/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cfft_q15.c * Description: Combined Radix Decimation in Q15 Frequency CFFT processing function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/transform_functions.h" #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_vec_fft.h" static void _arm_radix4_butterfly_q15_mve( const arm_cfft_instance_q15 * S, q15_t *pSrc, uint32_t fftLen) { q15x8_t vecTmp0, vecTmp1; q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1; q15x8_t vecA, vecB, vecC, vecD; q15x8_t vecW; uint32_t blkCnt; uint32_t n1, n2; uint32_t stage = 0; int32_t iter = 1; static const uint32_t strides[4] = { (0 - 16) * sizeof(q15_t *), (4 - 16) * sizeof(q15_t *), (8 - 16) * sizeof(q15_t *), (12 - 16) * sizeof(q15_t *) }; /* * Process first stages * Each stage in middle stages provides two down scaling of the input */ n2 = fftLen; n1 = n2; n2 >>= 2u; for (int k = fftLen / 4u; k > 1; k >>= 2u) { for (int i = 0; i < iter; i++) { q15_t const *p_rearranged_twiddle_tab_stride2 = &S->rearranged_twiddle_stride2[ S->rearranged_twiddle_tab_stride2_arr[stage]]; q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[ S->rearranged_twiddle_tab_stride3_arr[stage]]; q15_t const *p_rearranged_twiddle_tab_stride1 = &S->rearranged_twiddle_stride1[ S->rearranged_twiddle_tab_stride1_arr[stage]]; q15_t const *pW1, *pW2, *pW3; q15_t *inA = pSrc + CMPLX_DIM * i * n1; q15_t *inB = inA + n2 * CMPLX_DIM; q15_t *inC = inB + n2 * CMPLX_DIM; q15_t *inD = inC + n2 * CMPLX_DIM; pW1 = p_rearranged_twiddle_tab_stride1; pW2 = p_rearranged_twiddle_tab_stride2; pW3 = p_rearranged_twiddle_tab_stride3; blkCnt = n2 / 4; /* * load 4 x q15 complex pair */ vecA = vldrhq_s16(inA); vecC = vldrhq_s16(inC); while (blkCnt > 0U) { vecB = vldrhq_s16(inB); vecD = vldrhq_s16(inD); vecSum0 = vhaddq(vecA, vecC); vecDiff0 = vhsubq(vecA, vecC); vecSum1 = vhaddq(vecB, vecD); vecDiff1 = vhsubq(vecB, vecD); /* * [ 1 1 1 1 ] * [ A B C D ]' .* 1 */ vecTmp0 = vhaddq(vecSum0, vecSum1); vst1q(inA, vecTmp0); inA += 8; /* * [ 1 -1 1 -1 ] * [ A B C D ]' */ vecTmp0 = vhsubq(vecSum0, vecSum1); /* * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2 */ vecW = vld1q(pW2); pW2 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0); vst1q(inB, vecTmp1); inB += 8; /* * [ 1 -i -1 +i ] * [ A B C D ]' */ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); /* * [ 1 -i -1 +i ] * [ A B C D ]'.* W1 */ vecW = vld1q(pW1); pW1 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0); vst1q(inC, vecTmp1); inC += 8; /* * [ 1 +i -1 -i ] * [ A B C D ]' */ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); /* * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 */ vecW = vld1q(pW3); pW3 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0); vst1q(inD, vecTmp1); inD += 8; vecA = vldrhq_s16(inA); vecC = vldrhq_s16(inC); blkCnt--; } } n1 = n2; n2 >>= 2u; iter = iter << 2; stage++; } /* * start of Last stage process */ uint32x4_t vecScGathAddr = vld1q_u32 (strides); vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; /* * load scheduling */ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8); blkCnt = (fftLen >> 4); while (blkCnt > 0U) { vecSum0 = vhaddq(vecA, vecC); vecDiff0 = vhsubq(vecA, vecC); vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4); vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12); vecSum1 = vhaddq(vecB, vecD); vecDiff1 = vhsubq(vecB, vecD); /* * pre-load for next iteration */ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8); vecTmp0 = vhaddq(vecSum0, vecSum1); vstrwq_scatter_base_s32(vecScGathAddr, -64, (q15x8_t) vecTmp0); vecTmp0 = vhsubq(vecSum0, vecSum1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (q15x8_t) vecTmp0); vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (q15x8_t) vecTmp0); vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (q15x8_t) vecTmp0); blkCnt--; } } static