/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2016 - 2017 , NXP * All rights reserved. * * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_clock.h" /******************************************************************************* * Definitions ******************************************************************************/ #define SCG_SIRC_LOW_RANGE_FREQ 2000000U /* Slow IRC low range clock frequency. */ #define SCG_SIRC_HIGH_RANGE_FREQ 8000000U /* Slow IRC high range clock frequency. */ #define SCG_FIRC_FREQ0 48000000U /* Fast IRC trimed clock frequency(48MHz). */ #define SCG_FIRC_FREQ1 52000000U /* Fast IRC trimed clock frequency(52MHz). */ #define SCG_FIRC_FREQ2 56000000U /* Fast IRC trimed clock frequency(56MHz). */ #define SCG_FIRC_FREQ3 60000000U /* Fast IRC trimed clock frequency(60MHz). */ #define SCG_LPFLL_FREQ0 48000000U /* LPFLL trimed clock frequency(48MHz). */ #define SCG_LPFLL_FREQ1 72000000U /* LPFLL trimed clock frequency(72MHz). */ #define SCG_LPFLL_FREQ2 96000000U /* LPFLL trimed clock frequency(96MHz). */ #define SCG_LPFLL_FREQ3 120000000U /* LPFLL trimed clock frequency(120MHz). */ #define SCG_CSR_SCS_VAL ((SCG->CSR & SCG_CSR_SCS_MASK) >> SCG_CSR_SCS_SHIFT) #define SCG_SOSCDIV_SOSCDIV1_VAL ((SCG->SOSCDIV & SCG_SOSCDIV_SOSCDIV1_MASK) >> SCG_SOSCDIV_SOSCDIV1_SHIFT) #define SCG_SOSCDIV_SOSCDIV2_VAL ((SCG->SOSCDIV & SCG_SOSCDIV_SOSCDIV2_MASK) >> SCG_SOSCDIV_SOSCDIV2_SHIFT) #define SCG_SOSCDIV_SOSCDIV3_VAL ((SCG->SOSCDIV & SCG_SOSCDIV_SOSCDIV3_MASK) >> SCG_SOSCDIV_SOSCDIV3_SHIFT) #define SCG_SIRCDIV_SIRCDIV1_VAL ((SCG->SIRCDIV & SCG_SIRCDIV_SIRCDIV1_MASK) >> SCG_SIRCDIV_SIRCDIV1_SHIFT) #define SCG_SIRCDIV_SIRCDIV2_VAL ((SCG->SIRCDIV & SCG_SIRCDIV_SIRCDIV2_MASK) >> SCG_SIRCDIV_SIRCDIV2_SHIFT) #define SCG_SIRCDIV_SIRCDIV3_VAL ((SCG->SIRCDIV & SCG_SIRCDIV_SIRCDIV3_MASK) >> SCG_SIRCDIV_SIRCDIV3_SHIFT) #define SCG_FIRCDIV_FIRCDIV1_VAL ((SCG->FIRCDIV & SCG_FIRCDIV_FIRCDIV1_MASK) >> SCG_FIRCDIV_FIRCDIV1_SHIFT) #define SCG_FIRCDIV_FIRCDIV2_VAL ((SCG->FIRCDIV & SCG_FIRCDIV_FIRCDIV2_MASK) >> SCG_FIRCDIV_FIRCDIV2_SHIFT) #define SCG_FIRCDIV_FIRCDIV3_VAL ((SCG->FIRCDIV & SCG_FIRCDIV_FIRCDIV3_MASK) >> SCG_FIRCDIV_FIRCDIV3_SHIFT) #define SCG_LPFLLDIV_LPFLLDIV1_VAL ((SCG->LPFLLDIV & SCG_LPFLLDIV_LPFLLDIV1_MASK) >> SCG_LPFLLDIV_LPFLLDIV1_SHIFT) #define SCG_LPFLLDIV_LPFLLDIV2_VAL ((SCG->LPFLLDIV & SCG_LPFLLDIV_LPFLLDIV2_MASK) >> SCG_LPFLLDIV_LPFLLDIV2_SHIFT) #define SCG_LPFLLDIV_LPFLLDIV3_VAL ((SCG->LPFLLDIV & SCG_LPFLLDIV_LPFLLDIV3_MASK) >> SCG_LPFLLDIV_LPFLLDIV3_SHIFT) #define