/* * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright 2016-2020 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_phy.h" /******************************************************************************* * Definitions ******************************************************************************/ /*! @brief Defines the timeout macro. */ #define PHY_TIMEOUT_COUNT 500000U /******************************************************************************* * Prototypes ******************************************************************************/ /******************************************************************************* * Variables ******************************************************************************/ /******************************************************************************* * Code ******************************************************************************/ status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz) { uint32_t reg; uint32_t idReg = 0; uint32_t delay = PHY_TIMEOUT_COUNT; uint32_t instance = ENET_GetInstance(base); bool status = false; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Set SMI first. */ (void)CLOCK_EnableClock(s_enetClock[instance]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) ENET_SetSMI(base, srcClock_Hz, false); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_SetSMI(base); #endif /* Initialization after PHY stars to work. */ while ((idReg != PHY_CONTROL_ID1) && (delay != 0U)) { (void)PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg); delay--; } if (delay == 0U) { return kStatus_Fail; } delay = PHY_TIMEOUT_COUNT; /* Reset PHY and wait until completion. */ (void)PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK); do { (void)PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, ®); } while ((delay-- != 0U) && ((reg & PHY_BCTL_RESET_MASK) != 0U)); if (delay == 0U) { return kStatus_Fail; } /* Set the ability. */ (void)PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG, (PHY_ALL_CAPABLE_MASK | 0x1U)); /* Start Auto negotiation and wait until auto negotiation completion */ (void)PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK)); delay = PHY_TIMEOUT_COUNT; do { (void)PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®); delay--; } while ((delay != 0U) && ((reg & PHY_SPECIALCTL_AUTONEGDONE_MASK) == 0U)); if (delay == 0U) { return kStatus_PHY_AutoNegotiateFail; } /* Waiting a moment for phy stable. */ for (delay = 0U; delay < PHY_TIMEOUT_COUNT; delay++) { __ASM("nop"); (void)PHY_GetLinkStatus(base, phyAddr, &status); if (status) { break; } } return kStatus_Success; } status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data) { #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) uint32_t counter; /* Clear the SMI interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts a SMI write command. */ ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data); /* Wait for SMI complete. */ for (counter = PHY_TIMEOUT_COUNT; counter > 0U; counter--) { if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) { break; } } /* Check for timeout. */ if (counter == 0U) { return kStatus_PHY_SMIVisitTimeout; } /* Clear MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_StartSMIWrite(base, phyAddr, phyReg, data); while (ENET_IsSMIBusy(base)) { } #endif return kStatus_Success; } status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr) { #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) assert(dataPtr); uint32_t counter; /* Clear the MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts a SMI read command operation. */ ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame); /* Wait for MII complete. */ for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--) { if ((ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) != 0U) { break; } } /* Check for timeout. */ if (counter == 0U) { return kStatus_PHY_SMIVisitTimeout; } /* Get data from MII register. */ *dataPtr = ENET_ReadSMIData(base); /* Clear MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_StartSMIRead(base, phyAddr, phyReg); while (ENET_IsSMIBusy(base)) { } *dataPtr = ENET_ReadSMIData(base); #endif return kStatus_Success; } status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status) { uint32_t reg; status_t result = kStatus_Success; /* Read the basic status register. */ result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, ®); if (result == kStatus_Success) { if ((reg & PHY_BSTATUS_LINKSTATUS_MASK) != 0U) { /* link up. */ *status = true; } else { *status = false; } } return result; } status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex) { assert(duplex); assert(speed); uint32_t reg; status_t result = kStatus_Success; /* Read the control two register. */ result = PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®); if (result == kStatus_Success) { if ((reg & PHY_SPECIALCTL_DUPLEX_MASK) != 0U) { /* Full duplex. */ *duplex = kPHY_FullDuplex; } else { /* Half duplex. */ *duplex = kPHY_HalfDuplex; } if ((reg & PHY_SPECIALCTL_100SPEED_MASK) != 0U) { /* 100M speed. */ *speed = kPHY_Speed100M; } else { /* 10M speed. */ *speed = kPHY_Speed10M; } } return result; }