void arm_cfft_radix4by2_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen) { uint32_t n2; q15_t *pIn0; q15_t *pIn1; const q15_t *pCoef = S->pTwiddle; uint32_t blkCnt; q15x8_t vecIn0, vecIn1, vecSum, vecDiff; q15x8_t vecCmplxTmp, vecTw; q15_t const *pCoefVec; n2 = fftLen >> 1; pIn0 = pSrc; pIn1 = pSrc + fftLen; pCoefVec = pCoef; blkCnt = n2 / 4; while (blkCnt > 0U) { vecIn0 = *(q15x8_t *) pIn0; vecIn1 = *(q15x8_t *) pIn1; vecIn0 = vecIn0 >> 1; vecIn1 = vecIn1 >> 1; vecSum = vhaddq(vecIn0, vecIn1); vst1q(pIn0, vecSum); pIn0 += 8; vecTw = vld1q(pCoefVec); pCoefVec += 8; vecDiff = vhsubq(vecIn0, vecIn1); vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw); vst1q(pIn1, vecCmplxTmp); pIn1 += 8; blkCnt--; } _arm_radix4_butterfly_q15_mve(S, pSrc, n2); _arm_radix4_butterfly_q15_mve(S, pSrc + fftLen, n2); pIn0 = pSrc; blkCnt = (fftLen << 1) >> 3; while (blkCnt > 0U) { vecIn0 = *(q15x8_t *) pIn0; vecIn0 = vecIn0 << 1; vst1q(pIn0, vecIn0); pIn0 += 8; blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = (fftLen << 1) & 7; if (blkCnt > 0U) { mve_pred16_t p0 = vctp16q(blkCnt); vecIn0 = *(q15x8_t *) pIn0; vecIn0 = vecIn0 << 1; vstrhq_p(pIn0, vecIn0, p0); } } static void _arm_radix4_butterfly_inverse_q15_mve(const arm_cfft_instance_q15 *S,q15_t *pSrc, uint32_t fftLen) { q15x8_t vecTmp0, vecTmp1; q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1; q15x8_t vecA, vecB, vecC, vecD; q15x8_t vecW; uint32_t blkCnt; uint32_t n1, n2; uint32_t stage = 0; int32_t iter = 1; static const uint32_t strides[4] = { (0 - 16) * sizeof(q15_t *), (4 - 16) * sizeof(q15_t *), (8 - 16) * sizeof(q15_t *), (12 - 16) * sizeof(q15_t *) }; /* * Process first stages * Each stage in middle stages provides two down scaling of the input */ n2 = fftLen; n1 = n2; n2 >>= 2u; for (int k = fftLen / 4u; k > 1; k >>= 2u) { for (int i = 0; i < iter; i++) { q15_t const *p_rearranged_twiddle_tab_stride2 = &S->rearranged_twiddle_stride2[ S->rearranged_twiddle_tab_stride2_arr[stage]]; q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[ S->rearranged_twiddle_tab_stride3_arr[stage]]; q15_t const *p_rearranged_twiddle_tab_stride1 = &S->rearranged_twiddle_stride1[ S->rearranged_twiddle_tab_stride1_arr[stage]]; q15_t const *pW1, *pW2, *pW3; q15_t *inA = pSrc + CMPLX_DIM * i * n1; q15_t *inB = inA + n2 * CMPLX_DIM; q15_t *inC = inB + n2 * CMPLX_DIM; q15_t *inD = inC + n2 * CMPLX_DIM; pW1 = p_rearranged_twiddle_tab_stride1; pW2 = p_rearranged_twiddle_tab_stride2; pW3 = p_rearranged_twiddle_tab_stride3; blkCnt = n2 / 4; /* * load 4 x q15 complex pair */ vecA = vldrhq_s16(inA); vecC = vldrhq_s16(inC); while (blkCnt > 0U) { vecB = vldrhq_s16(inB); vecD = vldrhq_s16(inD); vecSum0 = vhaddq(vecA, vecC); vecDiff0 = vhsubq(vecA, vecC); vecSum1 = vhaddq(vecB, vecD); vecDiff1 = vhsubq(vecB, vecD); /* * [ 1 1 1 1 ] * [ A B C D ]' .* 1 */ vecTmp0 = vhaddq(vecSum0, vecSum1); vst1q(inA, vecTmp0); inA += 8; /* * [ 1 -1 1 -1 ] * [ A B C D ]' */ vecTmp0 = vhsubq(vecSum0, vecSum1); /* * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2 */ vecW = vld1q(pW2); pW2 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW); vst1q(inB, vecTmp1); inB += 8; /* * [ 1 -i -1 +i ] * [ A B C D ]' */ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); /* * [ 1 -i -1 +i ] * [ A B C D ]'.