//***************************************************************************** // MKM34Z7 startup code for use with MCUXpresso IDE // // Version : 251120 //***************************************************************************** // // Copyright 2016-2020 NXP // All rights reserved. // // SPDX-License-Identifier: BSD-3-Clause //***************************************************************************** #if defined(DEBUG) #pragma GCC push_options #pragma GCC optimize("Og") #endif // (DEBUG) #if defined(__cplusplus) #ifdef __REDLIB__ #error Redlib does not support C++ #else //***************************************************************************** // // The entry point for the C++ library startup // //***************************************************************************** extern "C" { extern void __libc_init_array(void); } #endif #endif #define WEAK __attribute__((weak)) #define WEAK_AV __attribute__((weak, section(".after_vectors"))) #define ALIAS(f) __attribute__((weak, alias(#f))) //***************************************************************************** #if defined(__cplusplus) extern "C" { #endif //***************************************************************************** // Flash Configuration block : 16-byte flash configuration field that stores // default protection settings (loaded on reset) and security information that // allows the MCU to restrict access to the Flash Memory module. // Placed at address 0x400 by the linker script. //***************************************************************************** __attribute__((used, section(".FlashConfig"))) const struct { unsigned int word1; unsigned int word2; unsigned int word3; unsigned int word4; } Flash_Config = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE}; //***************************************************************************** // Declaration of external SystemInit function //***************************************************************************** #if defined(__USE_CMSIS) extern void SystemInit(void); #endif // (__USE_CMSIS) //***************************************************************************** // Forward declaration of the core exception handlers. // When the application defines a handler (with the same name), this will // automatically take precedence over these weak definitions. // If your application is a C++ one, then any interrupt handlers defined // in C++ files within in your main application will need to have C linkage // rather than C++ linkage. To do this, make sure that you are using extern "C" // { .... } around the interrupt handler within your main application code. //***************************************************************************** void ResetISR(void); WEAK void NMI_Handler(void); WEAK void HardFault_Handler(void); WEAK void SVC_Handler(void); WEAK void PendSV_Handler(void); WEAK void SysTick_Handler(void); WEAK void IntDefaultHandler(void); //***************************************************************************** // Forward declaration of the application IRQ handlers. When the application // defines a handler (with the same name), this will automatically take // precedence over weak definitions below //***************************************************************************** WEAK void DMA0_IRQHandler(void); WEAK void DMA1_IRQHandler(void); WEAK void DMA2_IRQHandler(void); WEAK void DMA3_IRQHandler(void); WEAK void SPI0_SPI1_IRQHandler(void); WEAK void PDB0_IRQHandler(void); WEAK void PMC_IRQHandler(void); WEAK void TMR0_IRQHandler(void); WEAK void TMR1_IRQHandler(void); WEAK void TMR2_IRQHandler(void); WEAK void TMR3_IRQHandler(void); WEAK void PIT0_PIT1_IRQHandler(void); WEAK void LLWU_IRQHandler(void); WEAK void FTFA_IRQHandler(void); WEAK void CMP0_CMP1_CMP2_IRQHandler(void); WEAK void LCD_IRQHandler(void); WEAK void ADC0_IRQHandler(void); WEAK void PTx_IRQHandler(void); WEAK void RNGA_IRQHandler(void); WEAK void UART0_UART1_UART2_UART3_IRQHandler(void); WEAK void MMAU_IRQHandler(void); WEAK void AFE_CH0_IRQHandler(void); WEAK void AFE_CH1_IRQHandler(void); WEAK void AFE_CH2_IRQHandler(void); WEAK void AFE_CH3_IRQHandler(void); WEAK void RTC_IRQHandler(void); WEAK void I2C0_I2C1_IRQHandler(void); WEAK void LPUART0_IRQHandler(void); WEAK void MCG_IRQHandler(void); WEAK void WDOG_EWM_IRQHandler(void); WEAK void LPTMR0_IRQHandler(void); WEAK void XBAR_IRQHandler(void); //***************************************************************************** // Forward