/*
* Copyright 2017 - 2021 , 2023 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_CLOCK_H_
#define _FSL_CLOCK_H_
#include "fsl_common.h"
/*! @addtogroup clock */
/*! @{ */
/*! @file */
/*******************************************************************************
* Definitions
*****************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief CLOCK driver version 2.3.9. */
#define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 3, 9))
/*@}*/
/*! @brief Configure whether driver controls clock
*
* When set to 0, peripheral drivers will enable clock in initialize function
* and disable clock in de-initialize function. When set to 1, peripheral
* driver will not control the clock, application could control the clock out of
* the driver.
*
* @note All drivers share this feature switcher. If it is set to 1, application
* should handle clock enable and disable for all drivers.
*/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL))
#define FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL 0
#endif
/*!
* @brief User-defined the size of cache for CLOCK_PllGetConfig() function.
*
* Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function
* would cache the recent calulation and accelerate the execution to get the
* right settings.
*/
#ifndef CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT
#define CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT 2U
#endif
/* Definition for delay API in clock driver, users can redefine it to the real application. */
#ifndef SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
#define SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY (100000000UL)
#endif
/*! @brief Clock ip name array for ROM. */
#define ROM_CLOCKS \
{ \
kCLOCK_Rom \
}
/*! @brief Clock ip name array for SRAM. */
#define SRAM_CLOCKS \
{ \
kCLOCK_Sram1, kCLOCK_Sram2 \
}
/*! @brief Clock ip name array for FLASH. */
#define FLASH_CLOCKS \
{ \
kCLOCK_Flash \
}
/*! @brief Clock ip name array for FMC. */
#define FMC_CLOCKS \
{ \
kCLOCK_Fmc \
}
/*! @brief Clock ip name array for INPUTMUX. */
#define INPUTMUX_CLOCKS \
{ \
kCLOCK_InputMux0 \
}
/*! @brief Clock ip name array for IOCON. */
#define IOCON_CLOCKS \
{ \
kCLOCK_Iocon \
}
/*! @brief Clock ip name array for GPIO. */
#define GPIO_CLOCKS \
{ \
kCLOCK_Gpio0, kCLOCK_Gpio1 \
}
/*! @brief Clock ip name array for PINT. */
#define PINT_CLOCKS \
{ \
kCLOCK_Pint \
}
/*! @brief Clock ip name array for GINT. */
#define GINT_CLOCKS \
{ \
kCLOCK_Gint, kCLOCK_Gint \
}
/*! @brief Clock ip name array for DMA. */
#define DMA_CLOCKS \
{ \
kCLOCK_Dma0, kCLOCK_Dma1 \
}
/*! @brief Clock ip name array for CRC. */
#define CRC_CLOCKS \
{ \
kCLOCK_Crc \
}
/*! @brief Clock ip name array for WWDT. */
#define WWDT_CLOCKS \
{ \
kCLOCK_Wwdt \
}
/*! @brief Clock ip name array for RTC. */
#define RTC_CLOCKS \
{ \
kCLOCK_Rtc \
}
/*! @brief Clock ip name array for Mailbox. */
#define MAILBOX_CLOCKS \
{ \
kCLOCK_Mailbox \
}
/*! @brief Clock ip name array for LPADC. */
#define LPADC_CLOCKS \
{ \
kCLOCK_Adc0 \
}
/*! @brief Clock ip name array for MRT. */
#define MRT_CLOCKS \
{ \
kCLOCK_Mrt \
}
/*! @brief Clock ip name array for OSTIMER. */
#define OSTIMER_CLOCKS \
{ \
kCLOCK_OsTimer0 \
}
/*! @brief Clock ip name array for SCT0. */
#define SCT_CLOCKS \
{ \
kCLOCK_Sct0 \
}
/*! @brief Clock ip name array for MCAN. */
#define MCAN_CLOCKS \
{ \
kCLOCK_Mcan \
}
/*! @brief Clock ip name array for UTICK. */
#define UTICK_CLOCKS \
{ \
kCLOCK_Utick0 \
}
/*! @brief Clock ip name array for FLEXCOMM. */
#define FLEXCOMM_CLOCKS \
{ \
kCLOCK_FlexComm0, kCLOCK_FlexComm1, kCLOCK_FlexComm2, kCLOCK_FlexComm3, kCLOCK_FlexComm4, kCLOCK_FlexComm5, \
kCLOCK_FlexComm6, kCLOCK_FlexComm7, kCLOCK_Hs_Lspi \
}
/*! @brief Clock ip name array for LPUART. */
#define LPUART_CLOCKS \
{ \
kCLOCK_MinUart0, kCLOCK_MinUart1, kCLOCK_MinUart2, kCLOCK_MinUart3, kCLOCK_MinUart4, kCLOCK_MinUart5, \
kCLOCK_MinUart6, kCLOCK_MinUart7 \
}
/*! @brief Clock ip name array for BI2C. */
#define BI2C_CLOCKS \
{ \
kCLOCK_BI2c0, kCLOCK_BI2c1, kCLOCK_BI2c2, kCLOCK_BI2c3, kCLOCK_BI2c4, kCLOCK_BI2c5, kCLOCK_BI2c6, kCLOCK_BI2c7 \
}
/*! @brief Clock ip name array for LSPI. */
#define LPSPI_CLOCKS \
{ \
kCLOCK_LSpi0, kCLOCK_LSpi1, kCLOCK_LSpi2, kCLOCK_LSpi3, kCLOCK_LSpi4, kCLOCK_LSpi5, kCLOCK_LSpi6, kCLOCK_LSpi7 \
}
/*! @brief Clock ip name array for FLEXI2S. */
#define FLEXI2S_CLOCKS \
{ \
kCLOCK_FlexI2s0, kCLOCK_FlexI2s1, kCLOCK_FlexI2s2, kCLOCK_FlexI2s3, kCLOCK_FlexI2s4, kCLOCK_FlexI2s5, \
kCLOCK_FlexI2s6, kCLOCK_FlexI2s7 \
}
/*! @brief Clock ip name array for CTIMER. */
#define CTIMER_CLOCKS \
{ \
kCLOCK_Timer0, kCLOCK_Timer1, kCLOCK_Timer2, kCLOCK_Timer3, kCLOCK_Timer4 \
}
/*! @brief Clock ip name array for EZHA */
#define EZHA_CLOCKS \
{ \
kCLOCK_Ezha \
}
/*! @brief Clock ip name array for EZHB */
#define EZHB_CLOCKS \
{ \
kCLOCK_Ezhb \
}
/*! @brief Clock ip name array for COMP */
#define COMP_CLOCKS \
{ \
kCLOCK_Comp \
}
/*! @brief Clock ip name array for USB1CLK. */
#define USB1CLK_CLOCKS \
{ \
kCLOCK_Usb1Clk \
}
/*! @brief Clock ip name array for FREQME. */
#define FREQME_CLOCKS \
{ \
kCLOCK_Freqme \
}
/*! @brief Clock ip name array for USBRAM. */
#define USBRAM_CLOCKS \
{ \
kCLOCK_UsbRam1 \
}
/*! @brief Clock ip name array for CDOG. */
#define CDOG_CLOCKS \
{ \
kCLOCK_Cdog \
}
/*! @brief Clock ip name array for RNG. */
#define RNG_CLOCKS \
{ \
kCLOCK_Rng \
}
/*! @brief Clock ip name array for USBHMR0. */
#define USBHMR0_CLOCKS \
{ \
kCLOCK_Usbhmr0 \
}
/*! @brief Clock ip name array for USBHSL0. */
#define USBHSL0_CLOCKS \
{ \
kCLOCK_Usbhsl0 \
}
/*! @brief Clock ip name array for HashCrypt. */
#define HASHCRYPT_CLOCKS \
{ \
kCLOCK_HashCrypt \
}
/*! @brief Clock ip name array for PLULUT. */
#define PLULUT_CLOCKS \
{ \
kCLOCK_PluLut \
}
/*! @brief Clock ip name array for PUF. */
#define PUF_CLOCKS \
{ \
kCLOCK_Puf \
}
/*! @brief Clock ip name array for CASPER. */
#define CASPER_CLOCKS \
{ \
kCLOCK_Casper \
}
/*! @brief Clock ip name array for ANALOGCTRL. */
#define ANALOGCTRL_CLOCKS \
{ \
kCLOCK_AnalogCtrl \
}
/*! @brief Clock ip name array for HS_LSPI. */
#define HS_LSPI_CLOCKS \
{ \
kCLOCK_Hs_Lspi \
}
/*! @brief Clock ip name array for GPIO_SEC. */
#define GPIO_SEC_CLOCKS \
{ \
kCLOCK_Gpio_Sec \
}
/*! @brief Clock ip name array for GPIO_SEC_INT. */
#define GPIO_SEC_INT_CLOCKS \
{ \
kCLOCK_Gpio_Sec_Int \
}
/*! @brief Clock ip name array for USBD. */
#define USBD_CLOCKS \
{ \
kCLOCK_Usbd0, kCLOCK_Usbh1, kCLOCK_Usbd1 \