SCG_SIRCCFG_RANGE_VAL ((SCG->SIRCCFG & SCG_SIRCCFG_RANGE_MASK) >> SCG_SIRCCFG_RANGE_SHIFT) #define SCG_FIRCCFG_RANGE_VAL ((SCG->FIRCCFG & SCG_FIRCCFG_RANGE_MASK) >> SCG_FIRCCFG_RANGE_SHIFT) #define SCG_LPFLLCFG_FSEL_VAL ((SCG->LPFLLCFG & SCG_LPFLLCFG_FSEL_MASK) >> SCG_LPFLLCFG_FSEL_SHIFT) /* Get the value of each field in PCC register. */ #define PCC_PCS_VAL(reg) ((reg & PCC_CLKCFG_PCS_MASK) >> PCC_CLKCFG_PCS_SHIFT) #define PCC_FRAC_VAL(reg) ((reg & PCC_CLKCFG_FRAC_MASK) >> PCC_CLKCFG_FRAC_SHIFT) #define PCC_PCD_VAL(reg) ((reg & PCC_CLKCFG_PCD_MASK) >> PCC_CLKCFG_PCD_SHIFT) /******************************************************************************* * Variables ******************************************************************************/ /* External XTAL0 (OSC0) clock frequency. */ uint32_t g_xtal0Freq; /* External XTAL32K clock frequency. */ uint32_t g_xtal32Freq; /******************************************************************************* * Prototypes ******************************************************************************/ /******************************************************************************* * Code ******************************************************************************/ uint32_t CLOCK_GetOsc32kClkFreq(void) { assert(g_xtal32Freq); return g_xtal32Freq; } uint32_t CLOCK_GetFlashClkFreq(void) { return CLOCK_GetSysClkFreq(kSCG_SysClkSlow); } uint32_t CLOCK_GetBusClkFreq(void) { return CLOCK_GetSysClkFreq(kSCG_SysClkSlow); } uint32_t CLOCK_GetPlatClkFreq(void) { return CLOCK_GetSysClkFreq(kSCG_SysClkCore); } uint32_t CLOCK_GetCoreSysClkFreq(void) { return CLOCK_GetSysClkFreq(kSCG_SysClkCore); } uint32_t CLOCK_GetExtClkFreq(void) { return CLOCK_GetSysClkFreq(kSCG_SysClkExt); } uint32_t CLOCK_GetFreq(clock_name_t clockName) { uint32_t freq; switch (clockName) { /* System layer clock. */ case kCLOCK_CoreSysClk: case kCLOCK_PlatClk: freq = CLOCK_GetSysClkFreq(kSCG_SysClkCore); break; case kCLOCK_BusClk: freq = CLOCK_GetSysClkFreq(kSCG_SysClkBus); break; case kCLOCK_FlashClk: freq = CLOCK_GetSysClkFreq(kSCG_SysClkSlow); break; case kCLOCK_ExtClk: freq = CLOCK_GetSysClkFreq(kSCG_SysClkExt); break; /* Original clock source. */ case kCLOCK_ScgSysOscClk: freq = CLOCK_GetSysOscFreq(); break; case kCLOCK_ScgSircClk: freq = CLOCK_GetSircFreq(); break; case kCLOCK_ScgFircClk: freq = CLOCK_GetFircFreq(); break; case kCLOCK_ScgLpFllClk: freq = CLOCK_GetLpFllFreq(); break; /* SOSC div clock. */ case kCLOCK_ScgSysOscAsyncDiv1Clk: freq = CLOCK_GetSysOscAsyncFreq(kSCG_AsyncDiv1Clk); break; case