/* * Copyright (c) 2020 - 2024 Renesas Electronics Corporation and/or its affiliates * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef R_SCI_B_UART_H #define R_SCI_B_UART_H /*******************************************************************************************************************//** * @addtogroup SCI_B_UART * @{ **********************************************************************************************************************/ /*********************************************************************************************************************** * Includes **********************************************************************************************************************/ #include "bsp_api.h" #include "r_uart_api.h" #include "r_sci_b_uart_cfg.h" /* Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end of this file. */ FSP_HEADER /*********************************************************************************************************************** * Macro definitions **********************************************************************************************************************/ /********************************************************************************************************************** * Typedef definitions **********************************************************************************************************************/ /** Enumeration for SCI clock source */ typedef enum e_sci_b_clk_src { SCI_B_UART_CLOCK_INT, ///< Use internal clock for baud generation SCI_B_UART_CLOCK_INT_WITH_BAUDRATE_OUTPUT, ///< Use internal clock for baud generation and output on SCK SCI_B_UART_CLOCK_EXT8X, ///< Use external clock 8x baud rate SCI_B_UART_CLOCK_EXT16X ///< Use external clock 16x baud rate } sci_b_clk_src_t; /** UART flow control mode definition */ typedef enum e_sci_b_uart_flow_control { SCI_B_UART_FLOW_CONTROL_RTS = 0U, ///< Use CTSn_RTSn pin for RTS SCI_B_UART_FLOW_CONTROL_CTS = 1U, ///< Use CTSn_RTSn pin for CTS SCI_B_UART_FLOW_CONTROL_HARDWARE_CTSRTS = 3U, ///< Use CTSn pin for CTS, CTSn_RTSn pin for RTS SCI_B_UART_FLOW_CONTROL_CTSRTS = 5U, ///< Use SCI pin for CTS, external pin for RTS } sci_b_uart_flow_control_t; /** UART instance control block. */ typedef struct st_sci_b_uart_instance_ctrl { /* Parameters to control UART peripheral device */ uint8_t fifo_depth; // FIFO depth of the UART channel uint8_t rx_transfer_in_progress; // Set to 1 if a receive transfer is in progress, 0 otherwise uint8_t data_bytes : 2; // 1 byte for 7 or 8 bit data, 2 bytes for 9 bit data uint8_t bitrate_modulation : 1; // 1 if bit rate modulation is enabled, 0 otherwise uint32_t open; // Used to determine if the channel is configured bsp_io_port_pin_t flow_pin; /* Source buffer pointer used to fill hardware FIFO from transmit ISR. */ uint8_t const * p_tx_src; /* Size of source buffer pointer used to fill hardware FIFO from transmit ISR. */ uint32_t tx_src_bytes; /* Destination buffer pointer used for receiving data. */ uint8_t const * p_rx_dest; /* Size of destination buffer pointer used for receiving data. */ uint32_t rx_dest_bytes; /* Pointer to the configuration block. */ uart_cfg_t const * p_cfg; /* Base register for this channel */ R_SCI_B0_Type * p_reg; void (* p_callback)(uart_callback_args_t *); // Pointer to callback that is called when a uart_event_t occurs. uart_callback_args_t * p_callback_memory; // Pointer to non-secure memory that can be used to pass arguments to a callback in non-secure memory. /* Pointer to context to be passed into callback function */ void const * p_context; } sci_b_uart_instance_ctrl_t; /** Receive FIFO trigger configuration. */ typedef enum e_sci_b_uart_rx_fifo_trigger { SCI_B_UART_RX_FIFO_TRIGGER_1 = 0x1, ///< Callback after each byte is received without buffering SCI_B_UART_RX_FIFO_TRIGGER_2 = 0x2, ///< Callback when FIFO having 2 bytes SCI_B_UART_RX_FIFO_TRIGGER_3 = 0x3, ///< Callback when FIFO having 3 bytes SCI_B_UART_RX_FIFO_TRIGGER_4 = 0x4, ///< Callback when FIFO having 4 bytes SCI_B_UART_RX_FIFO_TRIGGER_5 = 0x5, ///< Callback when FIFO having 5 bytes SCI_B_UART_RX_FIFO_TRIGGER_6 = 0x6, ///< Callback when FIFO having 6 bytes SCI_B_UART_RX_FIFO_TRIGGER_7 = 0x7, ///< Callback when FIFO having 7 bytes SCI_B_UART_RX_FIFO_TRIGGER_8 = 0x8, ///< Callback when FIFO having 8 bytes SCI_B_UART_RX_FIFO_TRIGGER_9 = 0x9, ///< Callback when FIFO having 9 bytes SCI_B_UART_RX_FIFO_TRIGGER_10 = 0xA, ///< Callback when FIFO having 10 bytes SCI_B_UART_RX_FIFO_TRIGGER_11 = 0xB, ///< Callback when FIFO having 11 bytes SCI_B_UART_RX_FIFO_TRIGGER_12 = 0xC, ///< Callback when FIFO having 12 bytes SCI_B_UART_RX_FIFO_TRIGGER_13 = 0xD, ///< Callback when FIFO having 13 bytes SCI_B_UART_RX_FIFO_TRIGGER_14 = 0xE, ///< Callback when FIFO having 14 bytes SCI_B_UART_RX_FIFO_TRIGGER_MAX = 0xF, ///< Callback when FIFO is full or after 15 bit times with no data (fewer interrupts) } sci_b_uart_rx_fifo_trigger_t; /** Asynchronous Start Bit Edge Detection configuration. */ typedef enum