}
/*! @brief Clock ip name array for USBH. */
#define USBH_CLOCKS \
{ \
kCLOCK_Usbh1 \
}
#define PLU_CLOCKS \
{ \
kCLOCK_PluLut \
}
#define SYSCTL_CLOCKS \
{ \
kCLOCK_Sysctl \
}
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
/*------------------------------------------------------------------------------
clock_ip_name_t definition:
------------------------------------------------------------------------------*/
#define CLK_GATE_REG_OFFSET_SHIFT 8U
#define CLK_GATE_REG_OFFSET_MASK 0xFFFFFF00U
#define CLK_GATE_BIT_SHIFT_SHIFT 0U
#define CLK_GATE_BIT_SHIFT_MASK 0x000000FFU
#define CLK_GATE_DEFINE(reg_offset, bit_shift) \
((((reg_offset) << CLK_GATE_REG_OFFSET_SHIFT) & CLK_GATE_REG_OFFSET_MASK) | \
(((bit_shift) << CLK_GATE_BIT_SHIFT_SHIFT) & CLK_GATE_BIT_SHIFT_MASK))
#define CLK_GATE_ABSTRACT_REG_OFFSET(x) (((uint32_t)(x)&CLK_GATE_REG_OFFSET_MASK) >> CLK_GATE_REG_OFFSET_SHIFT)
#define CLK_GATE_ABSTRACT_BITS_SHIFT(x) (((uint32_t)(x)&CLK_GATE_BIT_SHIFT_MASK) >> CLK_GATE_BIT_SHIFT_SHIFT)
#define AHB_CLK_CTRL0 0
#define AHB_CLK_CTRL1 1
#define AHB_CLK_CTRL2 2
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
typedef enum _clock_ip_name
{
kCLOCK_IpInvalid = 0U, /*!< Invalid Ip Name. */
kCLOCK_Rom = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 1), /*!< Clock gate name: Rom. */
kCLOCK_Sram1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 3), /*!< Clock gate name: Sram1. */
kCLOCK_Sram2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 4), /*!< Clock gate name: Sram2. */
kCLOCK_Flash = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 7), /*!< Clock gate name: Flash. */
kCLOCK_Fmc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 8), /*!< Clock gate name: Fmc. */
kCLOCK_InputMux = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 11), /*!< Clock gate name: InputMux. */
kCLOCK_Iocon = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 13), /*!< Clock gate name: Iocon. */
kCLOCK_Gpio0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 14), /*!< Clock gate name: Gpio0. */
kCLOCK_Gpio1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 15), /*!< Clock gate name: Gpio1. */
kCLOCK_Pint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 18), /*!< Clock gate name: Pint. */
kCLOCK_Gint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 19), /*!< Clock gate name: Gint. */
kCLOCK_Dma0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 20), /*!< Clock gate name: Dma0. */
kCLOCK_Crc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 21), /*!< Clock gate name: Crc. */
kCLOCK_Wwdt = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 22), /*!< Clock gate name: Wwdt. */
kCLOCK_Rtc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 23), /*!< Clock gate name: Rtc. */
kCLOCK_Mailbox = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 26), /*!< Clock gate name: Mailbox. */
kCLOCK_Adc0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 27), /*!< Clock gate name: Adc0. */
kCLOCK_Mrt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 0), /*!< Clock gate name: Mrt. */
kCLOCK_OsTimer0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 1), /*!< Clock gate name: OsTimer0. */
kCLOCK_Sct0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 2), /*!< Clock gate name: Sct0. */
kCLOCK_Mcan = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 7), /*!< Clock gate name: Mcan. */
kCLOCK_Utick0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 10), /*!< Clock gate name: Utick0. */
kCLOCK_FlexComm0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), /*!< Clock gate name: FlexComm0. */
kCLOCK_FlexComm1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), /*!< Clock gate name: FlexComm1. */
kCLOCK_FlexComm2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), /*!< Clock gate name: FlexComm2. */
kCLOCK_FlexComm3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), /*!< Clock gate name: FlexComm3. */
kCLOCK_FlexComm4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), /*!< Clock gate name: FlexComm4. */
kCLOCK_FlexComm5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), /*!< Clock gate name: FlexComm5. */
kCLOCK_FlexComm6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), /*!< Clock gate name: FlexComm6. */
kCLOCK_FlexComm7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), /*!< Clock gate name: FlexComm7. */
kCLOCK_MinUart0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), /*!< Clock gate name: MinUart0. */
kCLOCK_MinUart1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), /*!< Clock gate name: MinUart1. */
kCLOCK_MinUart2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), /*!< Clock gate name: MinUart2. */
kCLOCK_MinUart3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), /*!< Clock gate name: MinUart3. */
kCLOCK_MinUart4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), /*!< Clock gate name: MinUart4. */
kCLOCK_MinUart5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), /*!< Clock gate name: MinUart5. */
kCLOCK_MinUart6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), /*!< Clock gate name: MinUart6. */
kCLOCK_MinUart7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), /*!< Clock gate name: MinUart7. */
kCLOCK_LSpi0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), /*!< Clock gate name: LSpi0. */
kCLOCK_LSpi1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), /*!< Clock gate name: LSpi1. */
kCLOCK_LSpi2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), /*!< Clock gate name: LSpi2. */
kCLOCK_LSpi3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), /*!< Clock gate name: LSpi3. */
kCLOCK_LSpi4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), /*!< Clock gate name: LSpi4. */
kCLOCK_LSpi5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), /*!< Clock gate name: LSpi5. */
kCLOCK_LSpi6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), /*!< Clock gate name: LSpi6. */
kCLOCK_LSpi7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), /*!< Clock gate name: LSpi7. */
kCLOCK_BI2c0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), /*!< Clock gate name: BI2c0. */
kCLOCK_BI2c1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), /*!< Clock gate name: BI2c1. */
kCLOCK_BI2c2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), /*!< Clock gate name: BI2c2. */
kCLOCK_BI2c3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), /*!< Clock gate name: BI2c3. */