declaration of the driver IRQ handlers. These are aliased // to the IntDefaultHandler, which is a 'forever' loop. When the driver // defines a handler (with the same name), this will automatically take // precedence over these weak definitions //***************************************************************************** void DMA0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void DMA1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void DMA2_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void DMA3_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void SPI0_SPI1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void PDB0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void PMC_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void TMR0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void TMR1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void TMR2_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void TMR3_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void PIT0_PIT1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void LLWU_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void FTFA_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void CMP0_CMP1_CMP2_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void LCD_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void ADC0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void PTx_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void RNGA_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void UART0_UART1_UART2_UART3_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void MMAU_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void AFE_CH0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void AFE_CH1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void AFE_CH2_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void AFE_CH3_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void RTC_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void I2C0_I2C1_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void LPUART0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void MCG_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void WDOG_EWM_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void LPTMR0_DriverIRQHandler(void) ALIAS(IntDefaultHandler); void XBAR_DriverIRQHandler(void) ALIAS(IntDefaultHandler); //***************************************************************************** // The entry point for the application. // __main() is the entry point for Redlib based applications // main() is the entry point for Newlib based applications //***************************************************************************** #if defined(__REDLIB__) extern void __main(void); #endif extern int main(void); //***************************************************************************** // External declaration for the pointer to the stack top from the Linker Script //***************************************************************************** extern void _vStackTop(void); //***************************************************************************** #if defined(__cplusplus) } // extern "C" #endif //***************************************************************************** // The vector table. // This relies on the linker script to place at correct location in memory. //***************************************************************************** extern void (*const g_pfnVectors[])(void); extern void *__Vectors __attribute__((alias("g_pfnVectors"))); __attribute__((used, section(".isr_vector"))) void (*const g_pfnVectors[])(void) = { // Core Level - CM0P &_vStackTop, // The initial stack pointer ResetISR, // The reset handler NMI_Handler, // The NMI handler HardFault_Handler, // The hard fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved SVC_Handler, // SVCall handler 0, // Reserved 0, // Reserved PendSV_Handler, // The PendSV handler SysTick_Handler, // The SysTick handler // Chip Level - MKM34Z7 DMA0_IRQHandler, // 16: DMA channel 0 transfer complete DMA1_IRQHandler, // 17: DMA channel 1 transfer complete DMA2_IRQHandler, // 18: DMA channel 2 transfer complete DMA3_IRQHandler, // 19: DMA channel 3 transfer complete SPI0_SPI1_IRQHandler, // 20: SPI0/SPI1 ORed interrupt PDB0_IRQHandler, // 21: PDB0 ORed interrupt PMC_IRQHandler, // 22: Low-voltage detect, low-voltage warning