kCLOCK_ScgSysOscAsyncDiv2Clk: freq = CLOCK_GetSysOscAsyncFreq(kSCG_AsyncDiv2Clk); break; case kCLOCK_ScgSysOscAsyncDiv3Clk: freq = CLOCK_GetSysOscAsyncFreq(kSCG_AsyncDiv3Clk); break; /* SIRC div clock. */ case kCLOCK_ScgSircAsyncDiv1Clk: freq = CLOCK_GetSircAsyncFreq(kSCG_AsyncDiv1Clk); break; case kCLOCK_ScgSircAsyncDiv2Clk: freq = CLOCK_GetSircAsyncFreq(kSCG_AsyncDiv2Clk); break; case kCLOCK_ScgSircAsyncDiv3Clk: freq = CLOCK_GetSircAsyncFreq(kSCG_AsyncDiv3Clk); break; /* FIRC div clock. */ case kCLOCK_ScgFircAsyncDiv1Clk: freq = CLOCK_GetFircAsyncFreq(kSCG_AsyncDiv1Clk); break; case kCLOCK_ScgFircAsyncDiv2Clk: freq = CLOCK_GetFircAsyncFreq(kSCG_AsyncDiv2Clk); break; case kCLOCK_ScgFircAsyncDiv3Clk: freq = CLOCK_GetFircAsyncFreq(kSCG_AsyncDiv3Clk); break; /* LPFLL div clock. */ case kCLOCK_ScgSysLpFllAsyncDiv1Clk: freq = CLOCK_GetLpFllAsyncFreq(kSCG_AsyncDiv1Clk); break; case kCLOCK_ScgSysLpFllAsyncDiv2Clk: freq = CLOCK_GetLpFllAsyncFreq(kSCG_AsyncDiv2Clk); break; case kCLOCK_ScgSysLpFllAsyncDiv3Clk: freq = CLOCK_GetLpFllAsyncFreq(kSCG_AsyncDiv3Clk); break; /* Other clocks. */ case kCLOCK_LpoClk: freq = CLOCK_GetLpoClkFreq(); break; case kCLOCK_Osc32kClk: freq = CLOCK_GetOsc32kClkFreq(); break; default: freq = 0U; break; } return freq; } uint32_t CLOCK_GetIpFreq(clock_ip_name_t name) { uint32_t reg = (*(volatile uint32_t *)name); scg_async_clk_t asycClk; uint32_t freq; assert(reg & PCC_CLKCFG_PR_MASK); switch (name) { case kCLOCK_Lpit0: case kCLOCK_Lpit1: asycClk = kSCG_AsyncDiv3Clk; break; case kCLOCK_Sdhc0: case kCLOCK_Usb0: asycClk = kSCG_AsyncDiv1Clk; break; default: asycClk = kSCG_AsyncDiv2Clk; break; } switch (PCC_PCS_VAL(reg)) { case kCLOCK_IpSrcSysOscAsync: freq = CLOCK_GetSysOscAsyncFreq(asycClk); break; case kCLOCK_IpSrcSircAsync: freq = CLOCK_GetSircAsyncFreq(asycClk); break; case kCLOCK_IpSrcFircAsync: freq = CLOCK_GetFircAsyncFreq(asycClk); break; case kCLOCK_IpSrcLpFllAsync: freq = CLOCK_GetLpFllAsyncFreq(asycClk); break; default: /* kCLOCK_IpSrcNoneOrExt. */ freq = 0U; break; } if (0U != (reg & (PCC_CLKCFG_PCD_MASK | PCC_CLKCFG_FRAC_MASK))) { return freq * (PCC_FRAC_VAL(reg) + 1U) / (PCC_PCD_VAL(reg) + 1U); } else { return freq; } } bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq) { bool ret = true; CLOCK_SetIpSrc(kCLOCK_Usb0, kCLOCK_IpSrcFircAsync); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable clock gate. */ CLOCK_EnableClock(kCLOCK_Usb0); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ USBVREG->CTRL |= USBVREG_CTRL_EN_MASK; USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK; if (kCLOCK_UsbSrcIrc48M == src) { USB0->CLK_RECOVER_IRC_EN = 0x03U; USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK; USB0->CLK_RECOVER_INT_EN = 0x00U; } return ret; } uint32_t CLOCK_GetSysClkFreq(scg_sys_clk_t type) { uint32_t freq; scg_sys_clk_config_t sysClkConfig; CLOCK_GetCurSysClkConfig(&sysClkConfig); /* Get the main clock for SoC platform. */ switch (sysClkConfig.src) { case kSCG_SysClkSrcSysOsc: freq = CLOCK_GetSysOscFreq(); break; case kSCG_SysClkSrcSirc: freq = CLOCK_GetSircFreq(); break; case kSCG_SysClkSrcFirc: freq = CLOCK_GetFircFreq(); break; case kSCG_SysClkSrcRosc: freq = CLOCK_GetRtcOscFreq(); break; case kSCG_SysClkSrcLpFll: freq = CLOCK_GetLpFllFreq(); break; default: freq = 0U; break; } freq /= (sysClkConfig.divCore + 1U); /* divided by the DIVCORE firstly. */ if (kSCG_SysClkSlow == type) { freq /= (sysClkConfig.divSlow + 1U); } else if (kSCG_SysClkBus == type) { freq /= (sysClkConfig.divBus + 1U); } else if (kSCG_SysClkExt == type) { freq /= (sysClkConfig.divExt + 1U); } else { } return freq; } status_t CLOCK_InitSysOsc(const scg_sosc_config_t *config) { assert(config); status_t status; uint8_t tmp8; /* De-init the SOSC first. */ status = CLOCK_DeinitSysOsc(); if (kStatus_Success != status) { return status; } /* Now start to set up OSC clock. */ /* Step 1. Setup dividers. */ SCG->SOSCDIV = SCG_SOSCDIV_SOSCDIV1(config->div1) | SCG_SOSCDIV_SOSCDIV2(config->div2) | SCG_SOSCDIV_SOSCDIV3(config->div3); /* Step 2. Set OSC configuration. */ /* Step 3. Enable clock. */ /* SCG->SOSCCSR = SCG_SOSCCSR_SOSCEN_MASK | (config->enableMode); */ tmp8 = config->enableMode; tmp8 |= SCG_SOSCCSR_SOSCEN_MASK; SCG->SOSCCSR = tmp8; /* Step 4. Wait for OSC clock to be valid. */ while (!(SCG->SOSCCSR & SCG_SOSCCSR_SOSCVLD_MASK)) { } /* Step 5. Enabe monitor. */ SCG->SOSCCSR |= (uint32_t)config->monitorMode; return kStatus_Success; } status_t CLOCK_DeinitSysOsc(void) { uint32_t reg = SCG->SOSCCSR; /* If clock is used by system, return error. */ if (reg & SCG_SOSCCSR_SOSCSEL_MASK) { return kStatus_SCG_Busy; } /* If configure register is locked, return error. */ if (reg & SCG_SOSCCSR_LK_MASK) { return kStatus_ReadOnly; } SCG->SOSCCSR = SCG_SOSCCSR_SOSCERR_MASK; return kStatus_Success; } uint32_t CLOCK_GetSysOscFreq(void) { if (SCG->SOSCCSR & SCG_SOSCCSR_SOSCVLD_MASK) /* System OSC clock is valid. */ { /* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */ assert(g_xtal0Freq); return g_xtal0Freq; } else { return 0U; } } uint32_t CLOCK_GetSysOscAsyncFreq(scg_async_clk_t