* W1 */ vecW = vld1q(pW1); pW1 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW); vst1q(inC, vecTmp1); inC += 8; /* * [ 1 +i -1 -i ] * [ A B C D ]' */ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); /* * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 */ vecW = vld1q(pW3); pW3 += 8; vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW); vst1q(inD, vecTmp1); inD += 8; vecA = vldrhq_s16(inA); vecC = vldrhq_s16(inC); blkCnt--; } } n1 = n2; n2 >>= 2u; iter = iter << 2; stage++; } /* * start of Last stage process */ uint32x4_t vecScGathAddr = vld1q_u32(strides); vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; /* * load scheduling */ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8); blkCnt = (fftLen >> 4); while (blkCnt > 0U) { vecSum0 = vhaddq(vecA, vecC); vecDiff0 = vhsubq(vecA, vecC); vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4); vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12); vecSum1 = vhaddq(vecB, vecD); vecDiff1 = vhsubq(vecB, vecD); /* * pre-load for next iteration */ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8); vecTmp0 = vhaddq(vecSum0, vecSum1); vstrwq_scatter_base_s32(vecScGathAddr, -64, (q15x8_t) vecTmp0); vecTmp0 = vhsubq(vecSum0, vecSum1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (q15x8_t) vecTmp0); vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (q15x8_t) vecTmp0); vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (q15x8_t) vecTmp0); blkCnt--; } } static void arm_cfft_radix4by2_inverse_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen) { uint32_t n2; q15_t *pIn0; q15_t *pIn1; const q15_t *pCoef = S->pTwiddle; uint32_t blkCnt; q15x8_t vecIn0, vecIn1, vecSum, vecDiff; q15x8_t vecCmplxTmp, vecTw; q15_t const *pCoefVec; n2 = fftLen >> 1; pIn0 = pSrc; pIn1 = pSrc + fftLen; pCoefVec = pCoef; blkCnt = n2 / 4; while (blkCnt > 0U) { vecIn0 = *(q15x8_t *) pIn0; vecIn1 = *(q15x8_t *) pIn1; vecIn0 = vecIn0 >> 1; vecIn1 = vecIn1 >> 1; vecSum = vhaddq(vecIn0, vecIn1); vst1q(pIn0, vecSum); pIn0 += 8; vecTw = vld1q(pCoefVec); pCoefVec += 8; vecDiff = vhsubq(vecIn0, vecIn1); vecCmplxTmp = vqrdmlsdhq(vuninitializedq_s16() , vecDiff, vecTw); vecCmplxTmp = vqrdmladhxq(vecCmplxTmp, vecDiff, vecTw); vst1q(pIn1, vecCmplxTmp); pIn1 += 8; blkCnt--; } _arm_radix4_butterfly_inverse_q15_mve(S, pSrc, n2); _arm_radix4_butterfly_inverse_q15_mve(S, pSrc + fftLen, n2); pIn0 = pSrc; blkCnt = (fftLen << 1) >> 3; while (blkCnt > 0U) { vecIn0 = *(q15x8_t *) pIn0; vecIn0 = vecIn0 << 1; vst1q(pIn0, vecIn0); pIn0 += 8; blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = (fftLen << 1) & 7; while (blkCnt > 0U) { mve_pred16_t p0 = vctp16q(blkCnt); vecIn0 = *(q15x8_t *) pIn0; vecIn0 = vecIn0 << 1; vstrhq_p(pIn0, vecIn0, p0); } } /** @ingroup groupTransforms */ /** @addtogroup ComplexFFT @{ */ /** @brief Processing function for Q15 complex FFT. @param[in] S points to an instance of Q15 CFFT structure @param[in,out] p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place @param[in] ifftFlag flag that selects transform direction - value = 0: forward transform - value = 1: inverse transform @param[in] bitReverseFlag flag that enables / disables bit reversal of output - value = 0: disables bit reversal of output - value = 1: enables bit reversal of output @return none */ void arm_cfft_q15( const arm_cfft_instance_q15 * S, q15_t * pSrc, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t fftLen = S->fftLen; if (ifftFlag == 1U) { switch (fftLen) { case 16: case 64: case 256: case 1024: case 4096: _arm_radix4_butterfly_inverse_q15_mve(S, pSrc, fftLen); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q15_mve(S, pSrc, fftLen); break; } } else { switch (fftLen) { case 16: case 64: case 256: case 1024: case 4096: _arm_radix4_butterfly_q15_mve(S, pSrc, fftLen); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q15_mve(S, pSrc, fftLen); break; } } if (bitReverseFlag) { arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable); } } #else extern void arm_radix4_butterfly_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_bitreversal_16( uint16_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); /** @ingroup