kCLOCK_BI2c4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), /*!< Clock gate name: BI2c4. */
kCLOCK_BI2c5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), /*!< Clock gate name: BI2c5. */
kCLOCK_BI2c6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), /*!< Clock gate name: BI2c6. */
kCLOCK_BI2c7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), /*!< Clock gate name: BI2c7. */
kCLOCK_FlexI2s0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), /*!< Clock gate name: FlexI2s0. */
kCLOCK_FlexI2s1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), /*!< Clock gate name: FlexI2s1. */
kCLOCK_FlexI2s2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), /*!< Clock gate name: FlexI2s2. */
kCLOCK_FlexI2s3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), /*!< Clock gate name: FlexI2s3. */
kCLOCK_FlexI2s4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), /*!< Clock gate name: FlexI2s4. */
kCLOCK_FlexI2s5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), /*!< Clock gate name: FlexI2s5. */
kCLOCK_FlexI2s6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), /*!< Clock gate name: FlexI2s6. */
kCLOCK_FlexI2s7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), /*!< Clock gate name: FlexI2s7. */
kCLOCK_Timer2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 22), /*!< Clock gate name: Timer2. */
kCLOCK_Usbd0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 25), /*!< Clock gate name: Usbd0. */
kCLOCK_Timer0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 26), /*!< Clock gate name: Timer0. */
kCLOCK_Timer1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 27), /*!< Clock gate name: Timer1. */
kCLOCK_Ezha = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 30), /*!< Clock gate name: Ezha. */
kCLOCK_Ezhb = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 31), /*!< Clock gate name: Ezhb. */
kCLOCK_Dma1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 1), /*!< Clock gate name: Dma1. */
kCLOCK_Comp = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 2), /*!< Clock gate name: Comp. */
kCLOCK_Usbh1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 4), /*!< Clock gate name: Usbh1. */
kCLOCK_Usbd1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 5), /*!< Clock gate name: Usbd1. */
kCLOCK_UsbRam1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 6), /*!< Clock gate name: UsbRam1. */
kCLOCK_Usb1Clk = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 7), /*!< Clock gate name: Usb1Clk. */
kCLOCK_Freqme = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 8), /*!< Clock gate name: Freqme. */
kCLOCK_Cdog = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 11), /*!< Clock gate name: Cdog. */
kCLOCK_Rng = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 13), /*!< Clock gate name: Rng. */
kCLOCK_Sysctl = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15), /*!< Clock gate name: Sysctl. */
kCLOCK_Usbhmr0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 16), /*!< Clock gate name: Usbhmr0. */
kCLOCK_Usbhsl0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 17), /*!< Clock gate name: Usbhsl0. */
kCLOCK_HashCrypt = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 18), /*!< Clock gate name: HashCrypt. */
kCLOCK_PluLut = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 20), /*!< Clock gate name: PluLut. */
kCLOCK_Timer3 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 21), /*!< Clock gate name: Timer3. */
kCLOCK_Timer4 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 22), /*!< Clock gate name: Timer4. */
kCLOCK_Puf = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 23), /*!< Clock gate name: Puf. */
kCLOCK_Casper = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 24), /*!< Clock gate name: Casper. */
kCLOCK_AnalogCtrl = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 27), /*!< Clock gate name: AnalogCtrl. */
kCLOCK_Hs_Lspi = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 28), /*!< Clock gate name: Lspi. */
kCLOCK_Gpio_Sec = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 29), /*!< Clock gate name: GPIO Sec. */
kCLOCK_Gpio_Sec_Int = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 30) /*!< Clock gate name: GPIO SEC Int. */
} clock_ip_name_t;
/*! @brief Peripherals clock source definition. */
#define BUS_CLK kCLOCK_BusClk
#define I2C0_CLK_SRC BUS_CLK
/*! @brief Clock name used to get clock frequency. */
typedef enum _clock_name
{
kCLOCK_CoreSysClk, /*!< Core/system clock (aka MAIN_CLK) */
kCLOCK_BusClk, /*!< Bus clock (AHB clock) */
kCLOCK_ClockOut, /*!< CLOCKOUT */
kCLOCK_FroHf, /*!< FRO48/96 */
kCLOCK_Pll1Out, /*!< PLL1 Output */
kCLOCK_Mclk, /*!< MCLK */
kCLOCK_Fro12M, /*!< FRO12M */
kCLOCK_Fro1M, /*!< FRO1M */
kCLOCK_ExtClk, /*!< External Clock */
kCLOCK_Pll0Out, /*!< PLL0 Output */
kCLOCK_FlexI2S, /*!< FlexI2S clock */
} clock_name_t;
/*! @brief Clock Mux Switches
* The encoding is as follows each connection identified is 32bits wide while 24bits are valuable
* starting from LSB upwards
*
* [4 bits for choice, 0 means invalid choice] [8 bits mux ID]*
*
*/
#define CLK_ATTACH_ID(mux, sel, pos) \
((((uint32_t)(mux) << 0U) | (((uint32_t)(sel) + 1U) & 0xFU) << 8U) << ((uint32_t)(pos)*12U))
#define MUX_A(mux, sel) CLK_ATTACH_ID((mux), (sel), 0U)
#define MUX_B(mux, sel, selector) (CLK_ATTACH_ID((mux), (sel), 1U) | ((selector) << 24U))
#define GET_ID_ITEM(connection) ((connection)&0xFFFU)
#define GET_ID_NEXT_ITEM(connection) ((connection) >> 12U)
#define GET_ID_ITEM_MUX(connection) (((uint8_t)connection) & 0xFFU)
#define GET_ID_ITEM_SEL(connection) ((uint8_t)((((uint32_t)(connection)&0xF00U) >> 8U) - 1U))
#define GET_ID_SELECTOR(connection) ((connection)&0xF000000U)
#define CM_SYSTICKCLKSEL0 0
#define CM_TRACECLKSEL 2
#define CM_CTIMERCLKSEL0 3
#define CM_CTIMERCLKSEL1 4
#define CM_CTIMERCLKSEL2 5
#define CM_CTIMERCLKSEL3 6
#define CM_CTIMERCLKSEL4 7
#define CM_MAINCLKSELA 8
#define CM_MAINCLKSELB 9
#define CM_CLKOUTCLKSEL 10
#define CM_PLL0CLKSEL 12
#define CM_PLL1CLKSEL 13
#define CM_MCANCLKSEL 16
#define CM_ADCASYNCCLKSEL 17
#define CM_USB0CLKSEL 18
#define CM_CLK32KCLKSEL 19
#define CM_FXCOMCLKSEL0 20
#define CM_FXCOMCLKSEL1 21
#define CM_FXCOMCLKSEL2 22
#define CM_FXCOMCLKSEL3 23
#define CM_FXCOMCLKSEL4 24
#define CM_FXCOMCLKSEL5 25
#define CM_FXCOMCLKSEL6 26
#define CM_FXCOMCLKSEL7 27
#define CM_HSLSPICLKSEL 28
#define CM_MCLKCLKSEL 32
#define CM_SCTCLKSEL 36
#define CM_OSTIMERCLKSEL (62U)
#define CM_RTCOSC32KCLKSEL 63U
/*!
