voltage reference VrefInt. * Otherwise, this macro performs the processing to scale * ADC conversion data to 12 bits. * @param __VREFINT_ADC_DATA__ ADC conversion data (resolution 12 bits) * of internal voltage reference VrefInt (unit: digital value). * @param __ADC_RESOLUTION__ This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval Analog reference voltage (unit: mV) */ #define __LL_ADC_CALC_VREFANALOG_VOLTAGE(__VREFINT_ADC_DATA__,\ __ADC_RESOLUTION__) \ (((uint32_t)(*VREFINT_CAL_ADDR) * VREFINT_CAL_VREF) \ / __LL_ADC_CONVERT_DATA_RESOLUTION((__VREFINT_ADC_DATA__), \ (__ADC_RESOLUTION__), \ LL_ADC_RESOLUTION_12B) \ ) /** * @brief Helper macro to calculate the temperature (unit: degree Celsius) * from ADC conversion data of internal temperature sensor. * @note Computation is using temperature sensor calibration values * stored in system memory for each device during production. * @note Calculation formula: * Temperature = ((TS_ADC_DATA - TS_CAL1) * * (TS_CAL2_TEMP - TS_CAL1_TEMP)) * / (TS_CAL2 - TS_CAL1) + TS_CAL1_TEMP * with TS_ADC_DATA = temperature sensor raw data measured by ADC * Avg_Slope = (TS_CAL2 - TS_CAL1) * / (TS_CAL2_TEMP - TS_CAL1_TEMP) * TS_CAL1 = equivalent TS_ADC_DATA at temperature * TEMP_DEGC_CAL1 (calibrated in factory) * TS_CAL2 = equivalent TS_ADC_DATA at temperature * TEMP_DEGC_CAL2 (calibrated in factory) * Caution: Calculation relevancy under reserve that calibration * parameters are correct (address and data). * To calculate temperature using temperature sensor * datasheet typical values (generic values less, therefore * less accurate than calibrated values), * use helper macro @ref __LL_ADC_CALC_TEMPERATURE_TYP_PARAMS(). * @note As calculation input, the analog reference voltage (Vref+) must be * defined as it impacts the ADC LSB equivalent voltage. * @note Analog reference voltage (Vref+) must be either known from * user board environment or can be calculated using ADC measurement * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). * @note On this STM32 series, calibration data of temperature sensor * corresponds to a resolution of 12 bits, * this is the recommended ADC resolution to convert voltage of * temperature sensor. * Otherwise, this macro performs the processing to scale * ADC conversion data to 12 bits. * @param __VREFANALOG_VOLTAGE__ Analog reference voltage (unit: mV) * @param __TEMPSENSOR_ADC_DATA__ ADC conversion data of internal * temperature sensor (unit: digital value). * @param __ADC_RESOLUTION__ ADC resolution at which internal temperature * sensor voltage has been measured. * This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval Temperature (unit: degree Celsius) * In case or error, value LL_ADC_TEMPERATURE_CALC_ERROR is returned (inconsistent temperature value) */ #define __LL_ADC_CALC_TEMPERATURE(__VREFANALOG_VOLTAGE__,\ __TEMPSENSOR_ADC_DATA__,\ __ADC_RESOLUTION__)\ ((((int32_t)*TEMPSENSOR_CAL2_ADDR - (int32_t)*TEMPSENSOR_CAL1_ADDR) != 0) ? \ (((( ((int32_t)((__LL_ADC_CONVERT_DATA_RESOLUTION((__TEMPSENSOR_ADC_DATA__), \ (__ADC_RESOLUTION__), \ LL_ADC_RESOLUTION_12B) \ * (__VREFANALOG_VOLTAGE__)) \ / TEMPSENSOR_CAL_VREFANALOG) \ - (int32_t) *TEMPSENSOR_CAL1_ADDR) \ ) * (int32_t)(TEMPSENSOR_CAL2_TEMP - TEMPSENSOR_CAL1_TEMP) \ ) / (int32_t)((int32_t)*TEMPSENSOR_CAL2_ADDR - (int32_t)*TEMPSENSOR_CAL1_ADDR) \ ) + TEMPSENSOR_CAL1_TEMP \ ) \ : \ ((int32_t)LL_ADC_TEMPERATURE_CALC_ERROR) \ ) /** * @brief Helper macro to calculate the temperature (unit: degree Celsius) * from ADC conversion data of internal temperature sensor. * @note Computation is using temperature sensor typical values * (refer to device datasheet). * @note Calculation formula: * Temperature = (TS_TYP_CALx_VOLT(uV) - TS_ADC_DATA * Conversion_uV) * / Avg_Slope + CALx_TEMP * with TS_ADC_DATA = temperature sensor raw data measured by ADC * (unit: digital value) * Avg_Slope = temperature sensor slope * (unit: uV/Degree Celsius) * TS_TYP_CALx_VOLT = temperature sensor digital value at * temperature CALx_TEMP (unit: mV) * Caution: Calculation relevancy under reserve the temperature sensor * of the current device has characteristics in line with * datasheet typical values. * If temperature sensor calibration values are available on * on this device (presence of macro __LL_ADC_CALC_TEMPERATURE()), * temperature calculation will be more accurate using * helper macro @ref __LL_ADC_CALC_TEMPERATURE(). * @note As calculation input, the analog reference voltage (Vref+) must be * defined as it impacts the ADC LSB equivalent voltage. * @note Analog reference voltage (Vref+) must be either known from * user board environment or can be calculated using ADC measurement * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). * @note ADC measurement data must correspond to a resolution of 12 bits * (full scale digital value 4095). If not the case, the data must be * preliminarily rescaled to an equivalent resolution of 12 bits. * @param __TEMPSENSOR_TYP_AVGSLOPE__ Device datasheet data: Temperature sensor slope typical value * (unit: uV/DegCelsius). * On STM32L5, refer to device datasheet parameter "Avg_Slope". * @param __TEMPSENSOR_TYP_CALX_V__ Device datasheet data: Temperature sensor voltage typical value * (at temperature and Vref+ defined in parameters below) (unit: mV). * On STM32L5, refer to datasheet parameter "V30" (corresponding to TS_CAL1). * @param __TEMPSENSOR_CALX_TEMP__ Device datasheet data: Temperature at which temperature sensor voltage * (see parameter above) is corresponding (unit: mV) * @param __VREFANALOG_VOLTAGE__ Analog voltage reference (Vref+) value (unit: mV) * @param __TEMPSENSOR_ADC_DATA__ ADC conversion data of internal temperature sensor (unit: digital value). * @param __ADC_RESOLUTION__ ADC resolution at which internal temperature sensor voltage has been measured. * This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval Temperature (unit: degree Celsius) */ #define __LL_ADC_CALC_TEMPERATURE_TYP_PARAMS(__TEMPSENSOR_TYP_AVGSLOPE__,\ __TEMPSENSOR_TYP_CALX_V__,\ __TEMPSENSOR_CALX_TEMP__,\ __VREFANALOG_VOLTAGE__,\ __TEMPSENSOR_ADC_DATA__,\ __ADC_RESOLUTION__) \ (((((int32_t)((((__TEMPSENSOR_ADC_DATA__) * (__VREFANALOG_VOLTAGE__)) \ / __LL_ADC_DIGITAL_SCALE(__ADC_RESOLUTION__)) \ * 1000UL) \ - \ (int32_t)(((__TEMPSENSOR_TYP_CALX_V__)) \ * 1000UL) \ ) \ ) / (int32_t)(__TEMPSENSOR_TYP_AVGSLOPE__) \ ) + (int32_t)(__TEMPSENSOR_CALX_TEMP__) \ ) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup ADC_LL_Exported_Functions ADC Exported Functions * @{ */ /** @defgroup ADC_LL_EF_DMA_Management ADC DMA management * @{ */ /* Note: LL ADC functions to set DMA transfer are located into sections of */ /* configuration of ADC instance, groups and multimode (if available): */ /* @ref LL_ADC_REG_SetDMATransfer(), ... */ /** * @brief Function to help to configure DMA transfer from ADC: retrieve the * ADC register address from ADC instance and a list of ADC registers * intended to be used (most commonly) with DMA transfer. * @note These ADC registers are data registers: * when ADC conversion data is available in ADC data registers, * ADC generates a DMA transfer request. * @note This macro is intended to be used with LL DMA driver, refer to * function "LL_DMA_ConfigAddresses()". * Example: * LL_DMA_ConfigAddresses(DMA1, * LL_DMA_CHANNEL_1, * LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), * (uint32_t)&< array or variable >, * LL_DMA_DIRECTION_PERIPH_TO_MEMORY); * @note For devices with several ADC: in multimode, some devices * use a different data register outside of ADC instance scope * (common data register). This macro manages this register difference, * only ADC instance has to be set as parameter. * @rmtoll DR RDATA LL_ADC_DMA_GetRegAddr\n * CDR RDATA_MST LL_ADC_DMA_GetRegAddr\n * CDR RDATA_SLV LL_ADC_DMA_GetRegAddr * @param ADCx ADC instance * @param Register This parameter can be one of the following values: * @arg @ref LL_ADC_DMA_REG_REGULAR_DATA * @arg @ref LL_ADC_DMA_REG_REGULAR_DATA_MULTI (1) * * (1) Available on devices with several ADC instances. * @retval ADC register address */ #if defined(ADC_MULTIMODE_SUPPORT) __STATIC_INLINE uint32_t LL_ADC_DMA_GetRegAddr(const ADC_TypeDef *ADCx, uint32_t Register) { uint32_t data_reg_addr; if (Register == LL_ADC_DMA_REG_REGULAR_DATA) { /* Retrieve address of register DR */ data_reg_addr = (uint32_t) &(ADCx->DR); } else /* (Register == LL_ADC_DMA_REG_REGULAR_DATA_MULTI) */ { /* Retrieve address of register CDR */ data_reg_addr = (uint32_t) &((__LL_ADC_COMMON_INSTANCE(ADCx))->CDR); } return data_reg_addr; } #else __STATIC_INLINE uint32_t LL_ADC_DMA_GetRegAddr(const ADC_TypeDef *ADCx, uint32_t Register) { /* Prevent unused argument(s) compilation warning */ (void)(Register); /* Retrieve address of register DR */ return (uint32_t) &(ADCx->DR); } #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_Common Configuration of ADC hierarchical scope: common to several * ADC instances * @{ */ /** * @brief Set parameter common to several ADC: Clock source and prescaler. * @note On this STM32 series, if ADC group injected is used, some * clock ratio constraints between ADC clock and AHB clock * must be respected. * Refer to reference manual. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR CKMODE LL_ADC_SetCommonClock\n * CCR PRESC LL_ADC_SetCommonClock * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param CommonClock This parameter can be one of the following values: * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV1 * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV2 * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV4 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV1 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV2 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV4 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV6 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV8 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV10 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV12 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV16 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV32 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV64 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV128 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV256 * @retval None */ __STATIC_INLINE void LL_ADC_SetCommonClock(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t CommonClock) { MODIFY_REG(ADCxy_COMMON->CCR, ADC_CCR_CKMODE | ADC_CCR_PRESC, CommonClock); } /** * @brief Get parameter common to several ADC: Clock source and prescaler. * @rmtoll CCR CKMODE LL_ADC_GetCommonClock\n * CCR PRESC LL_ADC_GetCommonClock * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV1 * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV2 * @arg @ref LL_ADC_CLOCK_SYNC_PCLK_DIV4 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV1 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV2 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV4 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV6 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV8 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV10 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV12 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV16 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV32 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV64 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV128 * @arg @ref LL_ADC_CLOCK_ASYNC_DIV256 */ __STATIC_INLINE uint32_t LL_ADC_GetCommonClock(const ADC_Common_TypeDef *ADCxy_COMMON) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CCR, ADC_CCR_CKMODE | ADC_CCR_PRESC)); } /** * @brief Set parameter common to several ADC: measurement path to * internal channels (VrefInt, temperature sensor, ...). * Configure all paths (overwrite current configuration). * @note One or several values can be selected. * Example: (LL_ADC_PATH_INTERNAL_VREFINT | * LL_ADC_PATH_INTERNAL_TEMPSENSOR) * The values not selected are removed from configuration. * @note Stabilization time of measurement path to internal channel: * After enabling internal paths, before starting ADC conversion, * a delay is required for internal voltage reference and * temperature sensor stabilization time. * Refer to device datasheet. * Refer to literal @ref LL_ADC_DELAY_VREFINT_STAB_US. * Refer to literals @ref LL_ADC_DELAY_TEMPSENSOR_STAB_US, * @ref LL_ADC_DELAY_TEMPSENSOR_BUFFER_STAB_US. * @note ADC internal channel sampling time constraint: * For ADC conversion of internal channels, * a sampling time minimum value is required. * Refer to device datasheet. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR VREFEN LL_ADC_SetCommonPathInternalCh\n * CCR TSEN LL_ADC_SetCommonPathInternalCh\n * CCR VBATEN LL_ADC_SetCommonPathInternalCh * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param PathInternal This parameter can be a combination of the following values: * @arg @ref LL_ADC_PATH_INTERNAL_NONE * @arg @ref LL_ADC_PATH_INTERNAL_VREFINT * @arg @ref LL_ADC_PATH_INTERNAL_TEMPSENSOR * @arg @ref LL_ADC_PATH_INTERNAL_VBAT * @retval None */ __STATIC_INLINE void LL_ADC_SetCommonPathInternalCh(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t PathInternal) { MODIFY_REG(ADCxy_COMMON->CCR, ADC_CCR_VREFEN | ADC_CCR_TSEN | ADC_CCR_VBATEN, PathInternal); } /** * @brief Set parameter common to several ADC: measurement path to * internal channels (VrefInt, temperature sensor, ...). * Add paths to the current configuration. * @note One or several values can be selected. * Example: (LL_ADC_PATH_INTERNAL_VREFINT | * LL_ADC_PATH_INTERNAL_TEMPSENSOR) * @note Stabilization time of measurement path to internal channel: * After enabling internal paths, before starting ADC conversion, * a delay is required for internal voltage reference and * temperature sensor stabilization time. * Refer to device datasheet. * Refer to literal @ref LL_ADC_DELAY_VREFINT_STAB_US. * Refer to literals @ref LL_ADC_DELAY_TEMPSENSOR_STAB_US, * @ref LL_ADC_DELAY_TEMPSENSOR_BUFFER_STAB_US. * @note ADC internal channel sampling time constraint: * For ADC conversion of internal channels, * a sampling time minimum value is required. * Refer to device datasheet. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR VREFEN LL_ADC_SetCommonPathInternalChAdd\n * CCR TSEN LL_ADC_SetCommonPathInternalChAdd\n * CCR VBATEN LL_ADC_SetCommonPathInternalChAdd * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param PathInternal This parameter can be a combination of the following values: * @arg @ref LL_ADC_PATH_INTERNAL_NONE * @arg @ref LL_ADC_PATH_INTERNAL_VREFINT * @arg @ref LL_ADC_PATH_INTERNAL_TEMPSENSOR * @arg @ref LL_ADC_PATH_INTERNAL_VBAT * @retval None */ __STATIC_INLINE void LL_ADC_SetCommonPathInternalChAdd(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t PathInternal) { SET_BIT(ADCxy_COMMON->CCR, PathInternal); } /** * @brief Set parameter common to several ADC: measurement path to * internal channels (VrefInt, temperature sensor, ...). * Remove paths to the current configuration. * @note One or several values can be selected. * Example: (LL_ADC_PATH_INTERNAL_VREFINT | * LL_ADC_PATH_INTERNAL_TEMPSENSOR) * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR VREFEN LL_ADC_SetCommonPathInternalChRem\n * CCR TSEN LL_ADC_SetCommonPathInternalChRem\n * CCR VBATEN LL_ADC_SetCommonPathInternalChRem * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param PathInternal This parameter can be a combination of the following values: * @arg @ref LL_ADC_PATH_INTERNAL_NONE * @arg @ref LL_ADC_PATH_INTERNAL_VREFINT * @arg @ref LL_ADC_PATH_INTERNAL_TEMPSENSOR * @arg @ref LL_ADC_PATH_INTERNAL_VBAT * @retval None */ __STATIC_INLINE void LL_ADC_SetCommonPathInternalChRem(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t PathInternal) { CLEAR_BIT(ADCxy_COMMON->CCR, PathInternal); } /** * @brief Get parameter common to several ADC: measurement path to internal * channels (VrefInt, temperature sensor, ...). * @note One or several values can be selected. * Example: (LL_ADC_PATH_INTERNAL_VREFINT | * LL_ADC_PATH_INTERNAL_TEMPSENSOR) * @rmtoll CCR VREFEN LL_ADC_GetCommonPathInternalCh\n * CCR TSEN LL_ADC_GetCommonPathInternalCh\n * CCR VBATEN LL_ADC_GetCommonPathInternalCh * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Returned value can be a combination of the following values: * @arg @ref LL_ADC_PATH_INTERNAL_NONE * @arg @ref LL_ADC_PATH_INTERNAL_VREFINT * @arg @ref LL_ADC_PATH_INTERNAL_TEMPSENSOR * @arg @ref LL_ADC_PATH_INTERNAL_VBAT */ __STATIC_INLINE uint32_t LL_ADC_GetCommonPathInternalCh(const ADC_Common_TypeDef *ADCxy_COMMON) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CCR, ADC_CCR_VREFEN | ADC_CCR_TSEN | ADC_CCR_VBATEN)); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_Instance Configuration of ADC hierarchical scope: ADC instance * @{ */ /** * @brief Set ADC calibration factor in the mode single-ended * or differential (for devices with differential mode available). * @note This function is intended to set calibration parameters * without having to perform a new calibration using * @ref LL_ADC_StartCalibration(). * @note For devices with differential mode available: * Calibration of offset is specific to each of * single-ended and differential modes * (calibration factor must be specified for each of these * differential modes, if used afterwards and if the application * requires their calibration). * @note In case of setting calibration factors of both modes single ended * and differential (parameter LL_ADC_BOTH_SINGLE_DIFF_ENDED): * both calibration factors must be concatenated. * To perform this processing, use helper macro * @ref __LL_ADC_CALIB_FACTOR_SINGLE_DIFF(). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be enabled, without calibration on going, without conversion * on going on group regular. * @rmtoll CALFACT CALFACT_S LL_ADC_SetCalibrationFactor\n * CALFACT CALFACT_D LL_ADC_SetCalibrationFactor * @param ADCx ADC instance * @param SingleDiff This parameter can be one of the following values: * @arg @ref LL_ADC_SINGLE_ENDED * @arg @ref LL_ADC_DIFFERENTIAL_ENDED * @arg @ref LL_ADC_BOTH_SINGLE_DIFF_ENDED * @param CalibrationFactor Value between Min_Data=0x00 and Max_Data=0x7F * @retval None */ __STATIC_INLINE void LL_ADC_SetCalibrationFactor(ADC_TypeDef *ADCx, uint32_t SingleDiff, uint32_t CalibrationFactor) { MODIFY_REG(ADCx->CALFACT, SingleDiff & ADC_SINGLEDIFF_CALIB_FACTOR_MASK, CalibrationFactor << (((SingleDiff & ADC_SINGLEDIFF_CALIB_F_BIT_D_MASK) >> ADC_SINGLEDIFF_CALIB_F_BIT_D_SHIFT4) & ~(SingleDiff & ADC_CALFACT_CALFACT_S))); } /** * @brief Get ADC calibration factor in the mode single-ended * or differential (for devices with differential mode available). * @note Calibration factors are set by hardware after performing * a calibration run using function @ref LL_ADC_StartCalibration(). * @note For devices with differential mode available: * Calibration of offset is specific to each of * single-ended and differential modes * @rmtoll CALFACT CALFACT_S LL_ADC_GetCalibrationFactor\n * CALFACT CALFACT_D LL_ADC_GetCalibrationFactor * @param ADCx ADC instance * @param SingleDiff This parameter can be one of the following values: * @arg @ref LL_ADC_SINGLE_ENDED * @arg @ref LL_ADC_DIFFERENTIAL_ENDED * @retval Value between Min_Data=0x00 and Max_Data=0x7F */ __STATIC_INLINE uint32_t LL_ADC_GetCalibrationFactor(const ADC_TypeDef *ADCx, uint32_t SingleDiff) { /* Retrieve bits with position in register depending on parameter */ /* "SingleDiff". */ /* Parameter used with mask "ADC_SINGLEDIFF_CALIB_FACTOR_MASK" because */ /* containing other bits reserved for other purpose. */ return (uint32_t)(READ_BIT(ADCx->CALFACT, (SingleDiff & ADC_SINGLEDIFF_CALIB_FACTOR_MASK)) >> ((SingleDiff & ADC_SINGLEDIFF_CALIB_F_BIT_D_MASK) >> ADC_SINGLEDIFF_CALIB_F_BIT_D_SHIFT4)); } /** * @brief Set ADC resolution. * Refer to reference manual for alignments formats * dependencies to ADC resolutions. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR RES LL_ADC_SetResolution * @param ADCx ADC instance * @param Resolution This parameter can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B * @retval None */ __STATIC_INLINE void LL_ADC_SetResolution(ADC_TypeDef *ADCx, uint32_t Resolution) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_RES, Resolution); } /** * @brief Get ADC resolution. * Refer to reference manual for alignments formats * dependencies to ADC resolutions. * @rmtoll CFGR RES LL_ADC_GetResolution * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_RESOLUTION_12B * @arg @ref LL_ADC_RESOLUTION_10B * @arg @ref LL_ADC_RESOLUTION_8B * @arg @ref LL_ADC_RESOLUTION_6B */ __STATIC_INLINE uint32_t LL_ADC_GetResolution(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_RES)); } /** * @brief Set ADC conversion data alignment. * @note Refer to reference manual for alignments formats * dependencies to ADC resolutions. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR ALIGN LL_ADC_SetDataAlignment * @param ADCx ADC instance * @param DataAlignment This parameter can be one of the following values: * @arg @ref LL_ADC_DATA_ALIGN_RIGHT * @arg @ref LL_ADC_DATA_ALIGN_LEFT * @retval None */ __STATIC_INLINE void LL_ADC_SetDataAlignment(ADC_TypeDef *ADCx, uint32_t DataAlignment) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_ALIGN, DataAlignment); } /** * @brief Get ADC conversion data alignment. * @note Refer to reference manual for alignments formats * dependencies to ADC resolutions. * @rmtoll CFGR ALIGN LL_ADC_GetDataAlignment * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_DATA_ALIGN_RIGHT * @arg @ref LL_ADC_DATA_ALIGN_LEFT */ __STATIC_INLINE uint32_t LL_ADC_GetDataAlignment(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_ALIGN)); } /** * @brief Set ADC low power mode. * @note Description of ADC low power modes: * - ADC low power mode "auto wait": Dynamic low power mode, * ADC conversions occurrences are limited to the minimum necessary * in order to reduce power consumption. * New ADC conversion starts only when the previous * unitary conversion data (for ADC group regular) * or previous sequence conversions data (for ADC group injected) * has been retrieved by user software. * In the meantime, ADC remains idle: does not performs any * other conversion. * This mode allows to automatically adapt the ADC conversions * triggers to the speed of the software that reads the data. * Moreover, this avoids risk of overrun for low frequency * applications. * How to use this low power mode: * - It is not recommended to use with interruption or DMA * since these modes have to clear immediately the EOC flag * (by CPU to free the IRQ pending event or by DMA). * Auto wait will work but fort a very short time, discarding * its intended benefit (except specific case of high load of CPU * or DMA transfers which can justify usage of auto wait). * - Do use with polling: 1. Start conversion, * 2. Later on, when conversion data is needed: poll for end of * conversion to ensure that conversion is completed and * retrieve ADC conversion data. This will trig another * ADC conversion start. * @note With ADC low power mode "auto wait", the ADC conversion data read * is corresponding to previous ADC conversion start, independently * of delay during which ADC was idle. * Therefore, the ADC conversion data may be outdated: does not * correspond to the current voltage level on the selected * ADC channel. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR AUTDLY LL_ADC_SetLowPowerMode * @param ADCx ADC instance * @param LowPowerMode This parameter can be one of the following values: * @arg @ref LL_ADC_LP_MODE_NONE * @arg @ref LL_ADC_LP_AUTOWAIT * @retval None */ __STATIC_INLINE void LL_ADC_SetLowPowerMode(ADC_TypeDef *ADCx, uint32_t LowPowerMode) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_AUTDLY, LowPowerMode); } /** * @brief Get ADC low power mode: * @note Description of ADC low power modes: * - ADC low power mode "auto wait": Dynamic low power mode, * ADC conversions occurrences are limited to the minimum necessary * in order to reduce power consumption. * New ADC conversion starts only when the previous * unitary conversion data (for ADC group regular) * or previous sequence conversions data (for ADC group injected) * has been retrieved by user software. * In the meantime, ADC remains idle: does not performs any * other conversion. * This mode allows to automatically adapt the ADC conversions * triggers to the speed of the software that reads the data. * Moreover, this avoids risk of overrun for low frequency * applications. * How to use this low power mode: * - It is not recommended to use with interruption or DMA * since these modes have to clear immediately the EOC flag * (by CPU to free the IRQ pending event or by DMA). * Auto wait will work but fort a very short time, discarding * its intended benefit (except specific case of high load of CPU * or DMA transfers which can justify usage of auto wait). * - Do use with polling: 1. Start conversion, * 2. Later on, when conversion data is needed: poll for end of * conversion to ensure that conversion is completed and * retrieve ADC conversion data. This will trig another * ADC conversion start. * @note With ADC low power mode "auto wait", the ADC conversion data read * is corresponding to previous ADC conversion start, independently * of delay during which ADC was idle. * Therefore, the ADC conversion data may be outdated: does not * correspond to the current voltage level on the selected * ADC channel. * @rmtoll CFGR AUTDLY LL_ADC_GetLowPowerMode * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_LP_MODE_NONE * @arg @ref LL_ADC_LP_AUTOWAIT */ __STATIC_INLINE uint32_t LL_ADC_GetLowPowerMode(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_AUTDLY)); } /** * @brief Set ADC selected offset instance 1, 2, 3 or 4. * @note This function set the 2 items of offset configuration: * - ADC channel to which the offset programmed will be applied * (independently of channel mapped on ADC group regular * or group injected) * - Offset level (offset to be subtracted from the raw * converted data). * @note Caution: Offset format is dependent to ADC resolution: * offset has to be left-aligned on bit 11, the LSB (right bits) * are set to 0. * @note This function enables the offset, by default. It can be forced * to disable state using function LL_ADC_SetOffsetState(). * @note If a channel is mapped on several offsets numbers, only the offset * with the lowest value is considered for the subtraction. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @note On STM32L5, some fast channels are available: fast analog inputs * coming from GPIO pads (ADC_IN0..5). * @rmtoll OFR1 OFFSET1_CH LL_ADC_SetOffset\n * OFR1 OFFSET1 LL_ADC_SetOffset\n * OFR1 OFFSET1_EN LL_ADC_SetOffset\n * OFR2 OFFSET2_CH LL_ADC_SetOffset\n * OFR2 OFFSET2 LL_ADC_SetOffset\n * OFR2 OFFSET2_EN LL_ADC_SetOffset\n * OFR3 OFFSET3_CH LL_ADC_SetOffset\n * OFR3 OFFSET3 LL_ADC_SetOffset\n * OFR3 OFFSET3_EN LL_ADC_SetOffset\n * OFR4 OFFSET4_CH LL_ADC_SetOffset\n * OFR4 OFFSET4 LL_ADC_SetOffset\n * OFR4 OFFSET4_EN LL_ADC_SetOffset * @param ADCx ADC instance * @param Offsety This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_1 * @arg @ref LL_ADC_OFFSET_2 * @arg @ref LL_ADC_OFFSET_3 * @arg @ref LL_ADC_OFFSET_4 * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @param OffsetLevel Value between Min_Data=0x000 and Max_Data=0xFFF * @retval None */ __STATIC_INLINE void LL_ADC_SetOffset(ADC_TypeDef *ADCx, uint32_t Offsety, uint32_t Channel, uint32_t OffsetLevel) { __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->OFR1, Offsety); MODIFY_REG(*preg, ADC_OFR1_OFFSET1_EN | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1, ADC_OFR1_OFFSET1_EN | (Channel & ADC_CHANNEL_ID_NUMBER_MASK) | OffsetLevel); } /** * @brief Get for the ADC selected offset instance 1, 2, 3 or 4: * Channel to which the offset programmed will be applied * (independently of channel mapped on ADC group regular * or group injected) * @note Usage of the returned channel number: * - To reinject this channel into another function LL_ADC_xxx: * the returned channel number is only partly formatted on definition * of literals LL_ADC_CHANNEL_x. Therefore, it has to be compared * with parts of literals LL_ADC_CHANNEL_x or using * helper macro @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * Then the selected literal LL_ADC_CHANNEL_x can be used * as parameter for another function. * - To get the channel number in decimal format: * process the returned value with the helper macro * @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * @note On STM32L5, some fast channels are available: fast analog inputs * coming from GPIO pads (ADC_IN0..5). * @rmtoll OFR1 OFFSET1_CH LL_ADC_GetOffsetChannel\n * OFR2 OFFSET2_CH LL_ADC_GetOffsetChannel\n * OFR3 OFFSET3_CH LL_ADC_GetOffsetChannel\n * OFR4 OFFSET4_CH LL_ADC_GetOffsetChannel * @param ADCx ADC instance * @param Offsety This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_1 * @arg @ref LL_ADC_OFFSET_2 * @arg @ref LL_ADC_OFFSET_3 * @arg @ref LL_ADC_OFFSET_4 * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 (7) * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT (1) * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR (4) * @arg @ref LL_ADC_CHANNEL_VBAT (4) * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to * 4.21 Ms/s)).\n * (1, 2, 3, 4) For ADC channel read back from ADC register, * comparison with internal channel parameter to be done * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). */ __STATIC_INLINE uint32_t LL_ADC_GetOffsetChannel(const ADC_TypeDef *ADCx, uint32_t Offsety) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->OFR1, Offsety); return (uint32_t) READ_BIT(*preg, ADC_OFR1_OFFSET1_CH); } /** * @brief Get for the ADC selected offset instance 1, 2, 3 or 4: * Offset level (offset to be subtracted from the raw * converted data). * @note Caution: Offset format is dependent to ADC resolution: * offset has to be left-aligned on bit 11, the LSB (right bits) * are set to 0. * @rmtoll OFR1 OFFSET1 LL_ADC_GetOffsetLevel\n * OFR2 OFFSET2 LL_ADC_GetOffsetLevel\n * OFR3 OFFSET3 LL_ADC_GetOffsetLevel\n * OFR4 OFFSET4 LL_ADC_GetOffsetLevel * @param ADCx ADC instance * @param Offsety This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_1 * @arg @ref LL_ADC_OFFSET_2 * @arg @ref LL_ADC_OFFSET_3 * @arg @ref LL_ADC_OFFSET_4 * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ __STATIC_INLINE uint32_t LL_ADC_GetOffsetLevel(const ADC_TypeDef *ADCx, uint32_t Offsety) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->OFR1, Offsety); return (uint32_t) READ_BIT(*preg, ADC_OFR1_OFFSET1); } /** * @brief Set for the ADC selected offset instance 1, 2, 3 or 4: * force offset state disable or enable * without modifying offset channel or offset value. * @note This function should be needed only in case of offset to be * enabled-disabled dynamically, and should not be needed in other cases: * function LL_ADC_SetOffset() automatically enables the offset. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll OFR1 OFFSET1_EN LL_ADC_SetOffsetState\n * OFR2 OFFSET2_EN LL_ADC_SetOffsetState\n * OFR3 OFFSET3_EN LL_ADC_SetOffsetState\n * OFR4 OFFSET4_EN LL_ADC_SetOffsetState * @param ADCx ADC instance * @param Offsety This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_1 * @arg @ref LL_ADC_OFFSET_2 * @arg @ref LL_ADC_OFFSET_3 * @arg @ref LL_ADC_OFFSET_4 * @param OffsetState This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_DISABLE * @arg @ref LL_ADC_OFFSET_ENABLE * @retval None */ __STATIC_INLINE void LL_ADC_SetOffsetState(ADC_TypeDef *ADCx, uint32_t Offsety, uint32_t OffsetState) { __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->OFR1, Offsety); MODIFY_REG(*preg, ADC_OFR1_OFFSET1_EN, OffsetState); } /** * @brief Get for the ADC selected offset instance 1, 2, 3 or 4: * offset state disabled or enabled. * @rmtoll OFR1 OFFSET1_EN LL_ADC_GetOffsetState\n * OFR2 OFFSET2_EN LL_ADC_GetOffsetState\n * OFR3 OFFSET3_EN LL_ADC_GetOffsetState\n * OFR4 OFFSET4_EN LL_ADC_GetOffsetState * @param ADCx ADC instance * @param Offsety This parameter can be one of the following values: * @arg @ref LL_ADC_OFFSET_1 * @arg @ref LL_ADC_OFFSET_2 * @arg @ref LL_ADC_OFFSET_3 * @arg @ref LL_ADC_OFFSET_4 * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_OFFSET_DISABLE * @arg @ref LL_ADC_OFFSET_ENABLE */ __STATIC_INLINE uint32_t LL_ADC_GetOffsetState(const ADC_TypeDef *ADCx, uint32_t Offsety) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->OFR1, Offsety); return (uint32_t) READ_BIT(*preg, ADC_OFR1_OFFSET1_EN); } #if defined(ADC_SMPR1_SMPPLUS) /** * @brief Set ADC sampling time common configuration impacting * settings of sampling time channel wise. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll SMPR1 SMPPLUS LL_ADC_SetSamplingTimeCommonConfig * @param ADCx ADC instance * @param SamplingTimeCommonConfig This parameter can be one of the following values: * @arg @ref LL_ADC_SAMPLINGTIME_COMMON_DEFAULT * @arg @ref LL_ADC_SAMPLINGTIME_COMMON_3C5_REPL_2C5 * @retval None */ __STATIC_INLINE void LL_ADC_SetSamplingTimeCommonConfig(ADC_TypeDef *ADCx, uint32_t SamplingTimeCommonConfig) { MODIFY_REG(ADCx->SMPR1, ADC_SMPR1_SMPPLUS, SamplingTimeCommonConfig); } /** * @brief Get ADC sampling time common configuration impacting * settings of sampling time channel wise. * @rmtoll SMPR1 SMPPLUS LL_ADC_GetSamplingTimeCommonConfig * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_SAMPLINGTIME_COMMON_DEFAULT * @arg @ref LL_ADC_SAMPLINGTIME_COMMON_3C5_REPL_2C5 */ __STATIC_INLINE uint32_t LL_ADC_GetSamplingTimeCommonConfig(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->SMPR1, ADC_SMPR1_SMPPLUS)); } #endif /* ADC_SMPR1_SMPPLUS */ /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_Group_Regular Configuration of ADC hierarchical scope: group regular * @{ */ /** * @brief Set ADC group regular conversion trigger source: * internal (SW start) or from external peripheral (timer event, * external interrupt line). * @note On this STM32 series, setting trigger source to external trigger * also set trigger polarity to rising edge * (default setting for compatibility with some ADC on other * STM32 series having this setting set by HW default value). * In case of need to modify trigger edge, use * function @ref LL_ADC_REG_SetTriggerEdge(). * @note Availability of parameters of trigger sources from timer * depends on timers availability on the selected device. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll CFGR EXTSEL LL_ADC_REG_SetTriggerSource\n * CFGR EXTEN LL_ADC_REG_SetTriggerSource * @param ADCx ADC instance * @param TriggerSource This parameter can be one of the following values: * @arg @ref LL_ADC_REG_TRIG_SOFTWARE * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_TRGO2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH1 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH3 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM2_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM2_CH2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM3_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM3_CH4 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM4_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM4_CH4 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM6_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM8_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM8_TRGO2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM15_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_EXTI_LINE11 * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetTriggerSource(ADC_TypeDef *ADCx, uint32_t TriggerSource) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL, TriggerSource); } /** * @brief Get ADC group regular conversion trigger source: * internal (SW start) or from external peripheral (timer event, * external interrupt line). * @note To determine whether group regular trigger source is * internal (SW start) or external, without detail * of which peripheral is selected as external trigger, * (equivalent to * "if(LL_ADC_REG_GetTriggerSource(ADC1) == LL_ADC_REG_TRIG_SOFTWARE)") * use function @ref LL_ADC_REG_IsTriggerSourceSWStart. * @note Availability of parameters of trigger sources from timer * depends on timers availability on the selected device. * @rmtoll CFGR EXTSEL LL_ADC_REG_GetTriggerSource\n * CFGR EXTEN LL_ADC_REG_GetTriggerSource * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_TRIG_SOFTWARE * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_TRGO2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH1 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM1_CH3 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM2_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM2_CH2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM3_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM3_CH4 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM4_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM4_CH4 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM6_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM8_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_TIM8_TRGO2 * @arg @ref LL_ADC_REG_TRIG_EXT_TIM15_TRGO * @arg @ref LL_ADC_REG_TRIG_EXT_EXTI_LINE11 */ __STATIC_INLINE uint32_t LL_ADC_REG_GetTriggerSource(const ADC_TypeDef *ADCx) { __IO uint32_t trigger_source = READ_BIT(ADCx->CFGR, ADC_CFGR_EXTSEL | ADC_CFGR_EXTEN); /* Value for shift of {0; 4; 8; 12} depending on value of bitfield */ /* corresponding to ADC_CFGR_EXTEN {0; 1; 2; 3}. */ uint32_t shift_exten = ((trigger_source & ADC_CFGR_EXTEN) >> (ADC_REG_TRIG_EXTEN_BITOFFSET_POS - 2UL)); /* Set bitfield corresponding to ADC_CFGR_EXTEN and ADC_CFGR_EXTSEL */ /* to match with triggers literals definition. */ return ((trigger_source & (ADC_REG_TRIG_SOURCE_MASK >> shift_exten) & ADC_CFGR_EXTSEL) | ((ADC_REG_TRIG_EDGE_MASK >> shift_exten) & ADC_CFGR_EXTEN) ); } /** * @brief Get ADC group regular conversion trigger source internal (SW start) * or external. * @note In case of group regular trigger source set to external trigger, * to determine which peripheral is selected as external trigger, * use function @ref LL_ADC_REG_GetTriggerSource(). * @rmtoll CFGR EXTEN LL_ADC_REG_IsTriggerSourceSWStart * @param ADCx ADC instance * @retval Value "0" if trigger source external trigger * Value "1" if trigger source SW start. */ __STATIC_INLINE uint32_t LL_ADC_REG_IsTriggerSourceSWStart(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CFGR, ADC_CFGR_EXTEN) == (LL_ADC_REG_TRIG_SOFTWARE & ADC_CFGR_EXTEN)) ? 1UL : 0UL); } /** * @brief Set ADC group regular conversion trigger polarity. * @note Applicable only for trigger source set to external trigger. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll CFGR EXTEN LL_ADC_REG_SetTriggerEdge * @param ADCx ADC instance * @param ExternalTriggerEdge This parameter can be one of the following values: * @arg @ref LL_ADC_REG_TRIG_EXT_RISING * @arg @ref LL_ADC_REG_TRIG_EXT_FALLING * @arg @ref LL_ADC_REG_TRIG_EXT_RISINGFALLING * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetTriggerEdge(ADC_TypeDef *ADCx, uint32_t ExternalTriggerEdge) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_EXTEN, ExternalTriggerEdge); } /** * @brief Get ADC group regular conversion trigger polarity. * @note Applicable only for trigger source set to external trigger. * @rmtoll CFGR EXTEN LL_ADC_REG_GetTriggerEdge * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_TRIG_EXT_RISING * @arg @ref LL_ADC_REG_TRIG_EXT_FALLING * @arg @ref LL_ADC_REG_TRIG_EXT_RISINGFALLING */ __STATIC_INLINE uint32_t LL_ADC_REG_GetTriggerEdge(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_EXTEN)); } /** * @brief Set ADC group regular sequencer length and scan direction. * @note Description of ADC group regular sequencer features: * - For devices with sequencer fully configurable * (function "LL_ADC_REG_SetSequencerRanks()" available): * sequencer length and each rank affectation to a channel * are configurable. * This function performs configuration of: * - Sequence length: Number of ranks in the scan sequence. * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from rank 1 to rank n). * Sequencer ranks are selected using * function "LL_ADC_REG_SetSequencerRanks()". * - For devices with sequencer not fully configurable * (function "LL_ADC_REG_SetSequencerChannels()" available): * sequencer length and each rank affectation to a channel * are defined by channel number. * This function performs configuration of: * - Sequence length: Number of ranks in the scan sequence is * defined by number of channels set in the sequence, * rank of each channel is fixed by channel HW number. * (channel 0 fixed on rank 0, channel 1 fixed on rank1, ...). * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from lowest channel number to * highest channel number). * Sequencer ranks are selected using * function "LL_ADC_REG_SetSequencerChannels()". * @note Sequencer disabled is equivalent to sequencer of 1 rank: * ADC conversion on only 1 channel. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll SQR1 L LL_ADC_REG_SetSequencerLength * @param ADCx ADC instance * @param SequencerNbRanks This parameter can be one of the following values: * @arg @ref LL_ADC_REG_SEQ_SCAN_DISABLE * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_2RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_4RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_5RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_6RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_7RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_8RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_9RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_10RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_11RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_12RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_13RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_14RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_15RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_16RANKS * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetSequencerLength(ADC_TypeDef *ADCx, uint32_t SequencerNbRanks) { MODIFY_REG(ADCx->SQR1, ADC_SQR1_L, SequencerNbRanks); } /** * @brief Get ADC group regular sequencer length and scan direction. * @note Description of ADC group regular sequencer features: * - For devices with sequencer fully configurable * (function "LL_ADC_REG_SetSequencerRanks()" available): * sequencer length and each rank affectation to a channel * are configurable. * This function retrieves: * - Sequence length: Number of ranks in the scan sequence. * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from rank 1 to rank n). * Sequencer ranks are selected using * function "LL_ADC_REG_SetSequencerRanks()". * - For devices with sequencer not fully configurable * (function "LL_ADC_REG_SetSequencerChannels()" available): * sequencer length and each rank affectation to a channel * are defined by channel number. * This function retrieves: * - Sequence length: Number of ranks in the scan sequence is * defined by number of channels set in the sequence, * rank of each channel is fixed by channel HW number. * (channel 0 fixed on rank 0, channel 1 fixed on rank1, ...). * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from lowest channel number to * highest channel number). * Sequencer ranks are selected using * function "LL_ADC_REG_SetSequencerChannels()". * @note Sequencer disabled is equivalent to sequencer of 1 rank: * ADC conversion on only 1 channel. * @rmtoll SQR1 L LL_ADC_REG_GetSequencerLength * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_SEQ_SCAN_DISABLE * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_2RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_4RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_5RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_6RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_7RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_8RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_9RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_10RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_11RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_12RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_13RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_14RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_15RANKS * @arg @ref LL_ADC_REG_SEQ_SCAN_ENABLE_16RANKS */ __STATIC_INLINE uint32_t LL_ADC_REG_GetSequencerLength(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->SQR1, ADC_SQR1_L)); } /** * @brief Set ADC group regular sequencer discontinuous mode: * sequence subdivided and scan conversions interrupted every selected * number of ranks. * @note It is not possible to enable both ADC group regular * continuous mode and sequencer discontinuous mode. * @note It is not possible to enable both ADC auto-injected mode * and ADC group regular sequencer discontinuous mode. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll CFGR DISCEN LL_ADC_REG_SetSequencerDiscont\n * CFGR DISCNUM LL_ADC_REG_SetSequencerDiscont * @param ADCx ADC instance * @param SeqDiscont This parameter can be one of the following values: * @arg @ref LL_ADC_REG_SEQ_DISCONT_DISABLE * @arg @ref LL_ADC_REG_SEQ_DISCONT_1RANK * @arg @ref LL_ADC_REG_SEQ_DISCONT_2RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_3RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_4RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_5RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_6RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_7RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_8RANKS * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetSequencerDiscont(ADC_TypeDef *ADCx, uint32_t SeqDiscont) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM, SeqDiscont); } /** * @brief Get ADC group regular sequencer discontinuous mode: * sequence subdivided and scan conversions interrupted every selected * number of ranks. * @rmtoll CFGR DISCEN LL_ADC_REG_GetSequencerDiscont\n * CFGR DISCNUM LL_ADC_REG_GetSequencerDiscont * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_SEQ_DISCONT_DISABLE * @arg @ref LL_ADC_REG_SEQ_DISCONT_1RANK * @arg @ref LL_ADC_REG_SEQ_DISCONT_2RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_3RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_4RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_5RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_6RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_7RANKS * @arg @ref LL_ADC_REG_SEQ_DISCONT_8RANKS */ __STATIC_INLINE uint32_t LL_ADC_REG_GetSequencerDiscont(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM)); } /** * @brief Set ADC group regular sequence: channel on the selected * scan sequence rank. * @note This function performs configuration of: * - Channels ordering into each rank of scan sequence: * whatever channel can be placed into whatever rank. * @note On this STM32 series, ADC group regular sequencer is * fully configurable: sequencer length and each rank * affectation to a channel are configurable. * Refer to description of function @ref LL_ADC_REG_SetSequencerLength(). * @note Depending on devices and packages, some channels may not be available. * Refer to device datasheet for channels availability. * @note On this STM32 series, to measure internal channels (VrefInt, * TempSensor, ...), measurement paths to internal channels must be * enabled separately. * This can be done using function @ref LL_ADC_SetCommonPathInternalCh(). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll SQR1 SQ1 LL_ADC_REG_SetSequencerRanks\n * SQR1 SQ2 LL_ADC_REG_SetSequencerRanks\n * SQR1 SQ3 LL_ADC_REG_SetSequencerRanks\n * SQR1 SQ4 LL_ADC_REG_SetSequencerRanks\n * SQR2 SQ5 LL_ADC_REG_SetSequencerRanks\n * SQR2 SQ6 LL_ADC_REG_SetSequencerRanks\n * SQR2 SQ7 LL_ADC_REG_SetSequencerRanks\n * SQR2 SQ8 LL_ADC_REG_SetSequencerRanks\n * SQR2 SQ9 LL_ADC_REG_SetSequencerRanks\n * SQR3 SQ10 LL_ADC_REG_SetSequencerRanks\n * SQR3 SQ11 LL_ADC_REG_SetSequencerRanks\n * SQR3 SQ12 LL_ADC_REG_SetSequencerRanks\n * SQR3 SQ13 LL_ADC_REG_SetSequencerRanks\n * SQR3 SQ14 LL_ADC_REG_SetSequencerRanks\n * SQR4 SQ15 LL_ADC_REG_SetSequencerRanks\n * SQR4 SQ16 LL_ADC_REG_SetSequencerRanks * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_REG_RANK_1 * @arg @ref LL_ADC_REG_RANK_2 * @arg @ref LL_ADC_REG_RANK_3 * @arg @ref LL_ADC_REG_RANK_4 * @arg @ref LL_ADC_REG_RANK_5 * @arg @ref LL_ADC_REG_RANK_6 * @arg @ref LL_ADC_REG_RANK_7 * @arg @ref LL_ADC_REG_RANK_8 * @arg @ref LL_ADC_REG_RANK_9 * @arg @ref LL_ADC_REG_RANK_10 * @arg @ref LL_ADC_REG_RANK_11 * @arg @ref LL_ADC_REG_RANK_12 * @arg @ref LL_ADC_REG_RANK_13 * @arg @ref LL_ADC_REG_RANK_14 * @arg @ref LL_ADC_REG_RANK_15 * @arg @ref LL_ADC_REG_RANK_16 * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetSequencerRanks(ADC_TypeDef *ADCx, uint32_t Rank, uint32_t Channel) { /* Set bits with content of parameter "Channel" with bits position */ /* in register and register position depending on parameter "Rank". */ /* Parameters "Rank" and "Channel" are used with masks because containing */ /* other bits reserved for other purpose. */ __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->SQR1, ((Rank & ADC_REG_SQRX_REGOFFSET_MASK) >> ADC_SQRX_REGOFFSET_POS)); MODIFY_REG(*preg, ADC_CHANNEL_ID_NUMBER_MASK_POSBIT0 << (Rank & ADC_REG_RANK_ID_SQRX_MASK), ((Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (Rank & ADC_REG_RANK_ID_SQRX_MASK)); } /** * @brief Get ADC group regular sequence: channel on the selected * scan sequence rank. * @note On this STM32 series, ADC group regular sequencer is * fully configurable: sequencer length and each rank * affectation to a channel are configurable. * Refer to description of function @ref LL_ADC_REG_SetSequencerLength(). * @note Depending on devices and packages, some channels may not be available. * Refer to device datasheet for channels availability. * @note Usage of the returned channel number: * - To reinject this channel into another function LL_ADC_xxx: * the returned channel number is only partly formatted on definition * of literals LL_ADC_CHANNEL_x. Therefore, it has to be compared * with parts of literals LL_ADC_CHANNEL_x or using * helper macro @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * Then the selected literal LL_ADC_CHANNEL_x can be used * as parameter for another function. * - To get the channel number in decimal format: * process the returned value with the helper macro * @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * @rmtoll SQR1 SQ1 LL_ADC_REG_GetSequencerRanks\n * SQR1 SQ2 LL_ADC_REG_GetSequencerRanks\n * SQR1 SQ3 LL_ADC_REG_GetSequencerRanks\n * SQR1 SQ4 LL_ADC_REG_GetSequencerRanks\n * SQR2 SQ5 LL_ADC_REG_GetSequencerRanks\n * SQR2 SQ6 LL_ADC_REG_GetSequencerRanks\n * SQR2 SQ7 LL_ADC_REG_GetSequencerRanks\n * SQR2 SQ8 LL_ADC_REG_GetSequencerRanks\n * SQR2 SQ9 LL_ADC_REG_GetSequencerRanks\n * SQR3 SQ10 LL_ADC_REG_GetSequencerRanks\n * SQR3 SQ11 LL_ADC_REG_GetSequencerRanks\n * SQR3 SQ12 LL_ADC_REG_GetSequencerRanks\n * SQR3 SQ13 LL_ADC_REG_GetSequencerRanks\n * SQR3 SQ14 LL_ADC_REG_GetSequencerRanks\n * SQR4 SQ15 LL_ADC_REG_GetSequencerRanks\n * SQR4 SQ16 LL_ADC_REG_GetSequencerRanks * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_REG_RANK_1 * @arg @ref LL_ADC_REG_RANK_2 * @arg @ref LL_ADC_REG_RANK_3 * @arg @ref LL_ADC_REG_RANK_4 * @arg @ref LL_ADC_REG_RANK_5 * @arg @ref LL_ADC_REG_RANK_6 * @arg @ref LL_ADC_REG_RANK_7 * @arg @ref LL_ADC_REG_RANK_8 * @arg @ref LL_ADC_REG_RANK_9 * @arg @ref LL_ADC_REG_RANK_10 * @arg @ref LL_ADC_REG_RANK_11 * @arg @ref LL_ADC_REG_RANK_12 * @arg @ref LL_ADC_REG_RANK_13 * @arg @ref LL_ADC_REG_RANK_14 * @arg @ref LL_ADC_REG_RANK_15 * @arg @ref LL_ADC_REG_RANK_16 * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 (7) * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT (1) * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR (4) * @arg @ref LL_ADC_CHANNEL_VBAT (4) * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to * 4.21 Ms/s)).\n * (1, 2, 3, 4) For ADC channel read back from ADC register, * comparison with internal channel parameter to be done * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). */ __STATIC_INLINE uint32_t LL_ADC_REG_GetSequencerRanks(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->SQR1, ((Rank & ADC_REG_SQRX_REGOFFSET_MASK) >> ADC_SQRX_REGOFFSET_POS)); return (uint32_t)((READ_BIT(*preg, ADC_CHANNEL_ID_NUMBER_MASK_POSBIT0 << (Rank & ADC_REG_RANK_ID_SQRX_MASK)) >> (Rank & ADC_REG_RANK_ID_SQRX_MASK)) << ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS ); } /** * @brief Set ADC continuous conversion mode on ADC group regular. * @note Description of ADC continuous conversion mode: * - single mode: one conversion per trigger * - continuous mode: after the first trigger, following * conversions launched successively automatically. * @note It is not possible to enable both ADC group regular * continuous mode and sequencer discontinuous mode. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll CFGR CONT LL_ADC_REG_SetContinuousMode * @param ADCx ADC instance * @param Continuous This parameter can be one of the following values: * @arg @ref LL_ADC_REG_CONV_SINGLE * @arg @ref LL_ADC_REG_CONV_CONTINUOUS * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetContinuousMode(ADC_TypeDef *ADCx, uint32_t Continuous) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_CONT, Continuous); } /** * @brief Get ADC continuous conversion mode on ADC group regular. * @note Description of ADC continuous conversion mode: * - single mode: one conversion per trigger * - continuous mode: after the first trigger, following * conversions launched successively automatically. * @rmtoll CFGR CONT LL_ADC_REG_GetContinuousMode * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_CONV_SINGLE * @arg @ref LL_ADC_REG_CONV_CONTINUOUS */ __STATIC_INLINE uint32_t LL_ADC_REG_GetContinuousMode(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_CONT)); } /** * @brief Set ADC group regular conversion data transfer: no transfer or * transfer by DMA, and DMA requests mode. * @note If transfer by DMA selected, specifies the DMA requests * mode: * - Limited mode (One shot mode): DMA transfer requests are stopped * when number of DMA data transfers (number of * ADC conversions) is reached. * This ADC mode is intended to be used with DMA mode non-circular. * - Unlimited mode: DMA transfer requests are unlimited, * whatever number of DMA data transfers (number of * ADC conversions). * This ADC mode is intended to be used with DMA mode circular. * @note If ADC DMA requests mode is set to unlimited and DMA is set to * mode non-circular: * when DMA transfers size will be reached, DMA will stop transfers of * ADC conversions data ADC will raise an overrun error * (overrun flag and interruption if enabled). * @note For devices with several ADC instances: ADC multimode DMA * settings are available using function @ref LL_ADC_SetMultiDMATransfer(). * @note To configure DMA source address (peripheral address), * use function @ref LL_ADC_DMA_GetRegAddr(). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR DMAEN LL_ADC_REG_SetDMATransfer\n * CFGR DMACFG LL_ADC_REG_SetDMATransfer * @param ADCx ADC instance * @param DMATransfer This parameter can be one of the following values: * @arg @ref LL_ADC_REG_DMA_TRANSFER_NONE * @arg @ref LL_ADC_REG_DMA_TRANSFER_LIMITED * @arg @ref LL_ADC_REG_DMA_TRANSFER_UNLIMITED * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetDMATransfer(ADC_TypeDef *ADCx, uint32_t DMATransfer) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_DMAEN | ADC_CFGR_DMACFG, DMATransfer); } /** * @brief Get ADC group regular conversion data transfer: no transfer or * transfer by DMA, and DMA requests mode. * @note If transfer by DMA selected, specifies the DMA requests * mode: * - Limited mode (One shot mode): DMA transfer requests are stopped * when number of DMA data transfers (number of * ADC conversions) is reached. * This ADC mode is intended to be used with DMA mode non-circular. * - Unlimited mode: DMA transfer requests are unlimited, * whatever number of DMA data transfers (number of * ADC conversions). * This ADC mode is intended to be used with DMA mode circular. * @note If ADC DMA requests mode is set to unlimited and DMA is set to * mode non-circular: * when DMA transfers size will be reached, DMA will stop transfers of * ADC conversions data ADC will raise an overrun error * (overrun flag and interruption if enabled). * @note For devices with several ADC instances: ADC multimode DMA * settings are available using function @ref LL_ADC_GetMultiDMATransfer(). * @note To configure DMA source address (peripheral address), * use function @ref LL_ADC_DMA_GetRegAddr(). * @rmtoll CFGR DMAEN LL_ADC_REG_GetDMATransfer\n * CFGR DMACFG LL_ADC_REG_GetDMATransfer * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_DMA_TRANSFER_NONE * @arg @ref LL_ADC_REG_DMA_TRANSFER_LIMITED * @arg @ref LL_ADC_REG_DMA_TRANSFER_UNLIMITED */ __STATIC_INLINE uint32_t LL_ADC_REG_GetDMATransfer(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_DMAEN | ADC_CFGR_DMACFG)); } #if defined(DFSDM1_Channel0) /** * @brief Set ADC group regular conversion data transfer to DFSDM. * @note DFSDM transfer cannot be used if DMA transfer is enabled. * @note To configure DFSDM source address (peripheral address), * use the same function as for DMA transfer: * function @ref LL_ADC_DMA_GetRegAddr(). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR DFSDMCFG LL_ADC_REG_GetDFSDMTransfer * @param ADCx ADC instance * @param DFSDMTransfer This parameter can be one of the following values: * @arg @ref LL_ADC_REG_DFSDM_TRANSFER_NONE * @arg @ref LL_ADC_REG_DFSDM_TRANSFER_ENABLE * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetDFSDMTransfer(ADC_TypeDef *ADCx, uint32_t DFSDMTransfer) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_DFSDMCFG, DFSDMTransfer); } /** * @brief Get ADC group regular conversion data transfer to DFSDM. * @rmtoll CFGR DFSDMCFG LL_ADC_REG_GetDFSDMTransfer * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_DFSDM_TRANSFER_NONE * @arg @ref LL_ADC_REG_DFSDM_TRANSFER_ENABLE */ __STATIC_INLINE uint32_t LL_ADC_REG_GetDFSDMTransfer(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_DFSDMCFG)); } #endif /* ADC_CFGR_DFSDMCFG */ /** * @brief Set ADC group regular behavior in case of overrun: * data preserved or overwritten. * @note Compatibility with devices without feature overrun: * other devices without this feature have a behavior * equivalent to data overwritten. * The default setting of overrun is data preserved. * Therefore, for compatibility with all devices, parameter * overrun should be set to data overwritten. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @rmtoll CFGR OVRMOD LL_ADC_REG_SetOverrun * @param ADCx ADC instance * @param Overrun This parameter can be one of the following values: * @arg @ref LL_ADC_REG_OVR_DATA_PRESERVED * @arg @ref LL_ADC_REG_OVR_DATA_OVERWRITTEN * @retval None */ __STATIC_INLINE void LL_ADC_REG_SetOverrun(ADC_TypeDef *ADCx, uint32_t Overrun) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_OVRMOD, Overrun); } /** * @brief Get ADC group regular behavior in case of overrun: * data preserved or overwritten. * @rmtoll CFGR OVRMOD LL_ADC_REG_GetOverrun * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_REG_OVR_DATA_PRESERVED * @arg @ref LL_ADC_REG_OVR_DATA_OVERWRITTEN */ __STATIC_INLINE uint32_t LL_ADC_REG_GetOverrun(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_OVRMOD)); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_Group_Injected Configuration of ADC hierarchical scope: group injected * @{ */ /** * @brief Set ADC group injected conversion trigger source: * internal (SW start) or from external peripheral (timer event, * external interrupt line). * @note On this STM32 series, setting trigger source to external trigger * also set trigger polarity to rising edge * (default setting for compatibility with some ADC on other * STM32 series having this setting set by HW default value). * In case of need to modify trigger edge, use * function @ref LL_ADC_INJ_SetTriggerEdge(). * @note Availability of parameters of trigger sources from timer * depends on timers availability on the selected device. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must not be disabled. Can be enabled with or without conversion * on going on either groups regular or injected. * @rmtoll JSQR JEXTSEL LL_ADC_INJ_SetTriggerSource\n * JSQR JEXTEN LL_ADC_INJ_SetTriggerSource * @param ADCx ADC instance * @param TriggerSource This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_SOFTWARE * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH3 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM4_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM6_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM15_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_EXTI_LINE15 * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetTriggerSource(ADC_TypeDef *ADCx, uint32_t TriggerSource) { MODIFY_REG(ADCx->JSQR, ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN, TriggerSource); } /** * @brief Get ADC group injected conversion trigger source: * internal (SW start) or from external peripheral (timer event, * external interrupt line). * @note To determine whether group injected trigger source is * internal (SW start) or external, without detail * of which peripheral is selected as external trigger, * (equivalent to * "if(LL_ADC_INJ_GetTriggerSource(ADC1) == LL_ADC_INJ_TRIG_SOFTWARE)") * use function @ref LL_ADC_INJ_IsTriggerSourceSWStart. * @note Availability of parameters of trigger sources from timer * depends on timers availability on the selected device. * @rmtoll JSQR JEXTSEL LL_ADC_INJ_GetTriggerSource\n * JSQR JEXTEN LL_ADC_INJ_GetTriggerSource * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_SOFTWARE * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH3 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM4_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM6_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM15_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_EXTI_LINE15 */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetTriggerSource(const ADC_TypeDef *ADCx) { __IO uint32_t trigger_source = READ_BIT(ADCx->JSQR, ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN); /* Value for shift of {0; 4; 8; 12} depending on value of bitfield */ /* corresponding to ADC_JSQR_JEXTEN {0; 1; 2; 3}. */ uint32_t shift_jexten = ((trigger_source & ADC_JSQR_JEXTEN) >> (ADC_INJ_TRIG_EXTEN_BITOFFSET_POS - 2UL)); /* Set bitfield corresponding to ADC_JSQR_JEXTEN and ADC_JSQR_JEXTSEL */ /* to match with triggers literals definition. */ return ((trigger_source & (ADC_INJ_TRIG_SOURCE_MASK >> shift_jexten) & ADC_JSQR_JEXTSEL) | ((ADC_INJ_TRIG_EDGE_MASK >> shift_jexten) & ADC_JSQR_JEXTEN) ); } /** * @brief Get ADC group injected conversion trigger source internal (SW start) or external * @note In case of group injected trigger source set to external trigger, * to determine which peripheral is selected as external trigger, * use function @ref LL_ADC_INJ_GetTriggerSource. * @rmtoll JSQR JEXTEN LL_ADC_INJ_IsTriggerSourceSWStart * @param ADCx ADC instance * @retval Value "0" if trigger source external trigger * Value "1" if trigger source SW start. */ __STATIC_INLINE uint32_t LL_ADC_INJ_IsTriggerSourceSWStart(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->JSQR, ADC_JSQR_JEXTEN) == (LL_ADC_INJ_TRIG_SOFTWARE & ADC_JSQR_JEXTEN)) ? 