groupTransforms */ /** @addtogroup ComplexFFT @{ */ /** @brief Processing function for Q15 complex FFT. @param[in] S points to an instance of Q15 CFFT structure @param[in,out] p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place @param[in] ifftFlag flag that selects transform direction - value = 0: forward transform - value = 1: inverse transform @param[in] bitReverseFlag flag that enables / disables bit reversal of output - value = 0: disables bit reversal of output - value = 1: enables bit reversal of output @return none */ void arm_cfft_q15( const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen; if (ifftFlag == 1U) { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle ); break; } } else { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle ); break; } } if ( bitReverseFlag ) arm_bitreversal_16 ((uint16_t*) p1, S->bitRevLength, S->pBitRevTable); } /** @} end of ComplexFFT group */ void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #if defined (ARM_MATH_DSP) q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1U; #if defined (ARM_MATH_DSP) for (i = n2; i > 0; i--) { coeff = read_q15x2_ia ((q15_t **) &pC); T = read_q15x2 (pSi); T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */ S = read_q15x2 (pSl); S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */ R = __QSUB16(T, S); write_q15x2_ia (&pSi, __SHADD16(T, S)); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16U; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 ) ); } #else /* #if defined (ARM_MATH_DSP) */ for (i = 0; i < n2; i++) { cosVal = pCoef[2 * i]; sinVal = pCoef[2 * i + 1]; l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) + ((int16_t) (((q31_t) yt * sinVal) >> 16U)) ); pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) - ((int16_t) (((q31_t) xt * sinVal) >> 16U)) ); } #endif /* #if defined (ARM_MATH_DSP) */ /* first col */ arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U); /* second col */ arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U); n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { p0 = pSrc[4 * i + 0]; p1 = pSrc[4 * i + 1]; p2 = pSrc[4 * i + 2]; p3 = pSrc[4 * i + 3]; p0 <<= 1U; p1 <<= 1U; p2 <<= 1U; p3 <<= 1U; pSrc[4 * i + 0] = p0; pSrc[4 * i + 1] = p1; pSrc[4 * i + 2] = p2; pSrc[4 * i + 3] = p3; } } void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #if defined (ARM_MATH_DSP) q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1U; #if defined (ARM_MATH_DSP) for (i = n2; i > 0; i--) { coeff = read_q15x2_ia ((q15_t **) &pC); T = read_q15x2 (pSi); T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */ S = read_q15x2 (pSl); S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */ R = __QSUB16(T, S); write_q15x2_ia (&pSi, __SHADD16(T, S)); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16U; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 )); } #else /* #if defined (ARM_MATH_DSP) */ for (i = 0; i < n2; i++) { cosVal = pCoef[2 * i]; sinVal = pCoef[2 * i + 1]; l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) - ((int16_t) (((q31_t) yt * sinVal) >> 16U)) ); pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) + ((int16_t) (((q31_t) xt * sinVal) >> 16U)) ); } #endif /* #if defined (ARM_MATH_DSP) */ /* first col */ arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U); /* second col */ arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U); n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { p0 = pSrc[4 * i + 0]; p1 = pSrc[4 * i + 1]; p2 = pSrc[4 * i + 2]; p3 = pSrc[4 * i + 3]; p0 <<= 1U; p1 <<= 1U; p2 <<= 1U; p3 <<= 1U; pSrc[4 * i + 0] = p0; pSrc[4 * i + 1] = p1; pSrc[4 * i + 2] = p2; pSrc[4 * i + 3] = p3; } } #endif /* defined(ARM_MATH_MVEI) */