* @brief The enumerator of clock attach Id.
*/
typedef enum _clock_attach_id
{
kFRO12M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 0, 0), /*!< Attach FRO12M to MAIN_CLK. */
kEXT_CLK_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 1) | MUX_B(CM_MAINCLKSELB, 0, 0), /*!< Attach EXT_CLK to MAIN_CLK. */
kFRO1M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 2) | MUX_B(CM_MAINCLKSELB, 0, 0), /*!< Attach FRO1M to MAIN_CLK. */
kFRO_HF_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 3) | MUX_B(CM_MAINCLKSELB, 0, 0), /*!< Attach FRO_HF to MAIN_CLK. */
kPLL0_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 1, 0), /*!< Attach PLL0 to MAIN_CLK. */
kPLL1_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 2, 0), /*!< Attach PLL1 to MAIN_CLK. */
kOSC32K_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 3, 0), /*!< Attach OSC32K to MAIN_CLK. */
kMAIN_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 0), /*!< Attach MAIN_CLK to CLKOUT. */
kPLL0_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 1), /*!< Attach PLL0 to CLKOUT. */
kEXT_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 2), /*!< Attach EXT_CLK to CLKOUT. */
kFRO_HF_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 3), /*!< Attach FRO_HF to CLKOUT. */
kFRO1M_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 4), /*!< Attach FRO1M to CLKOUT. */
kPLL1_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 5), /*!< Attach PLL1 to CLKOUT. */
kOSC32K_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 6), /*!< Attach OSC32K to CLKOUT. */
kNONE_to_SYS_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 7), /*!< Attach NONE to SYS_CLKOUT. */
kFRO12M_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 0), /*!< Attach FRO12M to PLL0. */
kEXT_CLK_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 1), /*!< Attach EXT_CLK to PLL0. */
kFRO1M_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 2), /*!< Attach FRO1M to PLL0. */
kOSC32K_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 3), /*!< Attach OSC32K to PLL0. */
kNONE_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 7), /*!< Attach NONE to PLL0. */
kMCAN_DIV_to_MCAN = MUX_A(CM_MCANCLKSEL, 0), /*!< Attach MCAN_DIV to MCAN. */
kFRO1M_to_MCAN = MUX_A(CM_MCANCLKSEL, 1), /*!< Attach FRO1M to MCAN. */
kOSC32K_to_MCAN = MUX_A(CM_MCANCLKSEL, 2), /*!< Attach OSC32K to MCAN. */
kNONE_to_MCAN = MUX_A(CM_MCANCLKSEL, 7), /*!< Attach NONE to MCAN. */
kMAIN_CLK_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 0), /*!< Attach MAIN_CLK to ADC_CLK. */
kPLL0_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 1), /*!< Attach PLL0 to ADC_CLK. */
kFRO_HF_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 2), /*!< Attach FRO_HF to ADC_CLK. */
kEXT_CLK_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 4), /*!< Attach EXT_CLK to ADC_CLK. */
kNONE_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 7), /*!< Attach NONE to ADC_CLK. */
kMAIN_CLK_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 0), /*!< Attach MAIN_CLK to USB0_CLK. */
kPLL0_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 1), /*!< Attach PLL0 to USB0_CLK. */
kFRO_HF_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 3), /*!< Attach FRO_HF to USB0_CLK. */
kPLL1_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 5), /*!< Attach PLL1 to USB0_CLK. */
kNONE_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 7), /*!< Attach NONE to USB0_CLK. */
kOSC32K_to_CLK32K = MUX_A(CM_CLK32KCLKSEL, 0), /*!< Attach OSC32K to CLK32K. */
kFRO1MDIV_to_CLK32K = MUX_A(CM_CLK32KCLKSEL, 1), /*!< Attach FRO1MDIV to CLK32K. */
kNONE_to_CLK32K = MUX_A(CM_CLK32KCLKSEL, 7), /*!< Attach NONE to CLK32K. */
kMAIN_CLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 0), /*!< Attach MAIN_CLK to FLEXCOMM0. */
kPLL0_DIV_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 1), /*!< Attach PLL0_DIV to FLEXCOMM0. */
kFRO12M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 2), /*!< Attach FRO12M to FLEXCOMM0. */
kFRO_HF_DIV_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM0. */
kFRO1M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 4), /*!< Attach FRO1M to FLEXCOMM0. */
kMCLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 5), /*!< Attach MCLK to FLEXCOMM0. */
kOSC32K_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 6), /*!< Attach OSC32K to FLEXCOMM0. */
kNONE_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 7), /*!< Attach NONE to FLEXCOMM0. */
kMAIN_CLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 0), /*!< Attach MAIN_CLK to FLEXCOMM1. */
kPLL0_DIV_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 1), /*!< Attach PLL0_DIV to FLEXCOMM1. */
kFRO12M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 2), /*!< Attach FRO12M to FLEXCOMM1. */
kFRO_HF_DIV_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM1. */
kFRO1M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 4), /*!< Attach FRO1M to FLEXCOMM1. */
kMCLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 5), /*!< Attach MCLK to FLEXCOMM1. */
kOSC32K_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 6), /*!< Attach OSC32K to FLEXCOMM1. */
kNONE_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 7), /*!< Attach NONE to FLEXCOMM1. */
kMAIN_CLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 0), /*!< Attach MAIN_CLK to FLEXCOMM2. */
kPLL0_DIV_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 1), /*!< Attach PLL0_DIV to FLEXCOMM2. */
kFRO12M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 2), /*!< Attach FRO12M to FLEXCOMM2. */
kFRO_HF_DIV_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM2. */
kFRO1M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 4), /*!< Attach FRO1M to FLEXCOMM2. */
kMCLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 5), /*!< Attach MCLK to FLEXCOMM2. */
kOSC32K_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 6), /*!< Attach OSC32K to FLEXCOMM2. */
kNONE_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 7), /*!< Attach NONE to FLEXCOMM2. */
kMAIN_CLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 0), /*!< Attach MAIN_CLK to FLEXCOMM3. */
kPLL0_DIV_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 1), /*!< Attach PLL0_DIV to FLEXCOMM3. */
kFRO12M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 2), /*!< Attach FRO12M to FLEXCOMM3. */
kFRO_HF_DIV_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM3. */
kFRO1M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 4), /*!< Attach FRO1M to FLEXCOMM3. */
kMCLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 5), /*!< Attach MCLK to FLEXCOMM3. */
kOSC32K_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 6), /*!< Attach OSC32K to FLEXCOMM3. */
kNONE_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 7), /*!< Attach NONE to FLEXCOMM3. */
kMAIN_CLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 0), /*!< Attach MAIN_CLK to FLEXCOMM4. */
kPLL0_DIV_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 1), /*!< Attach PLL0_DIV to FLEXCOMM4. */