1UL : 0UL); } /** * @brief Set ADC group injected conversion trigger polarity. * Applicable only for trigger source set to external trigger. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must not be disabled. Can be enabled with or without conversion * on going on either groups regular or injected. * @rmtoll JSQR JEXTEN LL_ADC_INJ_SetTriggerEdge * @param ADCx ADC instance * @param ExternalTriggerEdge This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_EXT_RISING * @arg @ref LL_ADC_INJ_TRIG_EXT_FALLING * @arg @ref LL_ADC_INJ_TRIG_EXT_RISINGFALLING * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetTriggerEdge(ADC_TypeDef *ADCx, uint32_t ExternalTriggerEdge) { MODIFY_REG(ADCx->JSQR, ADC_JSQR_JEXTEN, ExternalTriggerEdge); } /** * @brief Get ADC group injected conversion trigger polarity. * Applicable only for trigger source set to external trigger. * @rmtoll JSQR JEXTEN LL_ADC_INJ_GetTriggerEdge * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_EXT_RISING * @arg @ref LL_ADC_INJ_TRIG_EXT_FALLING * @arg @ref LL_ADC_INJ_TRIG_EXT_RISINGFALLING */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetTriggerEdge(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->JSQR, ADC_JSQR_JEXTEN)); } /** * @brief Set ADC group injected sequencer length and scan direction. * @note This function performs configuration of: * - Sequence length: Number of ranks in the scan sequence. * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from rank 1 to rank n). * @note Sequencer disabled is equivalent to sequencer of 1 rank: * ADC conversion on only 1 channel. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must not be disabled. Can be enabled with or without conversion * on going on either groups regular or injected. * @rmtoll JSQR JL LL_ADC_INJ_SetSequencerLength * @param ADCx ADC instance * @param SequencerNbRanks This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_SEQ_SCAN_DISABLE * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_3RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_4RANKS * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetSequencerLength(ADC_TypeDef *ADCx, uint32_t SequencerNbRanks) { MODIFY_REG(ADCx->JSQR, ADC_JSQR_JL, SequencerNbRanks); } /** * @brief Get ADC group injected sequencer length and scan direction. * @note This function retrieves: * - Sequence length: Number of ranks in the scan sequence. * - Sequence direction: Unless specified in parameters, sequencer * scan direction is forward (from rank 1 to rank n). * @note Sequencer disabled is equivalent to sequencer of 1 rank: * ADC conversion on only 1 channel. * @rmtoll JSQR JL LL_ADC_INJ_GetSequencerLength * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_SEQ_SCAN_DISABLE * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_3RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_4RANKS */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetSequencerLength(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->JSQR, ADC_JSQR_JL)); } /** * @brief Set ADC group injected sequencer discontinuous mode: * sequence subdivided and scan conversions interrupted every selected * number of ranks. * @note It is not possible to enable both ADC group injected * auto-injected mode and sequencer discontinuous mode. * @rmtoll CFGR JDISCEN LL_ADC_INJ_SetSequencerDiscont * @param ADCx ADC instance * @param SeqDiscont This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_SEQ_DISCONT_DISABLE * @arg @ref LL_ADC_INJ_SEQ_DISCONT_1RANK * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetSequencerDiscont(ADC_TypeDef *ADCx, uint32_t SeqDiscont) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_JDISCEN, SeqDiscont); } /** * @brief Get ADC group injected sequencer discontinuous mode: * sequence subdivided and scan conversions interrupted every selected * number of ranks. * @rmtoll CFGR JDISCEN LL_ADC_INJ_GetSequencerDiscont * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_SEQ_DISCONT_DISABLE * @arg @ref LL_ADC_INJ_SEQ_DISCONT_1RANK */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetSequencerDiscont(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_JDISCEN)); } /** * @brief Set ADC group injected sequence: channel on the selected * sequence rank. * @note Depending on devices and packages, some channels may not be available. * Refer to device datasheet for channels availability. * @note On this STM32 series, to measure internal channels (VrefInt, * TempSensor, ...), measurement paths to internal channels must be * enabled separately. * This can be done using function @ref LL_ADC_SetCommonPathInternalCh(). * @note On STM32L5, some fast channels are available: fast analog inputs * coming from GPIO pads (ADC_IN0..5). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must not be disabled. Can be enabled with or without conversion * on going on either groups regular or injected. * @rmtoll JSQR JSQ1 LL_ADC_INJ_SetSequencerRanks\n * JSQR JSQ2 LL_ADC_INJ_SetSequencerRanks\n * JSQR JSQ3 LL_ADC_INJ_SetSequencerRanks\n * JSQR JSQ4 LL_ADC_INJ_SetSequencerRanks * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetSequencerRanks(ADC_TypeDef *ADCx, uint32_t Rank, uint32_t Channel) { /* Set bits with content of parameter "Channel" with bits position */ /* in register depending on parameter "Rank". */ /* Parameters "Rank" and "Channel" are used with masks because containing */ /* other bits reserved for other purpose. */ MODIFY_REG(ADCx->JSQR, (ADC_CHANNEL_ID_NUMBER_MASK >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (Rank & ADC_INJ_RANK_ID_JSQR_MASK), ((Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (Rank & ADC_INJ_RANK_ID_JSQR_MASK)); } /** * @brief Get ADC group injected sequence: channel on the selected * sequence rank. * @note Depending on devices and packages, some channels may not be available. * Refer to device datasheet for channels availability. * @note Usage of the returned channel number: * - To reinject this channel into another function LL_ADC_xxx: * the returned channel number is only partly formatted on definition * of literals LL_ADC_CHANNEL_x. Therefore, it has to be compared * with parts of literals LL_ADC_CHANNEL_x or using * helper macro @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * Then the selected literal LL_ADC_CHANNEL_x can be used * as parameter for another function. * - To get the channel number in decimal format: * process the returned value with the helper macro * @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * @rmtoll JSQR JSQ1 LL_ADC_INJ_GetSequencerRanks\n * JSQR JSQ2 LL_ADC_INJ_GetSequencerRanks\n * JSQR JSQ3 LL_ADC_INJ_GetSequencerRanks\n * JSQR JSQ4 LL_ADC_INJ_GetSequencerRanks * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 (7) * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT (1) * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR (4) * @arg @ref LL_ADC_CHANNEL_VBAT (4) * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to * 4.21 Ms/s)).\n * (1, 2, 3, 4) For ADC channel read back from ADC register, * comparison with internal channel parameter to be done * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetSequencerRanks(const ADC_TypeDef *ADCx, uint32_t Rank) { return (uint32_t)((READ_BIT(ADCx->JSQR, (ADC_CHANNEL_ID_NUMBER_MASK >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (Rank & ADC_INJ_RANK_ID_JSQR_MASK)) >> (Rank & ADC_INJ_RANK_ID_JSQR_MASK)) << ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS ); } /** * @brief Set ADC group injected conversion trigger: * independent or from ADC group regular. * @note This mode can be used to extend number of data registers * updated after one ADC conversion trigger and with data * permanently kept (not erased by successive conversions of scan of * ADC sequencer ranks), up to 5 data registers: * 1 data register on ADC group regular, 4 data registers * on ADC group injected. * @note If ADC group injected injected trigger source is set to an * external trigger, this feature must be must be set to * independent trigger. * ADC group injected automatic trigger is compliant only with * group injected trigger source set to SW start, without any * further action on ADC group injected conversion start or stop: * in this case, ADC group injected is controlled only * from ADC group regular. * @note It is not possible to enable both ADC group injected * auto-injected mode and sequencer discontinuous mode. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR JAUTO LL_ADC_INJ_SetTrigAuto * @param ADCx ADC instance * @param TrigAuto This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_INDEPENDENT * @arg @ref LL_ADC_INJ_TRIG_FROM_GRP_REGULAR * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetTrigAuto(ADC_TypeDef *ADCx, uint32_t TrigAuto) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_JAUTO, TrigAuto); } /** * @brief Get ADC group injected conversion trigger: * independent or from ADC group regular. * @rmtoll CFGR JAUTO LL_ADC_INJ_GetTrigAuto * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_INDEPENDENT * @arg @ref LL_ADC_INJ_TRIG_FROM_GRP_REGULAR */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetTrigAuto(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_JAUTO)); } /** * @brief Set ADC group injected contexts queue mode. * @note A context is a setting of group injected sequencer: * - group injected trigger * - sequencer length * - sequencer ranks * If contexts queue is disabled: * - only 1 sequence can be configured * and is active perpetually. * If contexts queue is enabled: * - up to 2 contexts can be queued * and are checked in and out as a FIFO stack (first-in, first-out). * - If a new context is set when queues is full, error is triggered * by interruption "Injected Queue Overflow". * - Two behaviors are possible when all contexts have been processed: * the contexts queue can maintain the last context active perpetually * or can be empty and injected group triggers are disabled. * - Triggers can be only external (not internal SW start) * - Caution: The sequence must be fully configured in one time * (one write of register JSQR makes a check-in of a new context * into the queue). * Therefore functions to set separately injected trigger and * sequencer channels cannot be used, register JSQR must be set * using function @ref LL_ADC_INJ_ConfigQueueContext(). * @note This parameter can be modified only when no conversion is on going * on either groups regular or injected. * @note A modification of the context mode (bit JQDIS) causes the contexts * queue to be flushed and the register JSQR is cleared. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR JQM LL_ADC_INJ_SetQueueMode\n * CFGR JQDIS LL_ADC_INJ_SetQueueMode * @param ADCx ADC instance * @param QueueMode This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_QUEUE_DISABLE * @arg @ref LL_ADC_INJ_QUEUE_2CONTEXTS_LAST_ACTIVE * @arg @ref LL_ADC_INJ_QUEUE_2CONTEXTS_END_EMPTY * @retval None */ __STATIC_INLINE void LL_ADC_INJ_SetQueueMode(ADC_TypeDef *ADCx, uint32_t QueueMode) { MODIFY_REG(ADCx->CFGR, ADC_CFGR_JQM | ADC_CFGR_JQDIS, QueueMode); } /** * @brief Get ADC group injected context queue mode. * @rmtoll CFGR JQM LL_ADC_INJ_GetQueueMode\n * CFGR JQDIS LL_ADC_INJ_GetQueueMode * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_INJ_QUEUE_DISABLE * @arg @ref LL_ADC_INJ_QUEUE_2CONTEXTS_LAST_ACTIVE * @arg @ref LL_ADC_INJ_QUEUE_2CONTEXTS_END_EMPTY */ __STATIC_INLINE uint32_t LL_ADC_INJ_GetQueueMode(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR, ADC_CFGR_JQM | ADC_CFGR_JQDIS)); } /** * @brief Set one context on ADC group injected that will be checked in * contexts queue. * @note A context is a setting of group injected sequencer: * - group injected trigger * - sequencer length * - sequencer ranks * This function is intended to be used when contexts queue is enabled, * because the sequence must be fully configured in one time * (functions to set separately injected trigger and sequencer channels * cannot be used): * Refer to function @ref LL_ADC_INJ_SetQueueMode(). * @note In the contexts queue, only the active context can be read. * The parameters of this function can be read using functions: * @arg @ref LL_ADC_INJ_GetTriggerSource() * @arg @ref LL_ADC_INJ_GetTriggerEdge() * @arg @ref LL_ADC_INJ_GetSequencerRanks() * @note On this STM32 series, to measure internal channels (VrefInt, * TempSensor, ...), measurement paths to internal channels must be * enabled separately. * This can be done using function @ref LL_ADC_SetCommonPathInternalCh(). * @note On STM32L5, some fast channels are available: fast analog inputs * coming from GPIO pads (ADC_IN0..5). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must not be disabled. Can be enabled with or without conversion * on going on either groups regular or injected. * @rmtoll JSQR JEXTSEL LL_ADC_INJ_ConfigQueueContext\n * JSQR JEXTEN LL_ADC_INJ_ConfigQueueContext\n * JSQR JL LL_ADC_INJ_ConfigQueueContext\n * JSQR JSQ1 LL_ADC_INJ_ConfigQueueContext\n * JSQR JSQ2 LL_ADC_INJ_ConfigQueueContext\n * JSQR JSQ3 LL_ADC_INJ_ConfigQueueContext\n * JSQR JSQ4 LL_ADC_INJ_ConfigQueueContext * @param ADCx ADC instance * @param TriggerSource This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_SOFTWARE * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM1_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM2_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH1 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH3 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM3_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM4_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM6_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_CH4 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2 * @arg @ref LL_ADC_INJ_TRIG_EXT_TIM15_TRGO * @arg @ref LL_ADC_INJ_TRIG_EXT_EXTI_LINE15 * @param ExternalTriggerEdge This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_TRIG_EXT_RISING * @arg @ref LL_ADC_INJ_TRIG_EXT_FALLING * @arg @ref LL_ADC_INJ_TRIG_EXT_RISINGFALLING * * Note: This parameter is discarded in case of SW start: * parameter "TriggerSource" set to "LL_ADC_INJ_TRIG_SOFTWARE". * @param SequencerNbRanks This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_SEQ_SCAN_DISABLE * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_3RANKS * @arg @ref LL_ADC_INJ_SEQ_SCAN_ENABLE_4RANKS * @param Rank1_Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @param Rank2_Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @param Rank3_Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @param Rank4_Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval None */ __STATIC_INLINE void LL_ADC_INJ_ConfigQueueContext(ADC_TypeDef *ADCx, uint32_t TriggerSource, uint32_t ExternalTriggerEdge, uint32_t SequencerNbRanks, uint32_t Rank1_Channel, uint32_t Rank2_Channel, uint32_t Rank3_Channel, uint32_t Rank4_Channel) { /* Set bits with content of parameter "Rankx_Channel" with bits position */ /* in register depending on literal "LL_ADC_INJ_RANK_x". */ /* Parameters "Rankx_Channel" and "LL_ADC_INJ_RANK_x" are used with masks */ /* because containing other bits reserved for other purpose. */ /* If parameter "TriggerSource" is set to SW start, then parameter */ /* "ExternalTriggerEdge" is discarded. */ uint32_t is_trigger_not_sw = (uint32_t)((TriggerSource != LL_ADC_INJ_TRIG_SOFTWARE) ? 1UL : 0UL); MODIFY_REG(ADCx->JSQR, ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN | ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 | ADC_JSQR_JL, (TriggerSource & ADC_JSQR_JEXTSEL) | (ExternalTriggerEdge * (is_trigger_not_sw)) | (((Rank4_Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (LL_ADC_INJ_RANK_4 & ADC_INJ_RANK_ID_JSQR_MASK)) | (((Rank3_Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (LL_ADC_INJ_RANK_3 & ADC_INJ_RANK_ID_JSQR_MASK)) | (((Rank2_Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (LL_ADC_INJ_RANK_2 & ADC_INJ_RANK_ID_JSQR_MASK)) | (((Rank1_Channel & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << (LL_ADC_INJ_RANK_1 & ADC_INJ_RANK_ID_JSQR_MASK)) | SequencerNbRanks ); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_Channels Configuration of ADC hierarchical scope: channels * @{ */ /** * @brief Set sampling time of the selected ADC channel * Unit: ADC clock cycles. * @note On this device, sampling time is on channel scope: independently * of channel mapped on ADC group regular or injected. * @note In case of internal channel (VrefInt, TempSensor, ...) to be * converted: * sampling time constraints must be respected (sampling time can be * adjusted in function of ADC clock frequency and sampling time * setting). * Refer to device datasheet for timings values (parameters TS_vrefint, * TS_temp, ...). * @note Conversion time is the addition of sampling time and processing time. * On this STM32 series, ADC processing time is: * - 12.5 ADC clock cycles at ADC resolution 12 bits * - 10.5 ADC clock cycles at ADC resolution 10 bits * - 8.5 ADC clock cycles at ADC resolution 8 bits * - 6.5 ADC clock cycles at ADC resolution 6 bits * @note In case of ADC conversion of internal channel (VrefInt, * temperature sensor, ...), a sampling time minimum value * is required. * Refer to device datasheet. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll SMPR1 SMP0 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP1 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP2 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP3 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP4 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP5 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP6 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP7 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP8 LL_ADC_SetChannelSamplingTime\n * SMPR1 SMP9 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP10 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP11 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP12 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP13 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP14 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP15 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP16 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP17 LL_ADC_SetChannelSamplingTime\n * SMPR2 SMP18 LL_ADC_SetChannelSamplingTime * @param ADCx ADC instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @param SamplingTime This parameter can be one of the following values: * @arg @ref LL_ADC_SAMPLINGTIME_2CYCLES_5 (1) * @arg @ref LL_ADC_SAMPLINGTIME_6CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_12CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_24CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_47CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_92CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_247CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_640CYCLES_5 * * (1) On some devices, ADC sampling time 2.5 ADC clock cycles * can be replaced by 3.5 ADC clock cycles. * Refer to function @ref LL_ADC_SetSamplingTimeCommonConfig(). * @retval None */ __STATIC_INLINE void LL_ADC_SetChannelSamplingTime(ADC_TypeDef *ADCx, uint32_t Channel, uint32_t SamplingTime) { /* Set bits with content of parameter "SamplingTime" with bits position */ /* in register and register position depending on parameter "Channel". */ /* Parameter "Channel" is used with masks because containing */ /* other bits reserved for other purpose. */ __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->SMPR1, ((Channel & ADC_CHANNEL_SMPRX_REGOFFSET_MASK) >> ADC_SMPRX_REGOFFSET_POS)); MODIFY_REG(*preg, ADC_SMPR1_SMP0 << ((Channel & ADC_CHANNEL_SMPx_BITOFFSET_MASK) >> ADC_CHANNEL_SMPx_BITOFFSET_POS), SamplingTime << ((Channel & ADC_CHANNEL_SMPx_BITOFFSET_MASK) >> ADC_CHANNEL_SMPx_BITOFFSET_POS)); } /** * @brief Get sampling time of the selected ADC channel * Unit: ADC clock cycles. * @note On this device, sampling time is on channel scope: independently * of channel mapped on ADC group regular or injected. * @note Conversion time is the addition of sampling time and processing time. * On this STM32 series, ADC processing time is: * - 12.5 ADC clock cycles at ADC resolution 12 bits * - 10.5 ADC clock cycles at ADC resolution 10 bits * - 8.5 ADC clock cycles at ADC resolution 8 bits * - 6.5 ADC clock cycles at ADC resolution 6 bits * @rmtoll SMPR1 SMP0 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP1 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP2 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP3 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP4 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP5 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP6 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP7 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP8 LL_ADC_GetChannelSamplingTime\n * SMPR1 SMP9 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP10 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP11 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP12 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP13 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP14 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP15 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP16 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP17 LL_ADC_GetChannelSamplingTime\n * SMPR2 SMP18 LL_ADC_GetChannelSamplingTime * @param ADCx ADC instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_0 * @arg @ref LL_ADC_CHANNEL_1 (7) * @arg @ref LL_ADC_CHANNEL_2 (7) * @arg @ref LL_ADC_CHANNEL_3 (7) * @arg @ref LL_ADC_CHANNEL_4 (7) * @arg @ref LL_ADC_CHANNEL_5 (7) * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @arg @ref LL_ADC_CHANNEL_15 * @arg @ref LL_ADC_CHANNEL_16 * @arg @ref LL_ADC_CHANNEL_17 * @arg @ref LL_ADC_CHANNEL_18 * @arg @ref LL_ADC_CHANNEL_VREFINT * @arg @ref LL_ADC_CHANNEL_TEMPSENSOR * @arg @ref LL_ADC_CHANNEL_VBAT * @arg @ref LL_ADC_CHANNEL_DAC1CH1_ADC2 (2)(6) * @arg @ref LL_ADC_CHANNEL_DAC1CH2_ADC2 (2)(6) * * (2) On STM32L5, parameter available only on ADC instance: ADC2.