e_sci_b_uart_start_bit_detect { SCI_B_UART_START_BIT_LOW_LEVEL = 0x0, ///< Detect low level on RXDn pin as start bit SCI_B_UART_START_BIT_FALLING_EDGE = 0x1, ///< Detect falling level on RXDn pin as start bit } sci_b_uart_start_bit_detect_t; /** Noise cancellation configuration. */ typedef enum e_sci_b_uart_noise_cancellation { SCI_B_UART_NOISE_CANCELLATION_DISABLE = 0x0, ///< Disable noise cancellation SCI_B_UART_NOISE_CANCELLATION_ENABLE = 0x1, ///< Enable noise cancellation } sci_b_uart_noise_cancellation_t; /** RS-485 Enable/Disable. */ typedef enum e_sci_b_uart_rs485_enable { SCI_B_UART_RS485_DISABLE = 0, ///< RS-485 disabled. SCI_B_UART_RS485_ENABLE = 1, ///< RS-485 enabled. } sci_b_uart_rs485_enable_t; /** The polarity of the RS-485 DE signal. */ typedef enum e_sci_b_uart_rs485_de_polarity { SCI_B_UART_RS485_DE_POLARITY_HIGH = 0, ///< The DE signal is high when a write transfer is in progress. SCI_B_UART_RS485_DE_POLARITY_LOW = 1, ///< The DE signal is low when a write transfer is in progress. } sci_b_uart_rs485_de_polarity_t; /** Register settings to acheive a desired baud rate and modulation duty. */ typedef struct st_sci_b_baud_setting_t { union { uint32_t baudrate_bits; struct { uint32_t : 3; uint32_t : 1; uint32_t bgdm : 1; ///< Baud Rate Generator Double-Speed Mode Select uint32_t abcs : 1; ///< Asynchronous Mode Base Clock Select uint32_t abcse : 1; ///< Asynchronous Mode Extended Base Clock Select 1 uint32_t : 1; uint32_t brr : 8; ///< Bit Rate Register setting uint32_t brme : 1; ///< Bit Rate Modulation Enable uint32_t : 3; uint32_t cks : 2; ///< CKS value to get divisor (CKS = N) uint32_t : 2; uint32_t mddr : 8; ///< Modulation Duty Register setting } baudrate_bits_b; }; } sci_b_baud_setting_t; /** Configuration settings for controlling the DE signal for RS-485. */ typedef struct st_sci_b_uart_rs485_setting { sci_b_uart_rs485_enable_t enable; ///< Enable the DE signal. sci_b_uart_rs485_de_polarity_t polarity; ///< DE signal polarity. uint8_t assertion_time : 5; ///< Time in baseclock units after assertion of the DE signal and before the start of the write transfer. uint8_t negation_time : 5; ///< Time in baseclock units after the end of a write transfer and before the DE signal is negated. } sci_b_uart_rs485_setting_t; /** UART on SCI device Configuration */ typedef struct st_sci_b_uart_extended_cfg { sci_b_clk_src_t clock; ///< The source clock for the baud-rate generator. If internal optionally output baud rate on SCK sci_b_uart_start_bit_detect_t rx_edge_start; ///< Start reception on falling edge sci_b_uart_noise_cancellation_t noise_cancel; ///< Noise cancellation setting sci_b_baud_setting_t * p_baud_setting; ///< Register settings for a desired baud rate. sci_b_uart_rx_fifo_trigger_t rx_fifo_trigger; ///< Receive FIFO trigger level, unused if channel has no FIFO or if DTC is used. bsp_io_port_pin_t flow_control_pin; ///< UART Driver Enable pin sci_b_uart_flow_control_t flow_control; ///< CTS/RTS function of the SSn pin sci_b_uart_rs485_setting_t rs485_setting; ///< RS-485 settings. } sci_b_uart_extended_cfg_t; /********************************************************************************************************************** * Exported global variables **********************************************************************************************************************/ /** @cond INC_HEADER_DEFS_SEC */ /** Filled in Interface API structure for this Instance. */ extern const uart_api_t g_uart_on_sci_b; /** @endcond */ fsp_err_t R_SCI_B_UART_Open(uart_ctrl_t * const p_api_ctrl, uart_cfg_t const * const p_cfg); fsp_err_t R_SCI_B_UART_Read(uart_ctrl_t * const p_api_ctrl, uint8_t * const p_dest, uint32_t const bytes); fsp_err_t R_SCI_B_UART_Write(uart_ctrl_t * const p_api_ctrl, uint8_t const * const p_src, uint32_t const bytes); fsp_err_t R_SCI_B_UART_BaudSet(uart_ctrl_t * const p_api_ctrl, void const * const p_baud_setting); fsp_err_t R_SCI_B_UART_InfoGet(uart_ctrl_t * const p_api_ctrl, uart_info_t * const p_info); fsp_err_t R_SCI_B_UART_Close(uart_ctrl_t * const p_api_ctrl); fsp_err_t R_SCI_B_UART_Abort(uart_ctrl_t * const p_api_ctrl, uart_dir_t communication_to_abort); fsp_err_t R_SCI_B_UART_BaudCalculate(uint32_t baudrate, bool bitrate_modulation, uint32_t baud_rate_error_x_1000, sci_b_baud_setting_t * const p_baud_setting); fsp_err_t R_SCI_B_UART_CallbackSet(uart_ctrl_t * const p_api_ctrl, void ( * p_callback)(uart_callback_args_t *), void const * const p_context, uart_callback_args_t * const p_callback_memory); fsp_err_t R_SCI_B_UART_ReadStop(uart_ctrl_t * const p_api_ctrl, uint32_t * remaining_bytes); /*******************************************************************************************************************//** * @} (end addtogroup SCI_B_UART) **********************************************************************************************************************/ /* Common macro for FSP header files. There is also a corresponding FSP_HEADER macro at the top of this file. */ FSP_FOOTER #endif