kFRO12M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 2), /*!< Attach FRO12M to FLEXCOMM4. */
kFRO_HF_DIV_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM4. */
kFRO1M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 4), /*!< Attach FRO1M to FLEXCOMM4. */
kMCLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 5), /*!< Attach MCLK to FLEXCOMM4. */
kOSC32K_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 6), /*!< Attach OSC32K to FLEXCOMM4. */
kNONE_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 7), /*!< Attach NONE to FLEXCOMM4. */
kMAIN_CLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 0), /*!< Attach MAIN_CLK to FLEXCOMM5. */
kPLL0_DIV_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 1), /*!< Attach PLL0_DIV to FLEXCOMM5. */
kFRO12M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 2), /*!< Attach FRO12M to FLEXCOMM5. */
kFRO_HF_DIV_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM5. */
kFRO1M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 4), /*!< Attach FRO1M to FLEXCOMM5. */
kMCLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 5), /*!< Attach MCLK to FLEXCOMM5. */
kOSC32K_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 6), /*!< Attach OSC32K to FLEXCOMM5. */
kNONE_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 7), /*!< Attach NONE to FLEXCOMM5. */
kMAIN_CLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 0), /*!< Attach MAIN_CLK to FLEXCOMM6. */
kPLL0_DIV_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 1), /*!< Attach PLL0_DIV to FLEXCOMM6. */
kFRO12M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 2), /*!< Attach FRO12M to FLEXCOMM6. */
kFRO_HF_DIV_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM6. */
kFRO1M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 4), /*!< Attach FRO1M to FLEXCOMM6. */
kMCLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 5), /*!< Attach MCLK to FLEXCOMM6. */
kOSC32K_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 6), /*!< Attach OSC32K to FLEXCOMM6. */
kNONE_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 7), /*!< Attach NONE to FLEXCOMM6. */
kMAIN_CLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 0), /*!< Attach MAIN_CLK to FLEXCOMM7. */
kPLL0_DIV_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 1), /*!< Attach PLL0_DIV to FLEXCOMM7. */
kFRO12M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 2), /*!< Attach FRO12M to FLEXCOMM7. */
kFRO_HF_DIV_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 3), /*!< Attach FRO_HF_DIV to FLEXCOMM7. */
kFRO1M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 4), /*!< Attach FRO1M to FLEXCOMM7. */
kMCLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 5), /*!< Attach MCLK to FLEXCOMM7. */
kOSC32K_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 6), /*!< Attach OSC32K to FLEXCOMM7. */
kNONE_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 7), /*!< Attach NONE to FLEXCOMM7. */
kMAIN_CLK_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 0), /*!< Attach MAIN_CLK to HSLSPI. */
kPLL0_DIV_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 1), /*!< Attach PLL0_DIV to HSLSPI. */
kFRO12M_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 2), /*!< Attach FRO12M to HSLSPI. */
kFRO_HF_DIV_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 3), /*!< Attach FRO_HF_DIV to HSLSPI. */
kFRO1M_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 4), /*!< Attach FRO1M to HSLSPI. */
kOSC32K_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 6), /*!< Attach OSC32K to HSLSPI. */
kNONE_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 7), /*!< Attach NONE to HSLSPI. */
kFRO_HF_to_MCLK = MUX_A(CM_MCLKCLKSEL, 0), /*!< Attach FRO_HF to MCLK. */
kPLL0_to_MCLK = MUX_A(CM_MCLKCLKSEL, 1), /*!< Attach PLL0 to MCLK. */
kNONE_to_MCLK = MUX_A(CM_MCLKCLKSEL, 7), /*!< Attach NONE to MCLK. */
kMAIN_CLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 0), /*!< Attach MAIN_CLK to SCT_CLK. */
kPLL0_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 1), /*!< Attach PLL0 to SCT_CLK. */
kEXT_CLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 2), /*!< Attach EXT_CLK to SCT_CLK. */
kFRO_HF_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 3), /*!< Attach FRO_HF to SCT_CLK. */
kMCLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 5), /*!< Attach MCLK to SCT_CLK. */
kNONE_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 7), /*!< Attach NONE to SCT_CLK. */
kFRO32K_to_OSC32K = MUX_A(CM_RTCOSC32KCLKSEL, 0), /*!< Attach FRO32K to OSC32K. */
kXTAL32K_to_OSC32K = MUX_A(CM_RTCOSC32KCLKSEL, 1), /*!< Attach XTAL32K to OSC32K. */
kOSC32K_to_OSTIMER = MUX_A(CM_OSTIMERCLKSEL, 0), /*!< Attach OSC32K to OSTIMER. */
kFRO1M_to_OSTIMER = MUX_A(CM_OSTIMERCLKSEL, 1), /*!< Attach FRO1M to OSTIMER. */
kMAIN_CLK_to_OSTIMER = MUX_A(CM_OSTIMERCLKSEL, 2), /*!< Attach MAIN_CLK to OSTIMER. */
kTRACE_DIV_to_TRACE = MUX_A(CM_TRACECLKSEL, 0), /*!< Attach TRACE_DIV to TRACE. */
kFRO1M_to_TRACE = MUX_A(CM_TRACECLKSEL, 1), /*!< Attach FRO1M to TRACE. */
kOSC32K_to_TRACE = MUX_A(CM_TRACECLKSEL, 2), /*!< Attach OSC32K to TRACE. */
kNONE_to_TRACE = MUX_A(CM_TRACECLKSEL, 7), /*!< Attach NONE to TRACE. */
kSYSTICK_DIV0_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 0), /*!< Attach SYSTICK_DIV0 to SYSTICK0. */
kFRO1M_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 1), /*!< Attach FRO1M to SYSTICK0. */
kOSC32K_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 2), /*!< Attach OSC32K to SYSTICK0. */
kNONE_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 7), /*!< Attach NONE to SYSTICK0. */
kFRO12M_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 0), /*!< Attach FRO12M to PLL1. */
kEXT_CLK_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 1), /*!< Attach EXT_CLK to PLL1. */
kFRO1M_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 2), /*!< Attach FRO1M to PLL1. */
kOSC32K_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 3), /*!< Attach OSC32K to PLL1. */
kNONE_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 7), /*!< Attach NONE to PLL1. */
kMAIN_CLK_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 0), /*!< Attach MAIN_CLK to CTIMER0. */
kPLL0_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 1), /*!< Attach PLL0 to CTIMER0. */
kFRO_HF_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 3), /*!< Attach FRO_HF to CTIMER0. */
kFRO1M_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 4), /*!< Attach FRO1M to CTIMER0. */
kMCLK_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 5), /*!< Attach MCLK to CTIMER0. */
kOSC32K_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 6), /*!< Attach OSC32K to CTIMER0. */
kNONE_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 7), /*!< Attach NONE to CTIMER0. */
kMAIN_CLK_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 0), /*!< Attach MAIN_CLK to CTIMER1. */
kPLL0_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 1), /*!< Attach PLL0 to CTIMER1. */