\n * (6) On STM32L5, parameter available on devices with several ADC instances.\n * (7) On STM32L5, fast channel (0.188 us for 12-bit resolution (ADC conversion rate up to 5.33 Ms/s)). * Other channels are slow channels (0.238 us for 12-bit resolution (ADC conversion rate up to 4.21 Ms/s)). * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_SAMPLINGTIME_2CYCLES_5 (1) * @arg @ref LL_ADC_SAMPLINGTIME_6CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_12CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_24CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_47CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_92CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_247CYCLES_5 * @arg @ref LL_ADC_SAMPLINGTIME_640CYCLES_5 * * (1) On some devices, ADC sampling time 2.5 ADC clock cycles * can be replaced by 3.5 ADC clock cycles. * Refer to function @ref LL_ADC_SetSamplingTimeCommonConfig(). */ __STATIC_INLINE uint32_t LL_ADC_GetChannelSamplingTime(const ADC_TypeDef *ADCx, uint32_t Channel) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->SMPR1, ((Channel & ADC_CHANNEL_SMPRX_REGOFFSET_MASK) >> ADC_SMPRX_REGOFFSET_POS)); return (uint32_t)(READ_BIT(*preg, ADC_SMPR1_SMP0 << ((Channel & ADC_CHANNEL_SMPx_BITOFFSET_MASK) >> ADC_CHANNEL_SMPx_BITOFFSET_POS)) >> ((Channel & ADC_CHANNEL_SMPx_BITOFFSET_MASK) >> ADC_CHANNEL_SMPx_BITOFFSET_POS) ); } /** * @brief Set mode single-ended or differential input of the selected * ADC channel. * @note Channel ending is on channel scope: independently of channel mapped * on ADC group regular or injected. * In differential mode: Differential measurement is carried out * between the selected channel 'i' (positive input) and * channel 'i+1' (negative input). Only channel 'i' has to be * configured, channel 'i+1' is configured automatically. * @note Refer to Reference Manual to ensure the selected channel is * available in differential mode. * For example, internal channels (VrefInt, TempSensor, ...) are * not available in differential mode. * @note When configuring a channel 'i' in differential mode, * the channel 'i+1' is not usable separately. * @note On STM32L5, channels 0, 16, 17, 18 of ADC1 and ADC2 * are internally fixed to single-ended inputs configuration. * @note For ADC channels configured in differential mode, both inputs * should be biased at (Vref+)/2 +/-200mV. * (Vref+ is the analog voltage reference) * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @note One or several values can be selected. * Example: (LL_ADC_CHANNEL_4 | LL_ADC_CHANNEL_12 | ...) * @rmtoll DIFSEL DIFSEL LL_ADC_SetChannelSingleDiff * @param ADCx ADC instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_ADC_CHANNEL_1 * @arg @ref LL_ADC_CHANNEL_2 * @arg @ref LL_ADC_CHANNEL_3 * @arg @ref LL_ADC_CHANNEL_4 * @arg @ref LL_ADC_CHANNEL_5 * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @param SingleDiff This parameter can be a combination of the following values: * @arg @ref LL_ADC_SINGLE_ENDED * @arg @ref LL_ADC_DIFFERENTIAL_ENDED * @retval None */ __STATIC_INLINE void LL_ADC_SetChannelSingleDiff(ADC_TypeDef *ADCx, uint32_t Channel, uint32_t SingleDiff) { /* Bits of channels in single or differential mode are set only for */ /* differential mode (for single mode, mask of bits allowed to be set is */ /* shifted out of range of bits of channels in single or differential mode. */ MODIFY_REG(ADCx->DIFSEL, Channel & ADC_SINGLEDIFF_CHANNEL_MASK, (Channel & ADC_SINGLEDIFF_CHANNEL_MASK) & (ADC_DIFSEL_DIFSEL >> (SingleDiff & ADC_SINGLEDIFF_CHANNEL_SHIFT_MASK))); } /** * @brief Get mode single-ended or differential input of the selected * ADC channel. * @note When configuring a channel 'i' in differential mode, * the channel 'i+1' is not usable separately. * Therefore, to ensure a channel is configured in single-ended mode, * the configuration of channel itself and the channel 'i-1' must be * read back (to ensure that the selected channel channel has not been * configured in differential mode by the previous channel). * @note Refer to Reference Manual to ensure the selected channel is * available in differential mode. * For example, internal channels (VrefInt, TempSensor, ...) are * not available in differential mode. * @note When configuring a channel 'i' in differential mode, * the channel 'i+1' is not usable separately. * @note On STM32L5, channels 0, 16, 17, 18 of ADC1 and ADC2 * are internally fixed to single-ended inputs configuration. */ /* * @note One or several values can be selected. In this case, the value * returned is null if all channels are in single ended-mode. * Example: (LL_ADC_CHANNEL_4 | LL_ADC_CHANNEL_12 | ...) * @rmtoll DIFSEL DIFSEL LL_ADC_GetChannelSingleDiff * @param ADCx ADC instance * @param Channel This parameter can be a combination of the following values: * @arg @ref LL_ADC_CHANNEL_1 * @arg @ref LL_ADC_CHANNEL_2 * @arg @ref LL_ADC_CHANNEL_3 * @arg @ref LL_ADC_CHANNEL_4 * @arg @ref LL_ADC_CHANNEL_5 * @arg @ref LL_ADC_CHANNEL_6 * @arg @ref LL_ADC_CHANNEL_7 * @arg @ref LL_ADC_CHANNEL_8 * @arg @ref LL_ADC_CHANNEL_9 * @arg @ref LL_ADC_CHANNEL_10 * @arg @ref LL_ADC_CHANNEL_11 * @arg @ref LL_ADC_CHANNEL_12 * @arg @ref LL_ADC_CHANNEL_13 * @arg @ref LL_ADC_CHANNEL_14 * @retval 0: channel in single-ended mode, else: channel in differential mode */ __STATIC_INLINE uint32_t LL_ADC_GetChannelSingleDiff(const ADC_TypeDef *ADCx, uint32_t Channel) { return (uint32_t)(READ_BIT(ADCx->DIFSEL, (Channel & ADC_SINGLEDIFF_CHANNEL_MASK))); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_AnalogWatchdog Configuration of ADC transversal scope: analog watchdog * @{ */ /** * @brief Set ADC analog watchdog monitored channels: * a single channel, multiple channels or all channels, * on ADC groups regular and-or injected. * @note Once monitored channels are selected, analog watchdog * is enabled. * @note In case of need to define a single channel to monitor * with analog watchdog from sequencer channel definition, * use helper macro @ref __LL_ADC_ANALOGWD_CHANNEL_GROUP(). * @note On this STM32 series, there are 2 kinds of analog watchdog * instance: * - AWD standard (instance AWD1): * - channels monitored: can monitor 1 channel or all channels. * - groups monitored: ADC groups regular and-or injected. * - resolution: resolution is not limited (corresponds to * ADC resolution configured). * - AWD flexible (instances AWD2, AWD3): * - channels monitored: flexible on channels monitored, selection is * channel wise, from from 1 to all channels. * Specificity of this analog watchdog: Multiple channels can * be selected. For example: * (LL_ADC_AWD_CHANNEL4_REG_INJ | LL_ADC_AWD_CHANNEL5_REG_INJ | ...) * - groups monitored: not selection possible (monitoring on both * groups regular and injected). * Channels selected are monitored on groups regular and injected: * LL_ADC_AWD_CHANNELxx_REG_INJ (do not use parameters * LL_ADC_AWD_CHANNELxx_REG and LL_ADC_AWD_CHANNELxx_INJ) * - resolution: resolution is limited to 8 bits: if ADC resolution is * 12 bits the 4 LSB are ignored, if ADC resolution is 10 bits * the 2 LSB are ignored. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR AWD1CH LL_ADC_SetAnalogWDMonitChannels\n * CFGR AWD1SGL LL_ADC_SetAnalogWDMonitChannels\n * CFGR AWD1EN LL_ADC_SetAnalogWDMonitChannels\n * CFGR JAWD1EN LL_ADC_SetAnalogWDMonitChannels\n * AWD2CR AWD2CH LL_ADC_SetAnalogWDMonitChannels\n * AWD3CR AWD3CH LL_ADC_SetAnalogWDMonitChannels * @param ADCx ADC instance * @param AWDy This parameter can be one of the following values: * @arg @ref LL_ADC_AWD1 * @arg @ref LL_ADC_AWD2 * @arg @ref LL_ADC_AWD3 * @param AWDChannelGroup This parameter can be one of the following values: * @arg @ref LL_ADC_AWD_DISABLE * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_INJ (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_0_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_1_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_2_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_3_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_4_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_5_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_6_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_7_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_8_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_9_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_10_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_11_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_12_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_13_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_14_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_15_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_16_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_17_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_18_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_REG_INJ * @arg @ref LL_ADC_AWD_CH_VREFINT_REG (0) * @arg @ref LL_ADC_AWD_CH_VREFINT_INJ (0) * @arg @ref LL_ADC_AWD_CH_VREFINT_REG_INJ * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_REG (0) * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_INJ (0) * @arg @ref LL_ADC_AWD_CH_TEMPSENSOR_REG_INJ * @arg @ref LL_ADC_AWD_CH_VBAT_REG (0) * @arg @ref LL_ADC_AWD_CH_VBAT_INJ (0) * @arg @ref LL_ADC_AWD_CH_VBAT_REG_INJ * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_REG (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_INJ (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH1_ADC2_REG_INJ (1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_REG (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_INJ (0)(1) * @arg @ref LL_ADC_AWD_CH_DAC1CH2_ADC2_REG_INJ (1) * * (0) On STM32L5, parameter available only on analog watchdog number: AWD1.\n * (1) On STM32L5, parameter available only on ADC instance: ADC2. * @retval None */ __STATIC_INLINE void LL_ADC_SetAnalogWDMonitChannels(ADC_TypeDef *ADCx, uint32_t AWDy, uint32_t AWDChannelGroup) { /* Set bits with content of parameter "AWDChannelGroup" with bits position */ /* in register and register position depending on parameter "AWDy". */ /* Parameters "AWDChannelGroup" and "AWDy" are used with masks because */ /* containing other bits reserved for other purpose. */ __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->CFGR, ((AWDy & ADC_AWD_CRX_REGOFFSET_MASK) >> ADC_AWD_CRX_REGOFFSET_POS) + ((AWDy & ADC_AWD_CR12_REGOFFSETGAP_MASK) * ADC_AWD_CR12_REGOFFSETGAP_VAL)); MODIFY_REG(*preg, (AWDy & ADC_AWD_CR_ALL_CHANNEL_MASK), AWDChannelGroup & AWDy); } /** * @brief Get ADC analog watchdog monitored channel. * @note Usage of the returned channel number: * - To reinject this channel into another function LL_ADC_xxx: * the returned channel number is only partly formatted on definition * of literals LL_ADC_CHANNEL_x. Therefore, it has to be compared * with parts of literals LL_ADC_CHANNEL_x or using * helper macro @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * Then the selected literal LL_ADC_CHANNEL_x can be used * as parameter for another function. * - To get the channel number in decimal format: * process the returned value with the helper macro * @ref __LL_ADC_CHANNEL_TO_DECIMAL_NB(). * Applicable only when the analog watchdog is set to monitor * one channel. * @note On this STM32 series, there are 2 kinds of analog watchdog * instance: * - AWD standard (instance AWD1): * - channels monitored: can monitor 1 channel or all channels. * - groups monitored: ADC groups regular and-or injected. * - resolution: resolution is not limited (corresponds to * ADC resolution configured). * - AWD flexible (instances AWD2, AWD3): * - channels monitored: flexible on channels monitored, selection is * channel wise, from from 1 to all channels. * Specificity of this analog watchdog: Multiple channels can * be selected. For example: * (LL_ADC_AWD_CHANNEL4_REG_INJ | LL_ADC_AWD_CHANNEL5_REG_INJ | ...) * - groups monitored: not selection possible (monitoring on both * groups regular and injected). * Channels selected are monitored on groups regular and injected: * LL_ADC_AWD_CHANNELxx_REG_INJ (do not use parameters * LL_ADC_AWD_CHANNELxx_REG and LL_ADC_AWD_CHANNELxx_INJ) * - resolution: resolution is limited to 8 bits: if ADC resolution is * 12 bits the 4 LSB are ignored, if ADC resolution is 10 bits * the 2 LSB are ignored. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR AWD1CH LL_ADC_GetAnalogWDMonitChannels\n * CFGR AWD1SGL LL_ADC_GetAnalogWDMonitChannels\n * CFGR AWD1EN LL_ADC_GetAnalogWDMonitChannels\n * CFGR JAWD1EN LL_ADC_GetAnalogWDMonitChannels\n * AWD2CR AWD2CH LL_ADC_GetAnalogWDMonitChannels\n * AWD3CR AWD3CH LL_ADC_GetAnalogWDMonitChannels * @param ADCx ADC instance * @param AWDy This parameter can be one of the following values: * @arg @ref LL_ADC_AWD1 * @arg @ref LL_ADC_AWD2 (1) * @arg @ref LL_ADC_AWD3 (1) * * (1) On this AWD number, monitored channel can be retrieved * if only 1 channel is programmed (or none or all channels). * This function cannot retrieve monitored channel if * multiple channels are programmed simultaneously * by bitfield. * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_AWD_DISABLE * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_INJ (0) * @arg @ref LL_ADC_AWD_ALL_CHANNELS_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_0_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_0_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_1_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_1_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_2_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_2_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_3_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_3_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_4_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_4_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_5_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_5_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_6_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_6_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_7_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_7_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_8_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_8_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_9_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_9_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_10_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_10_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_11_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_11_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_12_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_12_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_13_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_13_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_14_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_14_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_15_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_15_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_16_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_16_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_17_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_17_REG_INJ * @arg @ref LL_ADC_AWD_CHANNEL_18_REG (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_INJ (0) * @arg @ref LL_ADC_AWD_CHANNEL_18_REG_INJ * * (0) On STM32L5, parameter available only on analog watchdog number: AWD1. */ __STATIC_INLINE uint32_t LL_ADC_GetAnalogWDMonitChannels(const ADC_TypeDef *ADCx, uint32_t AWDy) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->CFGR, ((AWDy & ADC_AWD_CRX_REGOFFSET_MASK) >> ADC_AWD_CRX_REGOFFSET_POS) + ((AWDy & ADC_AWD_CR12_REGOFFSETGAP_MASK) * ADC_AWD_CR12_REGOFFSETGAP_VAL)); uint32_t analog_wd_monit_channels = (READ_BIT(*preg, AWDy) & AWDy & ADC_AWD_CR_ALL_CHANNEL_MASK); /* If "analog_wd_monit_channels" == 0, then the selected AWD is disabled */ /* (parameter value LL_ADC_AWD_DISABLE). */ /* Else, the selected AWD is enabled and is monitoring a group of channels */ /* or a single channel. */ if (analog_wd_monit_channels != 0UL) { if (AWDy == LL_ADC_AWD1) { if ((analog_wd_monit_channels & ADC_CFGR_AWD1SGL) == 0UL) { /* AWD monitoring a group of channels */ analog_wd_monit_channels = ((analog_wd_monit_channels | (ADC_AWD_CR23_CHANNEL_MASK) ) & (~(ADC_CFGR_AWD1CH)) ); } else { /* AWD monitoring a single channel */ analog_wd_monit_channels = (analog_wd_monit_channels | (ADC_AWD2CR_AWD2CH_0 << (analog_wd_monit_channels >> ADC_CFGR_AWD1CH_Pos)) ); } } else { if ((analog_wd_monit_channels & ADC_AWD_CR23_CHANNEL_MASK) == ADC_AWD_CR23_CHANNEL_MASK) { /* AWD monitoring a group of channels */ analog_wd_monit_channels = (ADC_AWD_CR23_CHANNEL_MASK | ((ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN)) ); } else { /* AWD monitoring a single channel */ /* AWD monitoring a group of channels */ analog_wd_monit_channels = (analog_wd_monit_channels | (ADC_CFGR_JAWD1EN | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL) | (__LL_ADC_CHANNEL_TO_DECIMAL_NB(analog_wd_monit_channels) << ADC_CFGR_AWD1CH_Pos) ); } } } return analog_wd_monit_channels; } /** * @brief Set ADC analog watchdog thresholds value of both thresholds * high and low. * @note If value of only one threshold high or low must be set, * use function @ref LL_ADC_SetAnalogWDThresholds(). * @note In case of ADC resolution different of 12 bits, * analog watchdog thresholds data require a specific shift. * Use helper macro @ref __LL_ADC_ANALOGWD_SET_THRESHOLD_RESOLUTION(). * @note On this STM32 series, there are 2 kinds of analog watchdog * instance: * - AWD standard (instance AWD1): * - channels monitored: can monitor 1 channel or all channels. * - groups monitored: ADC groups regular and-or injected. * - resolution: resolution is not limited (corresponds to * ADC resolution configured). * - AWD flexible (instances AWD2, AWD3): * - channels monitored: flexible on channels monitored, selection is * channel wise, from from 1 to all channels. * Specificity of this analog watchdog: Multiple channels can * be selected. For example: * (LL_ADC_AWD_CHANNEL4_REG_INJ | LL_ADC_AWD_CHANNEL5_REG_INJ | ...) * - groups monitored: not selection possible (monitoring on both * groups regular and injected). * Channels selected are monitored on groups regular and injected: * LL_ADC_AWD_CHANNELxx_REG_INJ (do not use parameters * LL_ADC_AWD_CHANNELxx_REG and LL_ADC_AWD_CHANNELxx_INJ) * - resolution: resolution is limited to 8 bits: if ADC resolution is * 12 bits the 4 LSB are ignored, if ADC resolution is 10 bits * the 2 LSB are ignored. * @note If ADC oversampling is enabled, ADC analog watchdog thresholds are * impacted: the comparison of analog watchdog thresholds is done on * oversampling final computation (after ratio and shift application): * ADC data register bitfield [15:4] (12 most significant bits). * Examples: * - Oversampling ratio and shift selected to have ADC conversion data * on 12 bits (ratio 16 and shift 4, or ratio 32 and shift 5, ...): * ADC analog watchdog thresholds must be divided by 16. * - Oversampling ratio and shift selected to have ADC conversion data * on 14 bits (ratio 16 and shift 2, or ratio 32 and shift 3, ...): * ADC analog watchdog thresholds must be divided by 4. * - Oversampling ratio and shift selected to have ADC conversion data * on 16 bits (ratio 16 and shift none, or ratio 32 and shift 1, ...): * ADC analog watchdog thresholds match directly to ADC data register. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll TR1 HT1 LL_ADC_ConfigAnalogWDThresholds\n * TR2 HT2 LL_ADC_ConfigAnalogWDThresholds\n * TR3 HT3 LL_ADC_ConfigAnalogWDThresholds\n * TR1 LT1 LL_ADC_ConfigAnalogWDThresholds\n * TR2 LT2 LL_ADC_ConfigAnalogWDThresholds\n * TR3 LT3 LL_ADC_ConfigAnalogWDThresholds * @param ADCx ADC instance * @param AWDy This parameter can be one of the following values: * @arg @ref LL_ADC_AWD1 * @arg @ref LL_ADC_AWD2 * @arg @ref LL_ADC_AWD3 * @param AWDThresholdHighValue Value between Min_Data=0x000 and Max_Data=0xFFF * @param AWDThresholdLowValue Value between Min_Data=0x000 and Max_Data=0xFFF * @retval None */ __STATIC_INLINE void LL_ADC_ConfigAnalogWDThresholds(ADC_TypeDef *ADCx, uint32_t AWDy, uint32_t AWDThresholdHighValue, uint32_t AWDThresholdLowValue) { /* Set bits with content of parameter "AWDThresholdxxxValue" with bits */ /* position in register and register position depending on parameter */ /* "AWDy". */ /* Parameters "AWDy" and "AWDThresholdxxxValue" are used with masks because */ /* containing other bits reserved for other purpose. */ __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->TR1, ((AWDy & ADC_AWD_TRX_REGOFFSET_MASK) >> ADC_AWD_TRX_REGOFFSET_POS)); MODIFY_REG(*preg, ADC_TR1_HT1 | ADC_TR1_LT1, (AWDThresholdHighValue << ADC_TR1_HT1_BITOFFSET_POS) | AWDThresholdLowValue); } /** * @brief Set ADC analog watchdog threshold value of threshold * high or low. * @note If values of both thresholds high or low must be set, * use function @ref LL_ADC_ConfigAnalogWDThresholds(). * @note In case of ADC resolution different of 12 bits, * analog watchdog thresholds data require a specific shift. * Use helper macro @ref __LL_ADC_ANALOGWD_SET_THRESHOLD_RESOLUTION(). * @note On this STM32 series, there are 2 kinds of analog watchdog * instance: * - AWD standard (instance AWD1): * - channels monitored: can monitor 1 channel or all channels. * - groups monitored: ADC groups regular and-or injected. * - resolution: resolution is not limited (corresponds to * ADC resolution configured). * - AWD flexible (instances AWD2, AWD3): * - channels monitored: flexible on channels monitored, selection is * channel wise, from from 1 to all channels. * Specificity of this analog watchdog: Multiple channels can * be selected. For example: * (LL_ADC_AWD_CHANNEL4_REG_INJ | LL_ADC_AWD_CHANNEL5_REG_INJ | ...) * - groups monitored: not selection possible (monitoring on both * groups regular and injected). * Channels selected are monitored on groups regular and injected: * LL_ADC_AWD_CHANNELxx_REG_INJ (do not use parameters * LL_ADC_AWD_CHANNELxx_REG and LL_ADC_AWD_CHANNELxx_INJ) * - resolution: resolution is limited to 8 bits: if ADC resolution is * 12 bits the 4 LSB are ignored, if ADC resolution is 10 bits * the 2 LSB are ignored. * @note If ADC oversampling is enabled, ADC analog watchdog thresholds are * impacted: the comparison of analog watchdog thresholds is done on * oversampling final computation (after ratio and shift application): * ADC data register bitfield [15:4] (12 most significant bits). * Examples: * - Oversampling ratio and shift selected to have ADC conversion data * on 12 bits (ratio 16 and shift 4, or ratio 32 and shift 5, ...): * ADC analog watchdog thresholds must be divided by 16. * - Oversampling ratio and shift selected to have ADC conversion data * on 14 bits (ratio 16 and shift 2, or ratio 32 and shift 3, ...): * ADC analog watchdog thresholds must be divided by 4. * - Oversampling ratio and shift selected to have ADC conversion data * on 16 bits (ratio 16 and shift none, or ratio 32 and shift 1, ...): * ADC analog watchdog thresholds match directly to ADC data register. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either ADC groups regular or injected. * @rmtoll TR1 HT1 LL_ADC_SetAnalogWDThresholds\n * TR2 HT2 LL_ADC_SetAnalogWDThresholds\n * TR3 HT3 LL_ADC_SetAnalogWDThresholds\n * TR1 LT1 LL_ADC_SetAnalogWDThresholds\n * TR2 LT2 LL_ADC_SetAnalogWDThresholds\n * TR3 LT3 LL_ADC_SetAnalogWDThresholds * @param ADCx ADC instance * @param AWDy This parameter can be one of the following values: * @arg @ref LL_ADC_AWD1 * @arg @ref LL_ADC_AWD2 * @arg @ref LL_ADC_AWD3 * @param AWDThresholdsHighLow This parameter can be one of the following values: * @arg @ref LL_ADC_AWD_THRESHOLD_HIGH * @arg @ref LL_ADC_AWD_THRESHOLD_LOW * @param AWDThresholdValue Value between Min_Data=0x000 and Max_Data=0xFFF * @retval None */ __STATIC_INLINE void LL_ADC_SetAnalogWDThresholds(ADC_TypeDef *ADCx, uint32_t AWDy, uint32_t AWDThresholdsHighLow, uint32_t AWDThresholdValue) { /* Set bits with content of parameter "AWDThresholdValue" with bits */ /* position in register and register position depending on parameters */ /* "AWDThresholdsHighLow" and "AWDy". */ /* Parameters "AWDy" and "AWDThresholdValue" are used with masks because */ /* containing other bits reserved for other purpose. */ __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->TR1, ((AWDy & ADC_AWD_TRX_REGOFFSET_MASK) >> ADC_AWD_TRX_REGOFFSET_POS)); MODIFY_REG(*preg, AWDThresholdsHighLow, AWDThresholdValue << ((AWDThresholdsHighLow & ADC_AWD_TRX_BIT_HIGH_MASK) >> ADC_AWD_TRX_BIT_HIGH_SHIFT4)); } /** * @brief Get ADC analog watchdog threshold value of threshold high, * threshold low or raw data with ADC thresholds high and low * concatenated. * @note If raw data with ADC thresholds high and low is retrieved, * the data of each threshold high or low can be isolated * using helper macro: * @ref __LL_ADC_ANALOGWD_THRESHOLDS_HIGH_LOW(). * @note In case of ADC resolution different of 12 bits, * analog watchdog thresholds data require a specific shift. * Use helper macro @ref __LL_ADC_ANALOGWD_GET_THRESHOLD_RESOLUTION(). * @rmtoll TR1 HT1 LL_ADC_GetAnalogWDThresholds\n * TR2 HT2 LL_ADC_GetAnalogWDThresholds\n * TR3 HT3 LL_ADC_GetAnalogWDThresholds\n * TR1 LT1 LL_ADC_GetAnalogWDThresholds\n * TR2 LT2 LL_ADC_GetAnalogWDThresholds\n * TR3 LT3 LL_ADC_GetAnalogWDThresholds * @param ADCx ADC instance * @param AWDy This parameter can be one of the following values: * @arg @ref LL_ADC_AWD1 * @arg @ref LL_ADC_AWD2 * @arg @ref LL_ADC_AWD3 * @param AWDThresholdsHighLow This parameter can be one of the following values: * @arg @ref LL_ADC_AWD_THRESHOLD_HIGH * @arg @ref LL_ADC_AWD_THRESHOLD_LOW * @arg @ref LL_ADC_AWD_THRESHOLDS_HIGH_LOW * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ __STATIC_INLINE uint32_t LL_ADC_GetAnalogWDThresholds(const ADC_TypeDef *ADCx, uint32_t AWDy, uint32_t AWDThresholdsHighLow) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->TR1, ((AWDy & ADC_AWD_TRX_REGOFFSET_MASK) >> ADC_AWD_TRX_REGOFFSET_POS)); return (uint32_t)(READ_BIT(*preg, (AWDThresholdsHighLow | ADC_TR1_LT1)) >> (((AWDThresholdsHighLow & ADC_AWD_TRX_BIT_HIGH_MASK) >> ADC_AWD_TRX_BIT_HIGH_SHIFT4) & ~(AWDThresholdsHighLow & ADC_TR1_LT1))); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_oversampling Configuration of ADC transversal scope: oversampling * @{ */ /** * @brief Set ADC oversampling scope: ADC groups regular and-or injected * (availability of ADC group injected depends on STM32 series). * @note If both groups regular and injected are selected, * specify behavior of ADC group injected interrupting * group regular: when ADC group injected is triggered, * the oversampling on ADC group regular is either * temporary stopped and continued, or resumed from start * (oversampler buffer reset). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR2 ROVSE LL_ADC_SetOverSamplingScope\n * CFGR2 JOVSE LL_ADC_SetOverSamplingScope\n * CFGR2 ROVSM LL_ADC_SetOverSamplingScope * @param ADCx ADC instance * @param OvsScope This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_DISABLE * @arg @ref LL_ADC_OVS_GRP_REGULAR_CONTINUED * @arg @ref LL_ADC_OVS_GRP_REGULAR_RESUMED * @arg @ref LL_ADC_OVS_GRP_INJECTED * @arg @ref LL_ADC_OVS_GRP_INJ_REG_RESUMED * @retval None */ __STATIC_INLINE void LL_ADC_SetOverSamplingScope(ADC_TypeDef *ADCx, uint32_t OvsScope) { MODIFY_REG(ADCx->CFGR2, ADC_CFGR2_ROVSE | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSM, OvsScope); } /** * @brief Get ADC oversampling scope: ADC groups regular and-or injected * (availability of ADC group injected depends on STM32 series). * @note If both groups regular and injected are selected, * specify behavior of ADC group injected interrupting * group regular: when ADC group injected is triggered, * the oversampling on ADC group regular is either * temporary stopped and continued, or resumed from start * (oversampler buffer reset). * @rmtoll CFGR2 ROVSE LL_ADC_GetOverSamplingScope\n * CFGR2 JOVSE LL_ADC_GetOverSamplingScope\n * CFGR2 ROVSM LL_ADC_GetOverSamplingScope * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_OVS_DISABLE * @arg @ref LL_ADC_OVS_GRP_REGULAR_CONTINUED * @arg @ref LL_ADC_OVS_GRP_REGULAR_RESUMED * @arg @ref LL_ADC_OVS_GRP_INJECTED * @arg @ref LL_ADC_OVS_GRP_INJ_REG_RESUMED */ __STATIC_INLINE uint32_t LL_ADC_GetOverSamplingScope(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR2, ADC_CFGR2_ROVSE | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSM)); } /** * @brief Set ADC oversampling discontinuous mode (triggered mode) * on the selected ADC group. * @note Number of oversampled conversions are done either in: * - continuous mode (all conversions of oversampling ratio * are done from 1 trigger) * - discontinuous mode (each conversion of oversampling ratio * needs a trigger) * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on group regular. * @note On this STM32 series, oversampling discontinuous mode * (triggered mode) can be used only when oversampling is * set on group regular only and in resumed mode. * @rmtoll CFGR2 TROVS LL_ADC_SetOverSamplingDiscont * @param ADCx ADC instance * @param OverSamplingDiscont This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_REG_CONT * @arg @ref LL_ADC_OVS_REG_DISCONT * @retval None */ __STATIC_INLINE void LL_ADC_SetOverSamplingDiscont(ADC_TypeDef *ADCx, uint32_t OverSamplingDiscont) { MODIFY_REG(ADCx->CFGR2, ADC_CFGR2_TROVS, OverSamplingDiscont); } /** * @brief Get ADC oversampling discontinuous mode (triggered mode) * on the selected ADC group. * @note Number of oversampled conversions are done either in: * - continuous mode (all conversions of oversampling ratio * are done from 1 trigger) * - discontinuous mode (each conversion of oversampling ratio * needs a trigger) * @rmtoll CFGR2 TROVS LL_ADC_GetOverSamplingDiscont * @param ADCx ADC instance * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_OVS_REG_CONT * @arg @ref LL_ADC_OVS_REG_DISCONT */ __STATIC_INLINE uint32_t LL_ADC_GetOverSamplingDiscont(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR2, ADC_CFGR2_TROVS)); } /** * @brief Set ADC oversampling * (impacting both ADC groups regular and injected) * @note This function set the 2 items of oversampling configuration: * - ratio * - shift * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be disabled or enabled without conversion on going * on either groups regular or injected. * @rmtoll CFGR2 OVSS LL_ADC_ConfigOverSamplingRatioShift\n * CFGR2 OVSR LL_ADC_ConfigOverSamplingRatioShift * @param ADCx ADC instance * @param Ratio This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_RATIO_2 * @arg @ref LL_ADC_OVS_RATIO_4 * @arg @ref LL_ADC_OVS_RATIO_8 * @arg @ref LL_ADC_OVS_RATIO_16 * @arg @ref LL_ADC_OVS_RATIO_32 * @arg @ref LL_ADC_OVS_RATIO_64 * @arg @ref LL_ADC_OVS_RATIO_128 * @arg @ref LL_ADC_OVS_RATIO_256 * @param Shift This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_SHIFT_NONE * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_1 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_2 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_3 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_4 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_5 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_6 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_7 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_8 * @retval None */ __STATIC_INLINE void LL_ADC_ConfigOverSamplingRatioShift(ADC_TypeDef *ADCx, uint32_t Ratio, uint32_t Shift) { MODIFY_REG(ADCx->CFGR2, (ADC_CFGR2_OVSS | ADC_CFGR2_OVSR), (Shift | Ratio)); } /** * @brief Get ADC oversampling ratio * (impacting both ADC groups regular and injected) * @rmtoll CFGR2 OVSR LL_ADC_GetOverSamplingRatio * @param ADCx ADC instance * @retval Ratio This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_RATIO_2 * @arg @ref LL_ADC_OVS_RATIO_4 * @arg @ref LL_ADC_OVS_RATIO_8 * @arg @ref LL_ADC_OVS_RATIO_16 * @arg @ref LL_ADC_OVS_RATIO_32 * @arg @ref LL_ADC_OVS_RATIO_64 * @arg @ref LL_ADC_OVS_RATIO_128 * @arg @ref LL_ADC_OVS_RATIO_256 */ __STATIC_INLINE uint32_t LL_ADC_GetOverSamplingRatio(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR2, ADC_CFGR2_OVSR)); } /** * @brief Get ADC oversampling shift * (impacting both ADC groups regular and injected) * @rmtoll CFGR2 OVSS LL_ADC_GetOverSamplingShift * @param ADCx ADC instance * @retval Shift This parameter can be one of the following values: * @arg @ref LL_ADC_OVS_SHIFT_NONE * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_1 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_2 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_3 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_4 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_5 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_6 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_7 * @arg @ref LL_ADC_OVS_SHIFT_RIGHT_8 */ __STATIC_INLINE uint32_t LL_ADC_GetOverSamplingShift(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->CFGR2, ADC_CFGR2_OVSS)); } /** * @} */ /** @defgroup ADC_LL_EF_Configuration_ADC_Multimode Configuration of ADC hierarchical scope: multimode * @{ */ #if defined(ADC_MULTIMODE_SUPPORT) /** * @brief Set ADC multimode configuration to operate in independent mode * or multimode (for devices with several ADC instances). * @note If multimode configuration: the selected ADC instance is * either master or slave depending on hardware. * Refer to reference manual. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR DUAL LL_ADC_SetMultimode * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param Multimode This parameter can be one of the following values: * @arg @ref LL_ADC_MULTI_INDEPENDENT * @arg @ref LL_ADC_MULTI_DUAL_REG_SIMULT * @arg @ref LL_ADC_MULTI_DUAL_REG_INTERL * @arg @ref LL_ADC_MULTI_DUAL_INJ_SIMULT * @arg @ref LL_ADC_MULTI_DUAL_INJ_ALTERN * @arg @ref LL_ADC_MULTI_DUAL_REG_SIM_INJ_SIM * @arg @ref LL_ADC_MULTI_DUAL_REG_SIM_INJ_ALT * @arg @ref LL_ADC_MULTI_DUAL_REG_INT_INJ_SIM * @retval None */ __STATIC_INLINE void LL_ADC_SetMultimode(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t Multimode) { MODIFY_REG(ADCxy_COMMON->CCR, ADC_CCR_DUAL, Multimode); } /** * @brief Get ADC multimode configuration to operate in independent mode * or multimode (for devices with several ADC instances). * @note If multimode configuration: the selected ADC instance is * either master or slave depending on hardware. * Refer to reference manual. * @rmtoll CCR DUAL LL_ADC_GetMultimode * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_MULTI_INDEPENDENT * @arg @ref LL_ADC_MULTI_DUAL_REG_SIMULT * @arg @ref LL_ADC_MULTI_DUAL_REG_INTERL * @arg @ref LL_ADC_MULTI_DUAL_INJ_SIMULT * @arg @ref LL_ADC_MULTI_DUAL_INJ_ALTERN * @arg @ref LL_ADC_MULTI_DUAL_REG_SIM_INJ_SIM * @arg @ref LL_ADC_MULTI_DUAL_REG_SIM_INJ_ALT * @arg @ref LL_ADC_MULTI_DUAL_REG_INT_INJ_SIM */ __STATIC_INLINE uint32_t LL_ADC_GetMultimode(const ADC_Common_TypeDef *ADCxy_COMMON) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CCR, ADC_CCR_DUAL)); } /** * @brief Set ADC multimode conversion data transfer: no transfer * or transfer by DMA. * @note If ADC multimode transfer by DMA is not selected: * each ADC uses its own DMA channel, with its individual * DMA transfer settings. * If ADC multimode transfer by DMA is selected: * One DMA channel is used for both ADC (DMA of ADC master) * Specifies the DMA requests mode: * - Limited mode (One shot mode): DMA transfer requests are stopped * when number of DMA data transfers (number of * ADC conversions) is reached. * This ADC mode is intended to be used with DMA mode non-circular. * - Unlimited mode: DMA transfer requests are unlimited, * whatever number of DMA data transfers (number of * ADC conversions). * This ADC mode is intended to be used with DMA mode circular. * @note If ADC DMA requests mode is set to unlimited and DMA is set to * mode non-circular: * when DMA transfers size will be reached, DMA will stop transfers of * ADC conversions data ADC will raise an overrun error * (overrun flag and interruption if enabled). * @note How to retrieve multimode conversion data: * Whatever multimode transfer by DMA setting: using function * @ref LL_ADC_REG_ReadMultiConversionData32(). * If ADC multimode transfer by DMA is selected: conversion data * is a raw data with ADC master and slave concatenated. * A macro is available to get the conversion data of * ADC master or ADC slave: see helper macro * @ref __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled * or enabled without conversion on going on group regular. * @rmtoll CCR MDMA LL_ADC_SetMultiDMATransfer\n * CCR DMACFG LL_ADC_SetMultiDMATransfer * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param MultiDMATransfer This parameter can be one of the following values: * @arg @ref LL_ADC_MULTI_REG_DMA_EACH_ADC * @arg @ref LL_ADC_MULTI_REG_DMA_LIMIT_RES12_10B * @arg @ref LL_ADC_MULTI_REG_DMA_LIMIT_RES8_6B * @arg @ref LL_ADC_MULTI_REG_DMA_UNLMT_RES12_10B * @arg @ref LL_ADC_MULTI_REG_DMA_UNLMT_RES8_6B * @retval None */ __STATIC_INLINE void LL_ADC_SetMultiDMATransfer(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t MultiDMATransfer) { MODIFY_REG(ADCxy_COMMON->CCR, ADC_CCR_MDMA | ADC_CCR_DMACFG, MultiDMATransfer); } /** * @brief Get ADC multimode conversion data transfer: no transfer * or transfer by DMA. * @note If ADC multimode transfer by DMA is not selected: * each ADC uses its own DMA channel, with its individual * DMA transfer settings. * If ADC multimode transfer by DMA is selected: * One DMA channel is used for both ADC (DMA of ADC master) * Specifies the DMA requests mode: * - Limited mode (One shot mode): DMA transfer requests are stopped * when number of DMA data transfers (number of * ADC conversions) is reached. * This ADC mode is intended to be used with DMA mode non-circular. * - Unlimited mode: DMA transfer requests are unlimited, * whatever number of DMA data transfers (number of * ADC conversions). * This ADC mode is intended to be used with DMA mode circular. * @note If ADC DMA requests mode is set to unlimited and DMA is set to * mode non-circular: * when DMA transfers size will be reached, DMA will stop transfers of * ADC conversions data ADC will raise an overrun error * (overrun flag and interruption if enabled). * @note How to retrieve multimode conversion data: * Whatever multimode transfer by DMA setting: using function * @ref LL_ADC_REG_ReadMultiConversionData32(). * If ADC multimode transfer by DMA is selected: conversion data * is a raw data with ADC master and slave concatenated. * A macro is available to get the conversion data of * ADC master or ADC slave: see helper macro * @ref __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(). * @rmtoll CCR MDMA LL_ADC_GetMultiDMATransfer\n * CCR DMACFG LL_ADC_GetMultiDMATransfer * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_MULTI_REG_DMA_EACH_ADC * @arg @ref LL_ADC_MULTI_REG_DMA_LIMIT_RES12_10B * @arg @ref LL_ADC_MULTI_REG_DMA_LIMIT_RES8_6B * @arg @ref LL_ADC_MULTI_REG_DMA_UNLMT_RES12_10B * @arg @ref LL_ADC_MULTI_REG_DMA_UNLMT_RES8_6B */ __STATIC_INLINE uint32_t LL_ADC_GetMultiDMATransfer(const ADC_Common_TypeDef *ADCxy_COMMON) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CCR, ADC_CCR_MDMA | ADC_CCR_DMACFG)); } /** * @brief Set ADC multimode delay between 2 sampling phases. * @note The sampling delay range depends on ADC resolution: * - ADC resolution 12 bits can have maximum delay of 12 cycles. * - ADC resolution 10 bits can have maximum delay of 10 cycles. * - ADC resolution 8 bits can have maximum delay of 8 cycles. * - ADC resolution 6 bits can have maximum delay of 6 cycles. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * All ADC instances of the ADC common group must be disabled. * This check can be done with function @ref LL_ADC_IsEnabled() for each * ADC instance or by using helper macro helper macro * @ref __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(). * @rmtoll CCR DELAY LL_ADC_SetMultiTwoSamplingDelay * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param MultiTwoSamplingDelay This parameter can be one of the following values: * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_2CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_3CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES (1) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_7CYCLES (1) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_8CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_9CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_10CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_11CYCLES (3) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_12CYCLES (3) * * (1) Parameter available only if ADC resolution is 12, 10 or 8 bits.