type) { uint32_t oscFreq = CLOCK_GetSysOscFreq(); uint32_t divider = 0U; /* Get divider. */ if (oscFreq) { switch (type) { case kSCG_AsyncDiv3Clk: /* SOSCDIV3_CLK. */ divider = SCG_SOSCDIV_SOSCDIV3_VAL; break; case kSCG_AsyncDiv2Clk: /* SOSCDIV2_CLK. */ divider = SCG_SOSCDIV_SOSCDIV2_VAL; break; case kSCG_AsyncDiv1Clk: /* SOSCDIV1_CLK. */ divider = SCG_SOSCDIV_SOSCDIV1_VAL; break; default: break; } } if (divider) { return oscFreq >> (divider - 1U); } else /* Output disabled. */ { return 0U; } } status_t CLOCK_InitSirc(const scg_sirc_config_t *config) { assert(config); status_t status; /* De-init the SIRC first. */ status = CLOCK_DeinitSirc(); if (kStatus_Success != status) { return status; } /* Now start to set up SIRC clock. */ /* Step 1. Setup dividers. */ SCG->SIRCDIV = SCG_SIRCDIV_SIRCDIV1(config->div1) | SCG_SIRCDIV_SIRCDIV2(config->div2) | SCG_SIRCDIV_SIRCDIV3(config->div3); /* Step 2. Set SIRC configuration. */ SCG->SIRCCFG = SCG_SIRCCFG_RANGE(config->range); /* Step 3. Enable clock. */ SCG->SIRCCSR = SCG_SIRCCSR_SIRCEN_MASK | config->enableMode; /* Step 4. Wait for SIRC clock to be valid. */ while (!(SCG->SIRCCSR & SCG_SIRCCSR_SIRCVLD_MASK)) { } return kStatus_Success; } status_t CLOCK_DeinitSirc(void) { uint32_t reg = SCG->SIRCCSR; /* If clock is used by system, return error. */ if (reg & SCG_SIRCCSR_SIRCSEL_MASK) { return kStatus_SCG_Busy; } /* If configure register is locked, return error. */ if (reg & SCG_SIRCCSR_LK_MASK) { return kStatus_ReadOnly; } SCG->SIRCCSR = 0U; return kStatus_Success; } uint32_t CLOCK_GetSircFreq(void) { static const uint32_t sircFreq[] = {SCG_SIRC_LOW_RANGE_FREQ, SCG_SIRC_HIGH_RANGE_FREQ}; if (SCG->SIRCCSR & SCG_SIRCCSR_SIRCVLD_MASK) /* SIRC is valid. */ { return sircFreq[SCG_SIRCCFG_RANGE_VAL]; } else { return 0U; } } uint32_t CLOCK_GetSircAsyncFreq(scg_async_clk_t type) { uint32_t sircFreq = CLOCK_GetSircFreq(); uint32_t divider = 0U; /* Get divider. */ if (sircFreq) { switch (type) { case kSCG_AsyncDiv3Clk: /* SIRCDIV3_CLK. */ divider = SCG_SIRCDIV_SIRCDIV3_VAL; break; case kSCG_AsyncDiv2Clk: /* SIRCDIV2_CLK. */ divider = SCG_SIRCDIV_SIRCDIV2_VAL; break; case kSCG_AsyncDiv1Clk: /* SIRCDIV2_CLK. */ divider = SCG_SIRCDIV_SIRCDIV1_VAL; break; default: break; } } if (divider) { return sircFreq >> (divider - 1U); } else /* Output disabled. */ { return 0U; } } status_t CLOCK_InitFirc(const scg_firc_config_t *config) { assert(config); status_t status; /* De-init the FIRC first. */ status = CLOCK_DeinitFirc(); if (kStatus_Success != status) { return