kFRO_HF_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 3), /*!< Attach FRO_HF to CTIMER1. */
kFRO1M_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 4), /*!< Attach FRO1M to CTIMER1. */
kMCLK_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 5), /*!< Attach MCLK to CTIMER1. */
kOSC32K_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 6), /*!< Attach OSC32K to CTIMER1. */
kNONE_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 7), /*!< Attach NONE to CTIMER1. */
kMAIN_CLK_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 0), /*!< Attach MAIN_CLK to CTIMER2. */
kPLL0_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 1), /*!< Attach PLL0 to CTIMER2. */
kFRO_HF_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 3), /*!< Attach FRO_HF to CTIMER2. */
kFRO1M_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 4), /*!< Attach FRO1M to CTIMER2. */
kMCLK_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 5), /*!< Attach MCLK to CTIMER2. */
kOSC32K_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 6), /*!< Attach OSC32K to CTIMER2. */
kNONE_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 7), /*!< Attach NONE to CTIMER2. */
kMAIN_CLK_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 0), /*!< Attach MAIN_CLK to CTIMER3. */
kPLL0_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 1), /*!< Attach PLL0 to CTIMER3. */
kFRO_HF_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 3), /*!< Attach FRO_HF to CTIMER3. */
kFRO1M_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 4), /*!< Attach FRO1M to CTIMER3. */
kMCLK_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 5), /*!< Attach MCLK to CTIMER3. */
kOSC32K_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 6), /*!< Attach OSC32K to CTIMER3. */
kNONE_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 7), /*!< Attach NONE to CTIMER3. */
kMAIN_CLK_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 0), /*!< Attach MAIN_CLK to CTIMER4. */
kPLL0_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 1), /*!< Attach PLL0 to CTIMER4. */
kFRO_HF_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 3), /*!< Attach FRO_HF to CTIMER4. */
kFRO1M_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 4), /*!< Attach FRO1M to CTIMER4. */
kMCLK_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 5), /*!< Attach MCLK to CTIMER4. */
kOSC32K_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 6), /*!< Attach OSC32K to CTIMER4. */
kNONE_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 7), /*!< Attach NONE to CTIMER4. */
kNONE_to_NONE = (int)0x80000000U, /*!< Attach NONE to NONE. */
} clock_attach_id_t;
/*! @brief Clock dividers */
typedef enum _clock_div_name
{
kCLOCK_DivSystickClk0 = 0, /*!< Systick Clk0 Divider. */
kCLOCK_DivArmTrClkDiv = 2, /*!< Arm Tr Clk Div Divider. */
kCLOCK_DivCanClk = 3, /*!< Can Clock Divider. */
kCLOCK_DivFlexFrg0 = 8, /*!< Flex Frg0 Divider. */
kCLOCK_DivFlexFrg1 = 9, /*!< Flex Frg1 Divider. */
kCLOCK_DivFlexFrg2 = 10, /*!< Flex Frg2 Divider. */
kCLOCK_DivFlexFrg3 = 11, /*!< Flex Frg3 Divider. */
kCLOCK_DivFlexFrg4 = 12, /*!< Flex Frg4 Divider. */
kCLOCK_DivFlexFrg5 = 13, /*!< Flex Frg5 Divider. */
kCLOCK_DivFlexFrg6 = 14, /*!< Flex Frg6 Divider. */
kCLOCK_DivFlexFrg7 = 15, /*!< Flex Frg7 Divider. */
kCLOCK_DivAhbClk = 32, /*!< Ahb Clock Divider. */
kCLOCK_DivClkOut = 33, /*!< Clk Out Divider. */
kCLOCK_DivFrohfClk = 34, /*!< Frohf Clock Divider. */
kCLOCK_DivWdtClk = 35, /*!< Wdt Clock Divider. */
kCLOCK_DivAdcAsyncClk = 37, /*!< Adc Async Clock Divider. */
kCLOCK_DivUsb0Clk = 38, /*!< Usb0 Clock Divider. */
kCLOCK_DivFro1mClk = 40, /*!< Fro1m Clock Divider. */
kCLOCK_DivMClk = 43, /*!< I2S MCLK Clock Divider. */
kCLOCK_DivSctClk = 45, /*!< Sct Clock Divider. */
kCLOCK_DivPll0Clk = 49 /*!< PLL clock divider. */
} clock_div_name_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
/**
* @brief Enable the clock for specific IP.
* @param clk : Clock to be enabled.
* @return Nothing
*/
static inline void CLOCK_EnableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
SYSCON->AHBCLKCTRLSET[index] = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
/**
* @brief Disable the clock for specific IP.
* @param clk : Clock to be Disabled.
* @return Nothing
*/
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
SYSCON->AHBCLKCTRLCLR[index] = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
/**
* @brief Initialize the Core clock to given frequency (12, 48 or 96 MHz).
* Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is
* enabled.
* @param iFreq : Desired frequency (must be one of CLK_FRO_12MHZ or CLK_FRO_48MHZ or CLK_FRO_96MHZ)
* @return returns success or fail status.
*/
status_t CLOCK_SetupFROClocking(uint32_t iFreq);
/**
* @brief Set the flash wait states for the input freuqency.
* @param system_freq_hz : Input frequency
* @return Nothing
*/
void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t system_freq_hz);
/**
* @brief Initialize the external osc clock to given frequency.
* @param iFreq : Desired frequency (must be equal to exact rate in Hz)
* @return returns success or fail status.
*/
status_t CLOCK_SetupExtClocking(uint32_t iFreq);
/**
* @brief Initialize the I2S MCLK clock to given frequency.
* @param iFreq : Desired frequency (must be equal to exact rate in Hz)
* @return returns success or fail status.
*/
status_t CLOCK_SetupI2SMClkClocking(uint32_t iFreq);
/**
* @brief Initialize the PLU CLKIN clock to given frequency.
* @param iFreq : Desired frequency (must be equal to exact rate in Hz)
* @return returns success or fail status.
*/
status_t CLOCK_SetupPLUClkInClocking(uint32_t iFreq);
/**
* @brief Configure the clock selection muxes.
* @param connection : Clock to be configured.
* @return Nothing
*/
void CLOCK_AttachClk(clock_attach_id_t connection);
/**
* @brief Get the actual clock attach id.
* This fuction uses the offset in input attach id, then it reads the actual source value in
* the register and combine the offset to obtain an actual attach id.
* @param attachId : Clock attach id to get.
* @return Clock source value.
*/
clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId);
/**
* @brief Setup peripheral clock dividers.
* @param div_name : Clock divider name
* @param divided_by_value: Value to be divided
* @param reset : Whether to reset the divider counter.
* @return Nothing
*/
void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset);
/**
* @brief Setup rtc 1khz clock divider.
* @param divided_by_value: Value to be divided
* @return Nothing
*/
void CLOCK_SetRtc1khzClkDiv(uint32_t divided_by_value);
/**
* @brief Setup rtc 1hz clock divider.
* @param divided_by_value: Value to be divided
* @return Nothing
*/
void CLOCK_SetRtc1hzClkDiv(uint32_t divided_by_value);
/**
* @brief Set the flexcomm output frequency.
* @param id : flexcomm instance id
* @param freq : output frequency
* @return 0 : the frequency range is out of range.
* 1 : switch successfully.