\n * (2) Parameter available only if ADC resolution is 12 or 10 bits.\n * (3) Parameter available only if ADC resolution is 12 bits. * @retval None */ __STATIC_INLINE void LL_ADC_SetMultiTwoSamplingDelay(ADC_Common_TypeDef *ADCxy_COMMON, uint32_t MultiTwoSamplingDelay) { MODIFY_REG(ADCxy_COMMON->CCR, ADC_CCR_DELAY, MultiTwoSamplingDelay); } /** * @brief Get ADC multimode delay between 2 sampling phases. * @rmtoll CCR DELAY LL_ADC_GetMultiTwoSamplingDelay * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval Returned value can be one of the following values: * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_2CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_3CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES (1) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_7CYCLES (1) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_8CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_9CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_10CYCLES (2) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_11CYCLES (3) * @arg @ref LL_ADC_MULTI_TWOSMP_DELAY_12CYCLES (3) * * (1) Parameter available only if ADC resolution is 12, 10 or 8 bits.\n * (2) Parameter available only if ADC resolution is 12 or 10 bits.\n * (3) Parameter available only if ADC resolution is 12 bits. */ __STATIC_INLINE uint32_t LL_ADC_GetMultiTwoSamplingDelay(const ADC_Common_TypeDef *ADCxy_COMMON) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CCR, ADC_CCR_DELAY)); } #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EF_Operation_ADC_Instance Operation on ADC hierarchical scope: ADC instance * @{ */ /** * @brief Put ADC instance in deep power down state. * @note In case of ADC calibration necessary: When ADC is in deep-power-down * state, the internal analog calibration is lost. After exiting from * deep power down, calibration must be relaunched or calibration factor * (preliminarily saved) must be set back into calibration register. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @rmtoll CR DEEPPWD LL_ADC_EnableDeepPowerDown * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableDeepPowerDown(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_DEEPPWD); } /** * @brief Disable ADC deep power down mode. * @note In case of ADC calibration necessary: When ADC is in deep-power-down * state, the internal analog calibration is lost. After exiting from * deep power down, calibration must be relaunched or calibration factor * (preliminarily saved) must be set back into calibration register. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @rmtoll CR DEEPPWD LL_ADC_DisableDeepPowerDown * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableDeepPowerDown(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ CLEAR_BIT(ADCx->CR, (ADC_CR_DEEPPWD | ADC_CR_BITS_PROPERTY_RS)); } /** * @brief Get the selected ADC instance deep power down state. * @rmtoll CR DEEPPWD LL_ADC_IsDeepPowerDownEnabled * @param ADCx ADC instance * @retval 0: deep power down is disabled, 1: deep power down is enabled. */ __STATIC_INLINE uint32_t LL_ADC_IsDeepPowerDownEnabled(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_DEEPPWD) == (ADC_CR_DEEPPWD)) ? 1UL : 0UL); } /** * @brief Enable ADC instance internal voltage regulator. * @note On this STM32 series, after ADC internal voltage regulator enable, * a delay for ADC internal voltage regulator stabilization * is required before performing a ADC calibration or ADC enable. * Refer to device datasheet, parameter tADCVREG_STUP. * Refer to literal @ref LL_ADC_DELAY_INTERNAL_REGUL_STAB_US. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @rmtoll CR ADVREGEN LL_ADC_EnableInternalRegulator * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableInternalRegulator(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADVREGEN); } /** * @brief Disable ADC internal voltage regulator. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @rmtoll CR ADVREGEN LL_ADC_DisableInternalRegulator * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableInternalRegulator(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->CR, (ADC_CR_ADVREGEN | ADC_CR_BITS_PROPERTY_RS)); } /** * @brief Get the selected ADC instance internal voltage regulator state. * @rmtoll CR ADVREGEN LL_ADC_IsInternalRegulatorEnabled * @param ADCx ADC instance * @retval 0: internal regulator is disabled, 1: internal regulator is enabled. */ __STATIC_INLINE uint32_t LL_ADC_IsInternalRegulatorEnabled(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADVREGEN) == (ADC_CR_ADVREGEN)) ? 1UL : 0UL); } /** * @brief Enable the selected ADC instance. * @note On this STM32 series, after ADC enable, a delay for * ADC internal analog stabilization is required before performing a * ADC conversion start. * Refer to device datasheet, parameter tSTAB. * @note On this STM32 series, flag LL_ADC_FLAG_ADRDY is raised when the ADC * is enabled and when conversion clock is active. * (not only core clock: this ADC has a dual clock domain) * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled and ADC internal voltage regulator enabled. * @rmtoll CR ADEN LL_ADC_Enable * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_Enable(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADEN); } /** * @brief Disable the selected ADC instance. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be not disabled. Must be enabled without conversion on going * on either groups regular or injected. * @rmtoll CR ADDIS LL_ADC_Disable * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_Disable(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADDIS); } /** * @brief Get the selected ADC instance enable state. * @note On this STM32 series, flag LL_ADC_FLAG_ADRDY is raised when the ADC * is enabled and when conversion clock is active. * (not only core clock: this ADC has a dual clock domain) * @rmtoll CR ADEN LL_ADC_IsEnabled * @param ADCx ADC instance * @retval 0: ADC is disabled, 1: ADC is enabled. */ __STATIC_INLINE uint32_t LL_ADC_IsEnabled(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADEN) == (ADC_CR_ADEN)) ? 1UL : 0UL); } /** * @brief Get the selected ADC instance disable state. * @rmtoll CR ADDIS LL_ADC_IsDisableOngoing * @param ADCx ADC instance * @retval 0: no ADC disable command on going. */ __STATIC_INLINE uint32_t LL_ADC_IsDisableOngoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADDIS) == (ADC_CR_ADDIS)) ? 1UL : 0UL); } /** * @brief Start ADC calibration in the mode single-ended * or differential (for devices with differential mode available). * @note On this STM32 series, a minimum number of ADC clock cycles * are required between ADC end of calibration and ADC enable. * Refer to literal @ref LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES. * @note For devices with differential mode available: * Calibration of offset is specific to each of * single-ended and differential modes * (calibration run must be performed for each of these * differential modes, if used afterwards and if the application * requires their calibration). * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be ADC disabled. * @rmtoll CR ADCAL LL_ADC_StartCalibration\n * CR ADCALDIF LL_ADC_StartCalibration * @param ADCx ADC instance * @param SingleDiff This parameter can be one of the following values: * @arg @ref LL_ADC_SINGLE_ENDED * @arg @ref LL_ADC_DIFFERENTIAL_ENDED * @retval None */ __STATIC_INLINE void LL_ADC_StartCalibration(ADC_TypeDef *ADCx, uint32_t SingleDiff) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_ADCALDIF | ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADCAL | (SingleDiff & ADC_SINGLEDIFF_CALIB_START_MASK)); } /** * @brief Get ADC calibration state. * @rmtoll CR ADCAL LL_ADC_IsCalibrationOnGoing * @param ADCx ADC instance * @retval 0: calibration complete, 1: calibration in progress. */ __STATIC_INLINE uint32_t LL_ADC_IsCalibrationOnGoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADCAL) == (ADC_CR_ADCAL)) ? 1UL : 0UL); } /** * @} */ /** @defgroup ADC_LL_EF_Operation_ADC_Group_Regular Operation on ADC hierarchical scope: group regular * @{ */ /** * @brief Start ADC group regular conversion. * @note On this STM32 series, this function is relevant for both * internal trigger (SW start) and external trigger: * - If ADC trigger has been set to software start, ADC conversion * starts immediately. * - If ADC trigger has been set to external trigger, ADC conversion * will start at next trigger event (on the selected trigger edge) * following the ADC start conversion command. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be enabled without conversion on going on group regular, * without conversion stop command on going on group regular, * without ADC disable command on going. * @rmtoll CR ADSTART LL_ADC_REG_StartConversion * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_REG_StartConversion(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADSTART); } /** * @brief Stop ADC group regular conversion. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be enabled with conversion on going on group regular, * without ADC disable command on going. * @rmtoll CR ADSTP LL_ADC_REG_StopConversion * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_REG_StopConversion(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_ADSTP); } /** * @brief Get ADC group regular conversion state. * @rmtoll CR ADSTART LL_ADC_REG_IsConversionOngoing * @param ADCx ADC instance * @retval 0: no conversion is on going on ADC group regular. */ __STATIC_INLINE uint32_t LL_ADC_REG_IsConversionOngoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADSTART) == (ADC_CR_ADSTART)) ? 1UL : 0UL); } /** * @brief Get ADC group regular command of conversion stop state * @rmtoll CR ADSTP LL_ADC_REG_IsStopConversionOngoing * @param ADCx ADC instance * @retval 0: no command of conversion stop is on going on ADC group regular. */ __STATIC_INLINE uint32_t LL_ADC_REG_IsStopConversionOngoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_ADSTP) == (ADC_CR_ADSTP)) ? 1UL : 0UL); } /** * @brief Get ADC group regular conversion data, range fit for * all ADC configurations: all ADC resolutions and * all oversampling increased data width (for devices * with feature oversampling). * @rmtoll DR RDATA LL_ADC_REG_ReadConversionData32 * @param ADCx ADC instance * @retval Value between Min_Data=0x00000000 and Max_Data=0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_ADC_REG_ReadConversionData32(const ADC_TypeDef *ADCx) { return (uint32_t)(READ_BIT(ADCx->DR, ADC_DR_RDATA)); } /** * @brief Get ADC group regular conversion data, range fit for * ADC resolution 12 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_REG_ReadConversionData32. * @rmtoll DR RDATA LL_ADC_REG_ReadConversionData12 * @param ADCx ADC instance * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ __STATIC_INLINE uint16_t LL_ADC_REG_ReadConversionData12(const ADC_TypeDef *ADCx) { return (uint16_t)(READ_BIT(ADCx->DR, ADC_DR_RDATA)); } /** * @brief Get ADC group regular conversion data, range fit for * ADC resolution 10 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_REG_ReadConversionData32. * @rmtoll DR RDATA LL_ADC_REG_ReadConversionData10 * @param ADCx ADC instance * @retval Value between Min_Data=0x000 and Max_Data=0x3FF */ __STATIC_INLINE uint16_t LL_ADC_REG_ReadConversionData10(const ADC_TypeDef *ADCx) { return (uint16_t)(READ_BIT(ADCx->DR, ADC_DR_RDATA)); } /** * @brief Get ADC group regular conversion data, range fit for * ADC resolution 8 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_REG_ReadConversionData32. * @rmtoll DR RDATA LL_ADC_REG_ReadConversionData8 * @param ADCx ADC instance * @retval Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_ADC_REG_ReadConversionData8(const ADC_TypeDef *ADCx) { return (uint8_t)(READ_BIT(ADCx->DR, ADC_DR_RDATA)); } /** * @brief Get ADC group regular conversion data, range fit for * ADC resolution 6 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_REG_ReadConversionData32. * @rmtoll DR RDATA LL_ADC_REG_ReadConversionData6 * @param ADCx ADC instance * @retval Value between Min_Data=0x00 and Max_Data=0x3F */ __STATIC_INLINE uint8_t LL_ADC_REG_ReadConversionData6(const ADC_TypeDef *ADCx) { return (uint8_t)(READ_BIT(ADCx->DR, ADC_DR_RDATA)); } #if defined(ADC_MULTIMODE_SUPPORT) /** * @brief Get ADC multimode conversion data of ADC master, ADC slave * or raw data with ADC master and slave concatenated. * @note If raw data with ADC master and slave concatenated is retrieved, * a macro is available to get the conversion data of * ADC master or ADC slave: see helper macro * @ref __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(). * (however this macro is mainly intended for multimode * transfer by DMA, because this function can do the same * by getting multimode conversion data of ADC master or ADC slave * separately). * @rmtoll CDR RDATA_MST LL_ADC_REG_ReadMultiConversionData32\n * CDR RDATA_SLV LL_ADC_REG_ReadMultiConversionData32 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @param ConversionData This parameter can be one of the following values: * @arg @ref LL_ADC_MULTI_MASTER * @arg @ref LL_ADC_MULTI_SLAVE * @arg @ref LL_ADC_MULTI_MASTER_SLAVE * @retval Value between Min_Data=0x00000000 and Max_Data=0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_ADC_REG_ReadMultiConversionData32(const ADC_Common_TypeDef *ADCxy_COMMON, uint32_t ConversionData) { return (uint32_t)(READ_BIT(ADCxy_COMMON->CDR, ConversionData) >> (POSITION_VAL(ConversionData) & 0x1FUL) ); } #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EF_Operation_ADC_Group_Injected Operation on ADC hierarchical scope: group injected * @{ */ /** * @brief Start ADC group injected conversion. * @note On this STM32 series, this function is relevant for both * internal trigger (SW start) and external trigger: * - If ADC trigger has been set to software start, ADC conversion * starts immediately. * - If ADC trigger has been set to external trigger, ADC conversion * will start at next trigger event (on the selected trigger edge) * following the ADC start conversion command. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be enabled without conversion on going on group injected, * without conversion stop command on going on group injected, * without ADC disable command on going. * @rmtoll CR JADSTART LL_ADC_INJ_StartConversion * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_INJ_StartConversion(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_JADSTART); } /** * @brief Stop ADC group injected conversion. * @note On this STM32 series, setting of this feature is conditioned to * ADC state: * ADC must be enabled with conversion on going on group injected, * without ADC disable command on going. * @rmtoll CR JADSTP LL_ADC_INJ_StopConversion * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_INJ_StopConversion(ADC_TypeDef *ADCx) { /* Note: Write register with some additional bits forced to state reset */ /* instead of modifying only the selected bit for this function, */ /* to not interfere with bits with HW property "rs". */ MODIFY_REG(ADCx->CR, ADC_CR_BITS_PROPERTY_RS, ADC_CR_JADSTP); } /** * @brief Get ADC group injected conversion state. * @rmtoll CR JADSTART LL_ADC_INJ_IsConversionOngoing * @param ADCx ADC instance * @retval 0: no conversion is on going on ADC group injected. */ __STATIC_INLINE uint32_t LL_ADC_INJ_IsConversionOngoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_JADSTART) == (ADC_CR_JADSTART)) ? 1UL : 0UL); } /** * @brief Get ADC group injected command of conversion stop state * @rmtoll CR JADSTP LL_ADC_INJ_IsStopConversionOngoing * @param ADCx ADC instance * @retval 0: no command of conversion stop is on going on ADC group injected. */ __STATIC_INLINE uint32_t LL_ADC_INJ_IsStopConversionOngoing(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->CR, ADC_CR_JADSTP) == (ADC_CR_JADSTP)) ? 1UL : 0UL); } /** * @brief Get ADC group injected conversion data, range fit for * all ADC configurations: all ADC resolutions and * all oversampling increased data width (for devices * with feature oversampling). * @rmtoll JDR1 JDATA LL_ADC_INJ_ReadConversionData32\n * JDR2 JDATA LL_ADC_INJ_ReadConversionData32\n * JDR3 JDATA LL_ADC_INJ_ReadConversionData32\n * JDR4 JDATA LL_ADC_INJ_ReadConversionData32 * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Value between Min_Data=0x00000000 and Max_Data=0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_ADC_INJ_ReadConversionData32(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->JDR1, ((Rank & ADC_INJ_JDRX_REGOFFSET_MASK) >> ADC_JDRX_REGOFFSET_POS)); return (uint32_t)(READ_BIT(*preg, ADC_JDR1_JDATA) ); } /** * @brief Get ADC group injected conversion data, range fit for * ADC resolution 12 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_INJ_ReadConversionData32. * @rmtoll JDR1 JDATA LL_ADC_INJ_ReadConversionData12\n * JDR2 JDATA LL_ADC_INJ_ReadConversionData12\n * JDR3 JDATA LL_ADC_INJ_ReadConversionData12\n * JDR4 JDATA LL_ADC_INJ_ReadConversionData12 * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Value between Min_Data=0x000 and Max_Data=0xFFF */ __STATIC_INLINE uint16_t LL_ADC_INJ_ReadConversionData12(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->JDR1, ((Rank & ADC_INJ_JDRX_REGOFFSET_MASK) >> ADC_JDRX_REGOFFSET_POS)); return (uint16_t)(READ_BIT(*preg, ADC_JDR1_JDATA) ); } /** * @brief Get ADC group injected conversion data, range fit for * ADC resolution 10 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_INJ_ReadConversionData32. * @rmtoll JDR1 JDATA LL_ADC_INJ_ReadConversionData10\n * JDR2 JDATA LL_ADC_INJ_ReadConversionData10\n * JDR3 JDATA LL_ADC_INJ_ReadConversionData10\n * JDR4 JDATA LL_ADC_INJ_ReadConversionData10 * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Value between Min_Data=0x000 and Max_Data=0x3FF */ __STATIC_INLINE uint16_t LL_ADC_INJ_ReadConversionData10(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->JDR1, ((Rank & ADC_INJ_JDRX_REGOFFSET_MASK) >> ADC_JDRX_REGOFFSET_POS)); return (uint16_t)(READ_BIT(*preg, ADC_JDR1_JDATA) ); } /** * @brief Get ADC group injected conversion data, range fit for * ADC resolution 8 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_INJ_ReadConversionData32. * @rmtoll JDR1 JDATA LL_ADC_INJ_ReadConversionData8\n * JDR2 JDATA LL_ADC_INJ_ReadConversionData8\n * JDR3 JDATA LL_ADC_INJ_ReadConversionData8\n * JDR4 JDATA LL_ADC_INJ_ReadConversionData8 * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_ADC_INJ_ReadConversionData8(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->JDR1, ((Rank & ADC_INJ_JDRX_REGOFFSET_MASK) >> ADC_JDRX_REGOFFSET_POS)); return (uint8_t)(READ_BIT(*preg, ADC_JDR1_JDATA) ); } /** * @brief Get ADC group injected conversion data, range fit for * ADC resolution 6 bits. * @note For devices with feature oversampling: Oversampling * can increase data width, function for extended range * may be needed: @ref LL_ADC_INJ_ReadConversionData32. * @rmtoll JDR1 JDATA LL_ADC_INJ_ReadConversionData6\n * JDR2 JDATA LL_ADC_INJ_ReadConversionData6\n * JDR3 JDATA LL_ADC_INJ_ReadConversionData6\n * JDR4 JDATA LL_ADC_INJ_ReadConversionData6 * @param ADCx ADC instance * @param Rank This parameter can be one of the following values: * @arg @ref LL_ADC_INJ_RANK_1 * @arg @ref LL_ADC_INJ_RANK_2 * @arg @ref LL_ADC_INJ_RANK_3 * @arg @ref LL_ADC_INJ_RANK_4 * @retval Value between Min_Data=0x00 and Max_Data=0x3F */ __STATIC_INLINE uint8_t LL_ADC_INJ_ReadConversionData6(const ADC_TypeDef *ADCx, uint32_t Rank) { const __IO uint32_t *preg = __ADC_PTR_REG_OFFSET(ADCx->JDR1, ((Rank & ADC_INJ_JDRX_REGOFFSET_MASK) >> ADC_JDRX_REGOFFSET_POS)); return (uint8_t)(READ_BIT(*preg, ADC_JDR1_JDATA) ); } /** * @} */ /** @defgroup ADC_LL_EF_FLAG_Management ADC flag management * @{ */ /** * @brief Get flag ADC ready. * @note On this STM32 series, flag LL_ADC_FLAG_ADRDY is raised when the ADC * is enabled and when conversion clock is active. * (not only core clock: this ADC has a dual clock domain) * @rmtoll ISR ADRDY LL_ADC_IsActiveFlag_ADRDY * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_ADRDY(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_ADRDY) == (LL_ADC_FLAG_ADRDY)) ? 1UL : 0UL); } /** * @brief Get flag ADC group regular end of unitary conversion. * @rmtoll ISR EOC LL_ADC_IsActiveFlag_EOC * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_EOC(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, ADC_ISR_EOC) == (ADC_ISR_EOC)) ? 1UL : 0UL); } /** * @brief Get flag ADC group regular end of sequence conversions. * @rmtoll ISR EOS LL_ADC_IsActiveFlag_EOS * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_EOS(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_EOS) == (LL_ADC_FLAG_EOS)) ? 1UL : 0UL); } /** * @brief Get flag ADC group regular overrun. * @rmtoll ISR OVR LL_ADC_IsActiveFlag_OVR * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_OVR(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_OVR) == (LL_ADC_FLAG_OVR)) ? 