/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2019 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_vref.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.vref" #endif /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Gets the instance from the base address * * @param base VREF peripheral base address * * @return The VREF instance */ static uint32_t VREF_GetInstance(VREF_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to VREF bases for each instance. */ static VREF_Type *const s_vrefBases[] = VREF_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to VREF clocks for each instance. */ static const clock_ip_name_t s_vrefClocks[] = VREF_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ static uint32_t VREF_GetInstance(VREF_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_vrefBases); instance++) { if (s_vrefBases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_vrefBases)); return instance; } /*! * brief Enables the clock gate and configures the VREF module according to the configuration structure. * * This function must be called before calling all other VREF driver functions, * read/write registers, and configurations with user-defined settings. * The example below shows how to set up vref_config_t parameters and * how to call the VREF_Init function by passing in these parameters. * This is an example. * code * vref_config_t vrefConfig; * vrefConfig.bufferMode = kVREF_ModeHighPowerBuffer; * vrefConfig.enableExternalVoltRef = false; * vrefConfig.enableLowRef = false; * VREF_Init(VREF, &vrefConfig); * endcode * * param base VREF peripheral address. * param config Pointer to the configuration structure. */ void VREF_Init(VREF_Type *base, const vref_config_t *config) { assert(config != NULL); uint8_t reg = 0U; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Ungate clock for VREF */ CLOCK_EnableClock(s_vrefClocks[VREF_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Configure VREF to a known state */ #if defined(FSL_FEATURE_VREF_HAS_CHOP_OSC) && FSL_FEATURE_VREF_HAS_CHOP_OSC /* Set chop oscillator bit */ base->TRM |= VREF_TRM_CHOPEN_MASK; #endif /* FSL_FEATURE_VREF_HAS_CHOP_OSC */ /* Get current SC register */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE reg = base->VREFH_SC; #else reg = base->SC; #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ /* Clear old buffer mode selection bits */ reg &= ~(uint8_t)VREF_SC_MODE_LV_MASK; /* Set buffer Mode selection and Regulator enable bit */ reg |= VREF_SC_MODE_LV(config->bufferMode) | VREF_SC_REGEN(1U); #if defined(FSL_FEATURE_VREF_HAS_COMPENSATION) && FSL_FEATURE_VREF_HAS_COMPENSATION /* Set second order curvature compensation enable bit */ reg |= VREF_SC_ICOMPEN(1U); #endif /* FSL_FEATURE_VREF_HAS_COMPENSATION */ /* Enable VREF module */ reg |= VREF_SC_VREFEN(1U); /* Update bit-field from value to Status and Control register */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE base->VREFH_SC = reg; #else base->SC = reg; #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE reg = base->VREFL_TRM; /* Clear old select external voltage reference and VREFL (0.4 V) reference buffer enable bits */ reg &= (uint8_t)(~(VREF_VREFL_TRM_VREFL_EN_MASK | VREF_VREFL_TRM_VREFL_SEL_MASK)); /* Select external voltage reference and set VREFL (0.4 V) reference buffer enable */ reg |= VREF_VREFL_TRM_VREFL_SEL(config->enableExternalVoltRef) | VREF_VREFL_TRM_VREFL_EN(config->enableLowRef); base->VREFL_TRM = reg; #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ #if defined(FSL_FEATURE_VREF_HAS_TRM4) && FSL_FEATURE_VREF_HAS_TRM4 reg = base->TRM4; /* Clear old select internal voltage reference bit (2.1V) */ reg &= ~(uint8_t)VREF_TRM4_VREF2V1_EN_MASK; /* Select internal voltage reference (2.1V) */ reg |= VREF_TRM4_VREF2V1_EN(config->enable2V1VoltRef); base->TRM4 = reg; #endif /* FSL_FEATURE_VREF_HAS_TRM4 */ /* Wait until internal voltage stable */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE while ((base->VREFH_SC & VREF_SC_VREFST_MASK) == 0U) #else while ((base->SC & VREF_SC_VREFST_MASK) == 0U) #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ { } } /*! * brief Stops and disables the clock for the VREF module. * * This function should be called to shut down the