status; } /* Now start to set up FIRC clock. */ /* Step 1. Setup dividers. */ SCG->FIRCDIV = SCG_FIRCDIV_FIRCDIV1(config->div1) | SCG_FIRCDIV_FIRCDIV2(config->div2) | SCG_FIRCDIV_FIRCDIV3(config->div3); /* Step 2. Set FIRC configuration. */ SCG->FIRCCFG = SCG_FIRCCFG_RANGE(config->range); /* Step 3. Set trimming configuration. */ if (config->trimConfig) { SCG->FIRCTCFG = SCG_FIRCTCFG_TRIMDIV(config->trimConfig->trimDiv) | SCG_FIRCTCFG_TRIMSRC(config->trimConfig->trimSrc); /* TODO: Write FIRCSTAT cause bus error: TKT266932. */ if (kSCG_FircTrimNonUpdate == config->trimConfig->trimMode) { SCG->FIRCSTAT = SCG_FIRCSTAT_TRIMCOAR(config->trimConfig->trimCoar) | SCG_FIRCSTAT_TRIMFINE(config->trimConfig->trimFine); } /* trim mode. */ SCG->FIRCCSR = config->trimConfig->trimMode; if (SCG->FIRCCSR & SCG_FIRCCSR_FIRCERR_MASK) { return kStatus_Fail; } } /* Step 4. Enable clock. */ SCG->FIRCCSR |= (SCG_FIRCCSR_FIRCEN_MASK | SCG_FIRCCSR_FIRCTREN_MASK | config->enableMode); /* Step 5. Wait for FIRC clock to be valid. */ while (!(SCG->FIRCCSR & SCG_FIRCCSR_FIRCVLD_MASK)) { } return kStatus_Success; } status_t CLOCK_DeinitFirc(void) { uint32_t reg = SCG->FIRCCSR; /* If clock is used by system, return error. */ if (reg & SCG_FIRCCSR_FIRCSEL_MASK) { return kStatus_SCG_Busy; } /* If configure register is locked, return error. */ if (reg & SCG_FIRCCSR_LK_MASK) { return kStatus_ReadOnly; } SCG->FIRCCSR = SCG_FIRCCSR_FIRCERR_MASK; return kStatus_Success; } uint32_t CLOCK_GetFircFreq(void) { static const uint32_t fircFreq[] = { SCG_FIRC_FREQ0, SCG_FIRC_FREQ1, SCG_FIRC_FREQ2, SCG_FIRC_FREQ3, }; if (SCG->FIRCCSR & SCG_FIRCCSR_FIRCVLD_MASK) /* FIRC is valid. */ { return fircFreq[SCG_FIRCCFG_RANGE_VAL]; } else { return 0U; } } uint32_t CLOCK_GetFircAsyncFreq(scg_async_clk_t type) { uint32_t fircFreq = CLOCK_GetFircFreq(); uint32_t divider = 0U; /* Get divider. */ if (fircFreq) { switch (type) { case kSCG_AsyncDiv3Clk: /* FIRCDIV3_CLK. */ divider = SCG_FIRCDIV_FIRCDIV3_VAL; break; case kSCG_AsyncDiv2Clk: /* FIRCDIV2_CLK. */ divider = SCG_FIRCDIV_FIRCDIV2_VAL; break; case kSCG_AsyncDiv1Clk: /* FIRCDIV1_CLK. */ divider = SCG_FIRCDIV_FIRCDIV1_VAL; break; default: break; } } if (divider) { return fircFreq >> (divider - 1U); } else /* Output disabled. */ { return 0U; } } uint32_t CLOCK_GetRtcOscFreq(void) { if (SCG->ROSCCSR & SCG_ROSCCSR_ROSCVLD_MASK) /* RTC OSC clock is valid. */ { /* Please call CLOCK_SetXtal32Freq base on board setting before using RTC OSC clock. */ assert(g_xtal32Freq); return g_xtal32Freq; } else { return 