TMR0_IRQHandler, // 23: Quad Timer Channel 0 TMR1_IRQHandler, // 24: Quad Timer Channel 1 TMR2_IRQHandler, // 25: Quad Timer Channel 2 TMR3_IRQHandler, // 26: Quad Timer Channel 3 PIT0_PIT1_IRQHandler, // 27: PIT0/PIT1 ORed interrupt LLWU_IRQHandler, // 28: Low Leakage Wakeup FTFA_IRQHandler, // 29: Command complete and read collision CMP0_CMP1_CMP2_IRQHandler, // 30: CMP0/CMP1/CMP2 ORed interrupt LCD_IRQHandler, // 31: LCD interrupt ADC0_IRQHandler, // 32: ADC0 interrupt PTx_IRQHandler, // 33: Single interrupt vector for // GPIOA,GPIOB,GPIOC,GPIOD,GPIOE,GPIOF,GPIOG,GPIOH,GPIOI,GPIOJ,GPIOK,GPIOL,GPIOM RNGA_IRQHandler, // 34: RNGA interrupt UART0_UART1_UART2_UART3_IRQHandler, // 35: UART0/UART1/UART2/UART3 ORed interrupt MMAU_IRQHandler, // 36: Memory Mapped Arithmetic Unit interrupt AFE_CH0_IRQHandler, // 37: AFE Channel 0 AFE_CH1_IRQHandler, // 38: AFE Channel 1 AFE_CH2_IRQHandler, // 39: AFE Channel 2 AFE_CH3_IRQHandler, // 40: AFE Channel 3 RTC_IRQHandler, // 41: IRTC interrupt I2C0_I2C1_IRQHandler, // 42: I2C0/I2C1 ORed interrupt LPUART0_IRQHandler, // 43: LPUART0 status and error interrupt MCG_IRQHandler, // 44: MCG interrupt WDOG_EWM_IRQHandler, // 45: WDOG/EWM ORed interrupt LPTMR0_IRQHandler, // 46: LPTMR0 interrupt XBAR_IRQHandler, // 47: XBAR interrupt }; /* End of g_pfnVectors */ //***************************************************************************** // Functions to carry out the initialization of RW and BSS data sections. These // are written as separate functions rather than being inlined within the // ResetISR() function in order to cope with MCUs with multiple banks of // memory. //***************************************************************************** __attribute__((section(".after_vectors.init_data"))) void data_init(unsigned int romstart, unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int *)start; unsigned int *pulSrc = (unsigned int *)romstart; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = *pulSrc++; } __attribute__((section(".after_vectors.init_bss"))) void bss_init(unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int *)start; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = 0; } //***************************************************************************** // The following symbols are constructs generated by the linker, indicating // the location of various points in the "Global Section Table". This table is // created by the linker via the Code Red managed linker script mechanism. It // contains the load address, execution address and length of each RW data // section and the execution and length of each BSS (zero initialized) section. //***************************************************************************** extern unsigned int __data_section_table; extern unsigned int __data_section_table_end; extern unsigned int __bss_section_table; extern unsigned int __bss_section_table_end; //***************************************************************************** // Reset entry point for your code. // Sets up a simple runtime environment and initializes the C/C++ // library. //***************************************************************************** __attribute__((section(".after_vectors.reset"))) void ResetISR(void) { // Disable interrupts __asm volatile("cpsid i"); #if defined(__USE_CMSIS) // If __USE_CMSIS defined, then call CMSIS SystemInit code SystemInit(); #else // Disable Watchdog // Write 0xC520 to watchdog unlock register *((volatile unsigned short *)0x4005300E) = 0xC520; // Followed by 0xD928 to complete the unlock *((volatile unsigned short *)0x4005300E) = 0xD928; // Now disable watchdog via STCTRLH register *((volatile unsigned short *)0x40053000) = 0x01D2u; #endif // (__USE_CMSIS) // // Copy the data sections from flash to SRAM. // unsigned int LoadAddr, ExeAddr, SectionLen; unsigned int *SectionTableAddr; // Load base address of Global Section Table SectionTableAddr = &__data_section_table; // Copy the data sections from flash to SRAM. while (SectionTableAddr < &__data_section_table_end) { LoadAddr = *SectionTableAddr++; ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; data_init(LoadAddr, ExeAddr, SectionLen); } // At this point, SectionTableAddr = &__bss_section_table; // Zero fill the bss segment while (SectionTableAddr < &__bss_section_table_end) { ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; bss_init(ExeAddr, SectionLen); } #if !defined(__USE_CMSIS) // Assume that if __USE_CMSIS defined, then CMSIS SystemInit code // will setup the VTOR register // Check to see if we are running the code from a non-zero // address (eg RAM, external flash), in which case we need // to modify the VTOR register to tell the CPU that the // vector table is located at a non-0x0 address. unsigned int *pSCB_VTOR = (unsigned int *)0xE000ED08; if ((unsigned int *)g_pfnVectors != (unsigned int *)0x00000000) { *pSCB_VTOR = (unsigned int)g_pfnVectors; } #endif // (__USE_CMSIS) #if defined(__cplusplus) // // Call C++ library initialisation // __libc_init_array(); #endif // Reenable interrupts __asm volatile("cpsie i"); #if defined(__REDLIB__) // Call the Redlib library, which in turn calls main() __main(); #else main(); #endif // // main() shouldn't return, but if it does, we'll just enter an infinite loop // while (1) { ; } } //***************************************************************************** // Default core exception handlers. Override the ones here by defining your own // handler routines in your application code. //***************************************************************************** WEAK_AV void NMI_Handler(void) { while (1) { } } WEAK_AV void HardFault_Handler(void) { while (1) { } } WEAK_AV void SVC_Handler(void) { while (1) { } } WEAK_AV void PendSV_Handler(void) { while (1) { } } WEAK_AV void SysTick_Handler(void) { while (1) { } } //***************************************************************************** // Processor ends up here if an unexpected interrupt occurs or a specific // handler is not present in the application code. //***************************************************************************** WEAK_AV void IntDefaultHandler(void) { while (1) { } } //***************************************************************************** // Default application exception handlers. Override the ones here by defining // your own handler routines in your application code. These routines call // driver exception handlers or IntDefaultHandler() if no driver exception // handler is included. //***************************************************************************** WEAK_AV void DMA0_IRQHandler(void) { DMA0_DriverIRQHandler(); } WEAK_AV void DMA1_IRQHandler(void) { DMA1_DriverIRQHandler(); } WEAK_AV void DMA2_IRQHandler(void) { DMA2_DriverIRQHandler(); } WEAK_AV void DMA3_IRQHandler(void) { DMA3_DriverIRQHandler(); } WEAK_AV void SPI0_SPI1_IRQHandler(void) { SPI0_SPI1_DriverIRQHandler(); } WEAK_AV void PDB0_IRQHandler(void) { PDB0_DriverIRQHandler(); } WEAK_AV void PMC_IRQHandler(void) { PMC_DriverIRQHandler(); } WEAK_AV void TMR0_IRQHandler(void) { TMR0_DriverIRQHandler(); } WEAK_AV void TMR1_IRQHandler(void) { TMR1_DriverIRQHandler(); } WEAK_AV void TMR2_IRQHandler(void) { TMR2_DriverIRQHandler(); } WEAK_AV void TMR3_IRQHandler(void) { TMR3_DriverIRQHandler(); } WEAK_AV void PIT0_PIT1_IRQHandler(void) { PIT0_PIT1_DriverIRQHandler(); } WEAK_AV void LLWU_IRQHandler(void) { LLWU_DriverIRQHandler(); } WEAK_AV void FTFA_IRQHandler(void) { FTFA_DriverIRQHandler(); } WEAK_AV void CMP0_CMP1_CMP2_IRQHandler(void) { CMP0_CMP1_CMP2_DriverIRQHandler(); } WEAK_AV void LCD_IRQHandler(void) { LCD_DriverIRQHandler(); } WEAK_AV void ADC0_IRQHandler(void) { ADC0_DriverIRQHandler(); } WEAK_AV void PTx_IRQHandler(void) { PTx_DriverIRQHandler(); } WEAK_AV void RNGA_IRQHandler(void) { RNGA_DriverIRQHandler(); } WEAK_AV void UART0_UART1_UART2_UART3_IRQHandler(void) { UART0_UART1_UART2_UART3_DriverIRQHandler(); } WEAK_AV void MMAU_IRQHandler(void) { MMAU_DriverIRQHandler(); } WEAK_AV void AFE_CH0_IRQHandler(void) { AFE_CH0_DriverIRQHandler(); } WEAK_AV void AFE_CH1_IRQHandler(void) { AFE_CH1_DriverIRQHandler(); } WEAK_AV void AFE_CH2_IRQHandler(void) { AFE_CH2_DriverIRQHandler(); } WEAK_AV void AFE_CH3_IRQHandler(void) { AFE_CH3_DriverIRQHandler(); } WEAK_AV void RTC_IRQHandler(void) { RTC_DriverIRQHandler(); } WEAK_AV void I2C0_I2C1_IRQHandler(void) { I2C0_I2C1_DriverIRQHandler(); } WEAK_AV void LPUART0_IRQHandler(void) { LPUART0_DriverIRQHandler(); } WEAK_AV void MCG_IRQHandler(void) { MCG_DriverIRQHandler(); } WEAK_AV void WDOG_EWM_IRQHandler(void) { WDOG_EWM_DriverIRQHandler(); } WEAK_AV void LPTMR0_IRQHandler(void) { LPTMR0_DriverIRQHandler(); } WEAK_AV void XBAR_IRQHandler(void) { XBAR_DriverIRQHandler(); } //***************************************************************************** #if defined(DEBUG) #pragma GCC pop_options #endif // (DEBUG)