*/
uint32_t CLOCK_SetFlexCommClock(uint32_t id, uint32_t freq);
/*! @brief Return Frequency of flexcomm input clock
* @param id : flexcomm instance id
* @return Frequency value
*/
uint32_t CLOCK_GetFlexCommInputClock(uint32_t id);
/*! @brief Return Frequency of selected clock
* @return Frequency of selected clock
*/
uint32_t CLOCK_GetFreq(clock_name_t clockName);
/*! @brief Return Frequency of FRO 12MHz
* @return Frequency of FRO 12MHz
*/
uint32_t CLOCK_GetFro12MFreq(void);
/*! @brief Return Frequency of FRO 1MHz
* @return Frequency of FRO 1MHz
*/
uint32_t CLOCK_GetFro1MFreq(void);
/*! @brief Return Frequency of ClockOut
* @return Frequency of ClockOut
*/
uint32_t CLOCK_GetClockOutClkFreq(void);
/*! @brief Return Frequency of Can Clock
* @return Frequency of Can.
*/
uint32_t CLOCK_GetMCanClkFreq(void);
/*! @brief Return Frequency of Adc Clock
* @return Frequency of Adc.
*/
uint32_t CLOCK_GetAdcClkFreq(void);
/*! @brief Return Frequency of Usb0 Clock
* @return Frequency of Usb0 Clock.
*/
uint32_t CLOCK_GetUsb0ClkFreq(void);
/*! @brief Return Frequency of Usb1 Clock
* @return Frequency of Usb1 Clock.
*/
uint32_t CLOCK_GetUsb1ClkFreq(void);
/*! @brief Return Frequency of MClk Clock
* @return Frequency of MClk Clock.
*/
uint32_t CLOCK_GetMclkClkFreq(void);
/*! @brief Return Frequency of SCTimer Clock
* @return Frequency of SCTimer Clock.
*/
uint32_t CLOCK_GetSctClkFreq(void);
/*! @brief Return Frequency of External Clock
* @return Frequency of External Clock. If no external clock is used returns 0.
*/
uint32_t CLOCK_GetExtClkFreq(void);
/*! @brief Return Frequency of Watchdog
* @return Frequency of Watchdog
*/
uint32_t CLOCK_GetWdtClkFreq(void);
/*! @brief Return Frequency of High-Freq output of FRO
* @return Frequency of High-Freq output of FRO
*/
uint32_t CLOCK_GetFroHfFreq(void);
/*! @brief Return Frequency of PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetPll0OutFreq(void);
/*! @brief Return Frequency of USB PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetPll1OutFreq(void);
/*! @brief Return Frequency of 32kHz osc
* @return Frequency of 32kHz osc
*/
uint32_t CLOCK_GetOsc32KFreq(void);
/*! @brief Return Frequency of Core System
* @return Frequency of Core System
*/
uint32_t CLOCK_GetCoreSysClkFreq(void);
/*! @brief Return Frequency of I2S MCLK Clock
* @return Frequency of I2S MCLK Clock
*/
uint32_t CLOCK_GetI2SMClkFreq(void);
/*! @brief Return Frequency of PLU CLKIN Clock
* @return Frequency of PLU CLKIN Clock
*/
uint32_t CLOCK_GetPLUClkInFreq(void);
/*! @brief Return Frequency of FlexComm Clock
* @return Frequency of FlexComm Clock
*/
uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id);
/*! @brief Return Frequency of High speed SPI Clock
* @return Frequency of High speed SPI Clock
*/
uint32_t CLOCK_GetHsLspiClkFreq(void);
/*! @brief Return Frequency of CTimer functional Clock
* @return Frequency of CTimer functional Clock
*/
uint32_t CLOCK_GetCTimerClkFreq(uint32_t id);
/*! @brief Return Frequency of SystickClock
* @return Frequency of Systick Clock
*/
uint32_t CLOCK_GetSystickClkFreq(uint32_t id);
/*! @brief Return PLL0 input clock rate
* @return PLL0 input clock rate
*/
uint32_t CLOCK_GetPLL0InClockRate(void);
/*! @brief Return PLL1 input clock rate
* @return PLL1 input clock rate
*/
uint32_t CLOCK_GetPLL1InClockRate(void);
/*! @brief Return PLL0 output clock rate
* @param recompute : Forces a PLL rate recomputation if true
* @return PLL0 output clock rate
* @note The PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetPLL0OutClockRate(bool recompute);
/*! @brief Return PLL1 output clock rate
* @param recompute : Forces a PLL rate recomputation if true
* @return PLL1 output clock rate
* @note The PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetPLL1OutClockRate(bool recompute);
/*! @brief Enables and disables PLL0 bypass mode
* @brief bypass : true to bypass PLL0 (PLL0 output = PLL0 input, false to disable bypass
* @return PLL0 output clock rate
*/
__STATIC_INLINE void CLOCK_SetBypassPLL0(bool bypass)
{
if (bypass)
{
SYSCON->PLL0CTRL |= (1UL << SYSCON_PLL0CTRL_BYPASSPLL_SHIFT);
}
else
{
SYSCON->PLL0CTRL &= ~(1UL << SYSCON_PLL0CTRL_BYPASSPLL_SHIFT);
}
}
/*! @brief Enables and disables PLL1 bypass mode
* @brief bypass : true to bypass PLL1 (PLL1 output = PLL1 input, false to disable bypass
* @return PLL1 output clock rate
*/
__STATIC_INLINE void CLOCK_SetBypassPLL1(bool bypass)
{
if (bypass)
{
SYSCON->PLL1CTRL |= (1UL << SYSCON_PLL1CTRL_BYPASSPLL_SHIFT);
}
else
{
SYSCON->PLL1CTRL &= ~(1UL << SYSCON_PLL1CTRL_BYPASSPLL_SHIFT);
}
}
/*! @brief Check if PLL is locked or not
* @return true if the PLL is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsPLL0Locked(void)
{
return (bool)((SYSCON->PLL0STAT & SYSCON_PLL0STAT_LOCK_MASK) != 0UL);
}
/*! @brief Check if PLL1 is locked or not
* @return true if the PLL1 is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsPLL1Locked(void)
{
return (bool)((SYSCON->PLL1STAT & SYSCON_PLL1STAT_LOCK_MASK) != 0UL);
}
/*! @brief Store the current PLL0 rate
* @param rate: Current rate of the PLL0
* @return Nothing
**/
void CLOCK_SetStoredPLL0ClockRate(uint32_t rate);
/*! @brief PLL configuration structure flags for 'flags' field
* These flags control how the PLL configuration function sets up the PLL setup structure.
*
* When the PLL_CONFIGFLAG_USEINRATE flag is selected, the 'InputRate' field in the
* configuration structure must be assigned with the expected PLL frequency. If the
* PLL_CONFIGFLAG_USEINRATE is not used, 'InputRate' is ignored in the configuration
* function and the driver will determine the PLL rate from the currently selected
* PLL source. This flag might be used to configure the PLL input clock more accurately
* when using the WDT oscillator or a more dyanmic CLKIN source.
*
* When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
* automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
* are not used.