1UL : 0UL); } /** * @brief Get flag ADC group regular end of sampling phase. * @rmtoll ISR EOSMP LL_ADC_IsActiveFlag_EOSMP * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_EOSMP(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_EOSMP) == (LL_ADC_FLAG_EOSMP)) ? 1UL : 0UL); } /** * @brief Get flag ADC group injected end of unitary conversion. * @rmtoll ISR JEOC LL_ADC_IsActiveFlag_JEOC * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_JEOC(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_JEOC) == (LL_ADC_FLAG_JEOC)) ? 1UL : 0UL); } /** * @brief Get flag ADC group injected end of sequence conversions. * @rmtoll ISR JEOS LL_ADC_IsActiveFlag_JEOS * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_JEOS(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_JEOS) == (LL_ADC_FLAG_JEOS)) ? 1UL : 0UL); } /** * @brief Get flag ADC group injected contexts queue overflow. * @rmtoll ISR JQOVF LL_ADC_IsActiveFlag_JQOVF * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_JQOVF(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_JQOVF) == (LL_ADC_FLAG_JQOVF)) ? 1UL : 0UL); } /** * @brief Get flag ADC analog watchdog 1 flag * @rmtoll ISR AWD1 LL_ADC_IsActiveFlag_AWD1 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_AWD1(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_AWD1) == (LL_ADC_FLAG_AWD1)) ? 1UL : 0UL); } /** * @brief Get flag ADC analog watchdog 2. * @rmtoll ISR AWD2 LL_ADC_IsActiveFlag_AWD2 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_AWD2(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_AWD2) == (LL_ADC_FLAG_AWD2)) ? 1UL : 0UL); } /** * @brief Get flag ADC analog watchdog 3. * @rmtoll ISR AWD3 LL_ADC_IsActiveFlag_AWD3 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_AWD3(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->ISR, LL_ADC_FLAG_AWD3) == (LL_ADC_FLAG_AWD3)) ? 1UL : 0UL); } /** * @brief Clear flag ADC ready. * @note On this STM32 series, flag LL_ADC_FLAG_ADRDY is raised when the ADC * is enabled and when conversion clock is active. * (not only core clock: this ADC has a dual clock domain) * @rmtoll ISR ADRDY LL_ADC_ClearFlag_ADRDY * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_ADRDY(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_ADRDY); } /** * @brief Clear flag ADC group regular end of unitary conversion. * @rmtoll ISR EOC LL_ADC_ClearFlag_EOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_EOC(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_EOC); } /** * @brief Clear flag ADC group regular end of sequence conversions. * @rmtoll ISR EOS LL_ADC_ClearFlag_EOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_EOS(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_EOS); } /** * @brief Clear flag ADC group regular overrun. * @rmtoll ISR OVR LL_ADC_ClearFlag_OVR * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_OVR(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_OVR); } /** * @brief Clear flag ADC group regular end of sampling phase. * @rmtoll ISR EOSMP LL_ADC_ClearFlag_EOSMP * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_EOSMP(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_EOSMP); } /** * @brief Clear flag ADC group injected end of unitary conversion. * @rmtoll ISR JEOC LL_ADC_ClearFlag_JEOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_JEOC(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_JEOC); } /** * @brief Clear flag ADC group injected end of sequence conversions. * @rmtoll ISR JEOS LL_ADC_ClearFlag_JEOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_JEOS(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_JEOS); } /** * @brief Clear flag ADC group injected contexts queue overflow. * @rmtoll ISR JQOVF LL_ADC_ClearFlag_JQOVF * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_JQOVF(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_JQOVF); } /** * @brief Clear flag ADC analog watchdog 1. * @rmtoll ISR AWD1 LL_ADC_ClearFlag_AWD1 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_AWD1(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_AWD1); } /** * @brief Clear flag ADC analog watchdog 2. * @rmtoll ISR AWD2 LL_ADC_ClearFlag_AWD2 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_AWD2(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_AWD2); } /** * @brief Clear flag ADC analog watchdog 3. * @rmtoll ISR AWD3 LL_ADC_ClearFlag_AWD3 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_ClearFlag_AWD3(ADC_TypeDef *ADCx) { WRITE_REG(ADCx->ISR, LL_ADC_FLAG_AWD3); } #if defined(ADC_MULTIMODE_SUPPORT) /** * @brief Get flag multimode ADC ready of the ADC master. * @rmtoll CSR ADRDY_MST LL_ADC_IsActiveFlag_MST_ADRDY * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_ADRDY(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_ADRDY_MST) == (LL_ADC_FLAG_ADRDY_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC ready of the ADC slave. * @rmtoll CSR ADRDY_SLV LL_ADC_IsActiveFlag_SLV_ADRDY * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_ADRDY(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_ADRDY_SLV) == (LL_ADC_FLAG_ADRDY_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of unitary conversion of the ADC master. * @rmtoll CSR EOC_MST LL_ADC_IsActiveFlag_MST_EOC * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_EOC(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOC_SLV) == (LL_ADC_FLAG_EOC_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of unitary conversion of the ADC slave. * @rmtoll CSR EOC_SLV LL_ADC_IsActiveFlag_SLV_EOC * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_EOC(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOC_SLV) == (LL_ADC_FLAG_EOC_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of sequence conversions of the ADC master. * @rmtoll CSR EOS_MST LL_ADC_IsActiveFlag_MST_EOS * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_EOS(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOS_MST) == (LL_ADC_FLAG_EOS_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of sequence conversions of the ADC slave. * @rmtoll CSR EOS_SLV LL_ADC_IsActiveFlag_SLV_EOS * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_EOS(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOS_SLV) == (LL_ADC_FLAG_EOS_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular overrun of the ADC master. * @rmtoll CSR OVR_MST LL_ADC_IsActiveFlag_MST_OVR * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_OVR(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_OVR_MST) == (LL_ADC_FLAG_OVR_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular overrun of the ADC slave. * @rmtoll CSR OVR_SLV LL_ADC_IsActiveFlag_SLV_OVR * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_OVR(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_OVR_SLV) == (LL_ADC_FLAG_OVR_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of sampling of the ADC master. * @rmtoll CSR EOSMP_MST LL_ADC_IsActiveFlag_MST_EOSMP * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_EOSMP(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOSMP_MST) == (LL_ADC_FLAG_EOSMP_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group regular end of sampling of the ADC slave. * @rmtoll CSR EOSMP_SLV LL_ADC_IsActiveFlag_SLV_EOSMP * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_EOSMP(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_EOSMP_SLV) == (LL_ADC_FLAG_EOSMP_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected end of unitary conversion of the ADC master. * @rmtoll CSR JEOC_MST LL_ADC_IsActiveFlag_MST_JEOC * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_JEOC(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JEOC_MST) == (LL_ADC_FLAG_JEOC_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected end of unitary conversion of the ADC slave. * @rmtoll CSR JEOC_SLV LL_ADC_IsActiveFlag_SLV_JEOC * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_JEOC(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JEOC_SLV) == (LL_ADC_FLAG_JEOC_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected end of sequence conversions of the ADC master. * @rmtoll CSR JEOS_MST LL_ADC_IsActiveFlag_MST_JEOS * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_JEOS(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JEOS_MST) == (LL_ADC_FLAG_JEOS_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected end of sequence conversions of the ADC slave. * @rmtoll CSR JEOS_SLV LL_ADC_IsActiveFlag_SLV_JEOS * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_JEOS(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JEOS_SLV) == (LL_ADC_FLAG_JEOS_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected context queue overflow of the ADC master. * @rmtoll CSR JQOVF_MST LL_ADC_IsActiveFlag_MST_JQOVF * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_JQOVF(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JQOVF_MST) == (LL_ADC_FLAG_JQOVF_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC group injected context queue overflow of the ADC slave. * @rmtoll CSR JQOVF_SLV LL_ADC_IsActiveFlag_SLV_JQOVF * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_JQOVF(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_JQOVF_SLV) == (LL_ADC_FLAG_JQOVF_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC analog watchdog 1 of the ADC master. * @rmtoll CSR AWD1_MST LL_ADC_IsActiveFlag_MST_AWD1 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_AWD1(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD1_MST) == (LL_ADC_FLAG_AWD1_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode analog watchdog 1 of the ADC slave. * @rmtoll CSR AWD1_SLV LL_ADC_IsActiveFlag_SLV_AWD1 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_AWD1(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD1_SLV) == (LL_ADC_FLAG_AWD1_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC analog watchdog 2 of the ADC master. * @rmtoll CSR AWD2_MST LL_ADC_IsActiveFlag_MST_AWD2 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_AWD2(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD2_MST) == (LL_ADC_FLAG_AWD2_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC analog watchdog 2 of the ADC slave. * @rmtoll CSR AWD2_SLV LL_ADC_IsActiveFlag_SLV_AWD2 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_AWD2(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD2_SLV) == (LL_ADC_FLAG_AWD2_SLV)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC analog watchdog 3 of the ADC master. * @rmtoll CSR AWD3_MST LL_ADC_IsActiveFlag_MST_AWD3 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_MST_AWD3(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD3_MST) == (LL_ADC_FLAG_AWD3_MST)) ? 1UL : 0UL); } /** * @brief Get flag multimode ADC analog watchdog 3 of the ADC slave. * @rmtoll CSR AWD3_SLV LL_ADC_IsActiveFlag_SLV_AWD3 * @param ADCxy_COMMON ADC common instance * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsActiveFlag_SLV_AWD3(const ADC_Common_TypeDef *ADCxy_COMMON) { return ((READ_BIT(ADCxy_COMMON->CSR, LL_ADC_FLAG_AWD3_SLV) == (LL_ADC_FLAG_AWD3_SLV)) ? 1UL : 0UL); } #endif /* ADC_MULTIMODE_SUPPORT */ /** * @} */ /** @defgroup ADC_LL_EF_IT_Management ADC IT management * @{ */ /** * @brief Enable ADC ready. * @rmtoll IER ADRDYIE LL_ADC_EnableIT_ADRDY * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_ADRDY(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_ADRDY); } /** * @brief Enable interruption ADC group regular end of unitary conversion. * @rmtoll IER EOCIE LL_ADC_EnableIT_EOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_EOC(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_EOC); } /** * @brief Enable interruption ADC group regular end of sequence conversions. * @rmtoll IER EOSIE LL_ADC_EnableIT_EOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_EOS(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_EOS); } /** * @brief Enable ADC group regular interruption overrun. * @rmtoll IER OVRIE LL_ADC_EnableIT_OVR * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_OVR(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_OVR); } /** * @brief Enable interruption ADC group regular end of sampling. * @rmtoll IER EOSMPIE LL_ADC_EnableIT_EOSMP * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_EOSMP(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_EOSMP); } /** * @brief Enable interruption ADC group injected end of unitary conversion. * @rmtoll IER JEOCIE LL_ADC_EnableIT_JEOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_JEOC(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_JEOC); } /** * @brief Enable interruption ADC group injected end of sequence conversions. * @rmtoll IER JEOSIE LL_ADC_EnableIT_JEOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_JEOS(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_JEOS); } /** * @brief Enable interruption ADC group injected context queue overflow. * @rmtoll IER JQOVFIE LL_ADC_EnableIT_JQOVF * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_JQOVF(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_JQOVF); } /** * @brief Enable interruption ADC analog watchdog 1. * @rmtoll IER AWD1IE LL_ADC_EnableIT_AWD1 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_AWD1(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_AWD1); } /** * @brief Enable interruption ADC analog watchdog 2. * @rmtoll IER AWD2IE LL_ADC_EnableIT_AWD2 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_AWD2(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_AWD2); } /** * @brief Enable interruption ADC analog watchdog 3. * @rmtoll IER AWD3IE LL_ADC_EnableIT_AWD3 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_EnableIT_AWD3(ADC_TypeDef *ADCx) { SET_BIT(ADCx->IER, LL_ADC_IT_AWD3); } /** * @brief Disable interruption ADC ready. * @rmtoll IER ADRDYIE LL_ADC_DisableIT_ADRDY * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_ADRDY(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_ADRDY); } /** * @brief Disable interruption ADC group regular end of unitary conversion. * @rmtoll IER EOCIE LL_ADC_DisableIT_EOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_EOC(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_EOC); } /** * @brief Disable interruption ADC group regular end of sequence conversions. * @rmtoll IER EOSIE LL_ADC_DisableIT_EOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_EOS(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_EOS); } /** * @brief Disable interruption ADC group regular overrun. * @rmtoll IER OVRIE LL_ADC_DisableIT_OVR * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_OVR(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_OVR); } /** * @brief Disable interruption ADC group regular end of sampling. * @rmtoll IER EOSMPIE LL_ADC_DisableIT_EOSMP * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_EOSMP(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_EOSMP); } /** * @brief Disable interruption ADC group regular end of unitary conversion. * @rmtoll IER JEOCIE LL_ADC_DisableIT_JEOC * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_JEOC(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_JEOC); } /** * @brief Disable interruption ADC group injected end of sequence conversions. * @rmtoll IER JEOSIE LL_ADC_DisableIT_JEOS * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_JEOS(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_JEOS); } /** * @brief Disable interruption ADC group injected context queue overflow. * @rmtoll IER JQOVFIE LL_ADC_DisableIT_JQOVF * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_JQOVF(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_JQOVF); } /** * @brief Disable interruption ADC analog watchdog 1. * @rmtoll IER AWD1IE LL_ADC_DisableIT_AWD1 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_AWD1(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_AWD1); } /** * @brief Disable interruption ADC analog watchdog 2. * @rmtoll IER AWD2IE LL_ADC_DisableIT_AWD2 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_AWD2(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_AWD2); } /** * @brief Disable interruption ADC analog watchdog 3. * @rmtoll IER AWD3IE LL_ADC_DisableIT_AWD3 * @param ADCx ADC instance * @retval None */ __STATIC_INLINE void LL_ADC_DisableIT_AWD3(ADC_TypeDef *ADCx) { CLEAR_BIT(ADCx->IER, LL_ADC_IT_AWD3); } /** * @brief Get state of interruption ADC ready * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER ADRDYIE LL_ADC_IsEnabledIT_ADRDY * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_ADRDY(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_ADRDY) == (LL_ADC_IT_ADRDY)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group regular end of unitary conversion * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER EOCIE LL_ADC_IsEnabledIT_EOC * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_EOC(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_EOC) == (LL_ADC_IT_EOC)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group regular end of sequence conversions * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER EOSIE LL_ADC_IsEnabledIT_EOS * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_EOS(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_EOS) == (LL_ADC_IT_EOS)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group regular overrun * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER OVRIE LL_ADC_IsEnabledIT_OVR * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_OVR(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_OVR) == (LL_ADC_IT_OVR)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group regular end of sampling * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER EOSMPIE LL_ADC_IsEnabledIT_EOSMP * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_EOSMP(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_EOSMP) == (LL_ADC_IT_EOSMP)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group injected end of unitary conversion * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER JEOCIE LL_ADC_IsEnabledIT_JEOC * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_JEOC(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_JEOC) == (LL_ADC_IT_JEOC)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group injected end of sequence conversions * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER JEOSIE LL_ADC_IsEnabledIT_JEOS * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_JEOS(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_JEOS) == (LL_ADC_IT_JEOS)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC group injected context queue overflow interrupt state * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER JQOVFIE LL_ADC_IsEnabledIT_JQOVF * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_JQOVF(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_JQOVF) == (LL_ADC_IT_JQOVF)) ? 1UL : 0UL); } /** * @brief Get state of interruption ADC analog watchdog 1 * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER AWD1IE LL_ADC_IsEnabledIT_AWD1 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_AWD1(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_AWD1) == (LL_ADC_IT_AWD1)) ? 1UL : 0UL); } /** * @brief Get state of interruption Get ADC analog watchdog 2 * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER AWD2IE LL_ADC_IsEnabledIT_AWD2 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_AWD2(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_AWD2) == (LL_ADC_IT_AWD2)) ? 1UL : 0UL); } /** * @brief Get state of interruption Get ADC analog watchdog 3 * (0: interrupt disabled, 1: interrupt enabled). * @rmtoll IER AWD3IE LL_ADC_IsEnabledIT_AWD3 * @param ADCx ADC instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_ADC_IsEnabledIT_AWD3(const ADC_TypeDef *ADCx) { return ((READ_BIT(ADCx->IER, LL_ADC_IT_AWD3) == (LL_ADC_IT_AWD3)) ? 1UL : 0UL); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup ADC_LL_EF_Init Initialization and de-initialization functions * @{ */ /* Initialization of some features of ADC common parameters and multimode */ ErrorStatus LL_ADC_CommonDeInit(ADC_Common_TypeDef *ADCxy_COMMON); ErrorStatus LL_ADC_CommonInit(ADC_Common_TypeDef *ADCxy_COMMON, const LL_ADC_CommonInitTypeDef *pADC_CommonInitStruct); void LL_ADC_CommonStructInit(LL_ADC_CommonInitTypeDef *pADC_CommonInitStruct); /* De-initialization of ADC instance, ADC group regular and ADC group injected */ /* (availability of ADC group injected depends on STM32 series) */ ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx); /* Initialization of some features of ADC instance */ ErrorStatus LL_ADC_Init(ADC_TypeDef *ADCx, const LL_ADC_InitTypeDef *pADC_InitStruct); void LL_ADC_StructInit(LL_ADC_InitTypeDef *pADC_InitStruct); /* Initialization of some features of ADC instance and ADC group regular */ ErrorStatus LL_ADC_REG_Init(ADC_TypeDef *ADCx, const LL_ADC_REG_InitTypeDef *pADC_RegInitStruct); void LL_ADC_REG_StructInit(LL_ADC_REG_InitTypeDef *pADC_RegInitStruct); /* Initialization of some features of ADC instance and ADC group injected */ ErrorStatus LL_ADC_INJ_Init(ADC_TypeDef *ADCx, const LL_ADC_INJ_InitTypeDef *pADC_InjInitStruct); void LL_ADC_INJ_StructInit(LL_ADC_INJ_InitTypeDef *pADC_InjInitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* ADC1 || ADC2 */ /** * @} */ #ifdef __cplusplus } #endif #endif /* STM32L5xx_LL_ADC_H */