module. * This is an example. * code * vref_config_t vrefUserConfig; * VREF_Init(VREF); * VREF_GetDefaultConfig(&vrefUserConfig); * ... * VREF_Deinit(VREF); * endcode * * param base VREF peripheral address. */ void VREF_Deinit(VREF_Type *base) { #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Gate clock for VREF */ CLOCK_DisableClock(s_vrefClocks[VREF_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } /*! * brief Initializes the VREF configuration structure. * * This function initializes the VREF configuration structure to default values. * This is an example. * code * vrefConfig->bufferMode = kVREF_ModeHighPowerBuffer; * vrefConfig->enableExternalVoltRef = false; * vrefConfig->enableLowRef = false; * endcode * * param config Pointer to the initialization structure. */ void VREF_GetDefaultConfig(vref_config_t *config) { assert(NULL != config); /* Initializes the configure structure to zero. */ (void)memset(config, 0, sizeof(*config)); /* Set High power buffer mode in */ #if defined(FSL_FEATURE_VREF_MODE_LV_TYPE) && FSL_FEATURE_VREF_MODE_LV_TYPE config->bufferMode = kVREF_ModeHighPowerBuffer; #else config->bufferMode = kVREF_ModeTightRegulationBuffer; #endif /* FSL_FEATURE_VREF_MODE_LV_TYPE */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE /* Select internal voltage reference */ config->enableExternalVoltRef = false; /* Set VREFL (0.4 V) reference buffer disable */ config->enableLowRef = false; #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ #if defined(FSL_FEATURE_VREF_HAS_TRM4) && FSL_FEATURE_VREF_HAS_TRM4 /* Disable internal voltage reference (2.1V) */ config->enable2V1VoltRef = false; #endif /* FSL_FEATURE_VREF_HAS_TRM4 */ } /*! * brief Sets a TRIM value for the reference voltage. * * This function sets a TRIM value for the reference voltage. * Note that the TRIM value maximum is 0x3F. * * param base VREF peripheral address. * param trimValue Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)). */ void VREF_SetTrimVal(VREF_Type *base, uint8_t trimValue) { uint8_t reg = 0U; /* Set TRIM bits value in voltage reference */ reg = base->TRM; reg = (uint8_t)((reg & ~VREF_TRM_TRIM_MASK) | VREF_TRM_TRIM(trimValue)); base->TRM = reg; /* Wait until internal voltage stable */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE while ((base->VREFH_SC & VREF_SC_VREFST_MASK) == 0U) #else while ((base->SC & VREF_SC_VREFST_MASK) == 0U) #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */ { } } #if defined(FSL_FEATURE_VREF_HAS_TRM4) && FSL_FEATURE_VREF_HAS_TRM4 /*! * brief Sets a TRIM value for the reference voltage (2V1). * * This function sets a TRIM value for the reference voltage (2V1). * Note that the TRIM value maximum is 0x3F. * * param base VREF peripheral address. * param trimValue Value of the trim register to set the output reference voltage (maximum 0x3F (6-bit)). */ void VREF_SetTrim2V1Val(VREF_Type *base, uint8_t trimValue) { uint8_t reg = 0U; /* Set TRIM bits value in voltage reference (2V1) */ reg = base->TRM4; reg = (uint8_t)((reg & ~VREF_TRM4_TRIM2V1_MASK) | VREF_TRM4_TRIM2V1(trimValue)); base->TRM4 = reg; /* Wait until internal voltage stable */ while ((base->SC & VREF_SC_VREFST_MASK) == 0U) { } } #endif /* FSL_FEATURE_VREF_HAS_TRM4 */ #if defined(FSL_FEATURE_VREF_HAS_LOW_REFERENCE) && FSL_FEATURE_VREF_HAS_LOW_REFERENCE /*! * brief Sets the TRIM value for the low voltage reference. * * This function sets the TRIM value for low reference voltage. * Note the following. * - The TRIM value maximum is 0x05U * - The values 111b and 110b are not valid/allowed. * * param base VREF peripheral address. * param trimValue Value of the trim register to set output low reference voltage (maximum 0x05U (3-bit)). */ void VREF_SetLowReferenceTrimVal(VREF_Type *base, uint8_t trimValue) { /* The values 111b and 110b are NOT valid/allowed */ assert((trimValue != 0x7U) && (trimValue != 0x6U)); uint8_t reg = 0U; /* Set TRIM bits value in low voltage reference */ reg = base->VREFL_TRM; reg = ((reg & (uint8_t)(~VREF_VREFL_TRM_VREFL_TRIM_MASK)) | VREF_VREFL_TRM_VREFL_TRIM(trimValue)); base->VREFL_TRM = reg; /* Wait until internal voltage stable */ while ((base->VREFH_SC & VREF_SC_VREFST_MASK) == 0U) { } } #endif /* FSL_FEATURE_VREF_HAS_LOW_REFERENCE */