*/
#define PLL_CONFIGFLAG_USEINRATE (1U << 0U) /*!< Flag to use InputRate in PLL configuration structure for setup */
#define PLL_CONFIGFLAG_FORCENOFRACT (1U << 2U)
/*!< Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or SS hardware */
/*! @brief PLL Spread Spectrum (SS) Programmable modulation frequency
* See (MF) field in the PLL0SSCG1 register in the UM.
*/
typedef enum _ss_progmodfm
{
kSS_MF_512 = (0U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss = 512 (fm ? 3.9 - 7.8 kHz) */
kSS_MF_384 = (1U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss ?= 384 (fm ? 5.2 - 10.4 kHz) */
kSS_MF_256 = (2U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss = 256 (fm ? 7.8 - 15.6 kHz) */
kSS_MF_128 = (3U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss = 128 (fm ? 15.6 - 31.3 kHz) */
kSS_MF_64 = (4U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss = 64 (fm ? 32.3 - 64.5 kHz) */
kSS_MF_32 = (5U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss = 32 (fm ? 62.5- 125 kHz) */
kSS_MF_24 = (6U << SYSCON_PLL0SSCG1_MF_SHIFT), /*!< Nss ?= 24 (fm ? 83.3- 166.6 kHz) */
kSS_MF_16 = (7U << SYSCON_PLL0SSCG1_MF_SHIFT) /*!< Nss = 16 (fm ? 125- 250 kHz) */
} ss_progmodfm_t;
/*! @brief PLL Spread Spectrum (SS) Programmable frequency modulation depth
* See (MR) field in the PLL0SSCG1 register in the UM.
*/
typedef enum _ss_progmoddp
{
kSS_MR_K0 = (0U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 0 (no spread spectrum) */
kSS_MR_K1 = (1U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 1 */
kSS_MR_K1_5 = (2U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 1.5 */
kSS_MR_K2 = (3U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 2 */
kSS_MR_K3 = (4U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 3 */
kSS_MR_K4 = (5U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 4 */
kSS_MR_K6 = (6U << SYSCON_PLL0SSCG1_MR_SHIFT), /*!< k = 6 */
kSS_MR_K8 = (7U << SYSCON_PLL0SSCG1_MR_SHIFT) /*!< k = 8 */
} ss_progmoddp_t;
/*! @brief PLL Spread Spectrum (SS) Modulation waveform control
* See (MC) field in the PLL0SSCG1 register in the UM.
* Compensation for low pass filtering of the PLL to get a triangular
* modulation at the output of the PLL, giving a flat frequency spectrum.
*/
typedef enum _ss_modwvctrl
{
kSS_MC_NOC = (0U << SYSCON_PLL0SSCG1_MC_SHIFT), /*!< no compensation */
kSS_MC_RECC = (2U << SYSCON_PLL0SSCG1_MC_SHIFT), /*!< recommended setting */
kSS_MC_MAXC = (3U << SYSCON_PLL0SSCG1_MC_SHIFT), /*!< max. compensation */
} ss_modwvctrl_t;
/*! @brief PLL configuration structure
*
* This structure can be used to configure the settings for a PLL
* setup structure. Fill in the desired configuration for the PLL
* and call the PLL setup function to fill in a PLL setup structure.
*/
typedef struct _pll_config
{
uint32_t desiredRate; /*!< Desired PLL rate in Hz */
uint32_t inputRate; /*!< PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set */
uint32_t flags; /*!< PLL configuration flags, Or'ed value of PLL_CONFIGFLAG_* definitions */
ss_progmodfm_t ss_mf; /*!< SS Programmable modulation frequency, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
ss_progmoddp_t ss_mr; /*!< SS Programmable frequency modulation depth, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
ss_modwvctrl_t
ss_mc; /*!< SS Modulation waveform control, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */
bool mfDither; /*!< false for fixed modulation frequency or true for dithering, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
} pll_config_t;
/*! @brief PLL setup structure flags for 'flags' field
* These flags control how the PLL setup function sets up the PLL
*/
#define PLL_SETUPFLAG_POWERUP (1U << 0U) /*!< Setup will power on the PLL after setup */
#define PLL_SETUPFLAG_WAITLOCK (1U << 1U) /*!< Setup will wait for PLL lock, implies the PLL will be pwoered on */
#define PLL_SETUPFLAG_ADGVOLT (1U << 2U) /*!< Optimize system voltage for the new PLL rate */
#define PLL_SETUPFLAG_USEFEEDBACKDIV2 (1U << 3U) /*!< Use feedback divider by 2 in divider path */
/*! @brief PLL0 setup structure
* This structure can be used to pre-build a PLL setup configuration
* at run-time and quickly set the PLL to the configuration. It can be
* populated with the PLL setup function. If powering up or waiting
* for PLL lock, the PLL input clock source should be configured prior
* to PLL setup.
*/
typedef struct _pll_setup
{
uint32_t pllctrl; /*!< PLL control register PLL0CTRL */
uint32_t pllndec; /*!< PLL NDEC register PLL0NDEC */
uint32_t pllpdec; /*!< PLL PDEC register PLL0PDEC */
uint32_t pllmdec; /*!< PLL MDEC registers PLL0PDEC */
uint32_t pllsscg[2]; /*!< PLL SSCTL registers PLL0SSCG*/
uint32_t pllRate; /*!< Acutal PLL rate */
uint32_t flags; /*!< PLL setup flags, Or'ed value of PLL_SETUPFLAG_* definitions */
} pll_setup_t;
/*! @brief PLL status definitions
*/
typedef enum _pll_error
{
kStatus_PLL_Success = MAKE_STATUS(kStatusGroup_Generic, 0), /*!< PLL operation was successful */
kStatus_PLL_OutputTooLow = MAKE_STATUS(kStatusGroup_Generic, 1), /*!< PLL output rate request was too low */
kStatus_PLL_OutputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 2), /*!< PLL output rate request was too high */
kStatus_PLL_InputTooLow = MAKE_STATUS(kStatusGroup_Generic, 3), /*!< PLL input rate is too low */
kStatus_PLL_InputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 4), /*!< PLL input rate is too high */
kStatus_PLL_OutsideIntLimit = MAKE_STATUS(kStatusGroup_Generic, 5), /*!< Requested output rate isn't possible */
kStatus_PLL_CCOTooLow = MAKE_STATUS(kStatusGroup_Generic, 6), /*!< Requested CCO rate isn't possible */
kStatus_PLL_CCOTooHigh = MAKE_STATUS(kStatusGroup_Generic, 7) /*!< Requested CCO rate isn't possible */
} pll_error_t;
/*! @brief USB FS clock source definition. */
typedef enum _clock_usbfs_src
{
kCLOCK_UsbfsSrcFro = (uint32_t)kCLOCK_FroHf, /*!< Use FRO 96 MHz. */
kCLOCK_UsbfsSrcPll0 = (uint32_t)kCLOCK_Pll0Out, /*!< Use PLL0 output. */
kCLOCK_UsbfsSrcMainClock = (uint32_t)kCLOCK_CoreSysClk, /*!< Use Main clock. */
kCLOCK_UsbfsSrcPll1 = (uint32_t)kCLOCK_Pll1Out, /*!< Use PLL1 clock. */
kCLOCK_UsbfsSrcNone =
SYSCON_USB0CLKSEL_SEL(7) /*!