0U; } } status_t CLOCK_InitLpFll(const scg_lpfll_config_t *config) { assert(config); status_t status; /* De-init the LPFLL first. */ status = CLOCK_DeinitLpFll(); if (kStatus_Success != status) { return status; } /* Now start to set up LPFLL clock. */ /* Step 1. Setup dividers. */ SCG->LPFLLDIV = SCG_LPFLLDIV_LPFLLDIV1(config->div1) | SCG_LPFLLDIV_LPFLLDIV2(config->div2) | SCG_LPFLLDIV_LPFLLDIV3(config->div3); /* Step 2. Set LPFLL configuration. */ SCG->LPFLLCFG = SCG_LPFLLCFG_FSEL(config->range); /* Step 3. Set trimming configuration. */ if (config->trimConfig) { SCG->LPFLLTCFG = SCG_LPFLLTCFG_TRIMDIV(config->trimConfig->trimDiv) | SCG_LPFLLTCFG_TRIMSRC(config->trimConfig->trimSrc) | SCG_LPFLLTCFG_LOCKW2LSB(config->trimConfig->lockMode); if (kSCG_LpFllTrimNonUpdate == config->trimConfig->trimMode) { SCG->LPFLLSTAT = config->trimConfig->trimValue; } /* Trim mode. */ SCG->LPFLLCSR = config->trimConfig->trimMode; if (SCG->LPFLLCSR & SCG_LPFLLCSR_LPFLLERR_MASK) { return kStatus_Fail; } } /* Step 4. Enable clock. */ SCG->LPFLLCSR |= (SCG_LPFLLCSR_LPFLLEN_MASK | config->enableMode); /* Step 5. Wait for LPFLL clock to be valid. */ while (!(SCG->LPFLLCSR & SCG_LPFLLCSR_LPFLLVLD_MASK)) { } /* Step 6. Wait for LPFLL trim lock. */ if ((config->trimConfig) && (kSCG_LpFllTrimUpdate == config->trimConfig->trimMode)) { while (!(SCG->LPFLLCSR & SCG_LPFLLCSR_LPFLLTRMLOCK_MASK)) { } } return kStatus_Success; } status_t CLOCK_DeinitLpFll(void) { uint32_t reg = SCG->LPFLLCSR; /* If clock is used by system, return error. */ if (reg & SCG_LPFLLCSR_LPFLLSEL_MASK) { return kStatus_SCG_Busy; } /* If configure register is locked, return error. */ if (reg & SCG_LPFLLCSR_LK_MASK) { return kStatus_ReadOnly; } SCG->LPFLLCSR = SCG_LPFLLCSR_LPFLLERR_MASK; return kStatus_Success; } uint32_t CLOCK_GetLpFllFreq(void) { static const uint32_t lpfllFreq[] = { SCG_LPFLL_FREQ0, SCG_LPFLL_FREQ1, SCG_LPFLL_FREQ2, SCG_LPFLL_FREQ3, }; if (SCG->LPFLLCSR & SCG_LPFLLCSR_LPFLLVLD_MASK) /* LPFLL is valid. */ { return lpfllFreq[SCG_LPFLLCFG_FSEL_VAL]; } else { return 0U; } } uint32_t CLOCK_GetLpFllAsyncFreq(scg_async_clk_t type) { uint32_t lpfllFreq = CLOCK_GetLpFllFreq(); uint32_t divider = 0U; /* Get divider. */ if (lpfllFreq) { switch (type) { case kSCG_AsyncDiv2Clk: /* LPFLLDIV2_CLK. */ divider = SCG_LPFLLDIV_LPFLLDIV2_VAL; break; case kSCG_AsyncDiv1Clk: /* LPFLLDIV1_CLK. */ divider = SCG_LPFLLDIV_LPFLLDIV1_VAL; break; default: break; } } if (divider) { return lpfllFreq >> (divider - 1U); } else /* Output disabled. */ { return 0U; } }