/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cfft_f64.c * Description: Combined Radix Decimation in Frequency CFFT Double Precision Floating point processing function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/transform_functions.h" #include "arm_common_tables.h" extern void arm_radix4_butterfly_f64( float64_t * pSrc, uint16_t fftLen, const float64_t * pCoef, uint16_t twidCoefModifier); extern void arm_bitreversal_64( uint64_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); /** * @} end of ComplexFFT group */ /* ---------------------------------------------------------------------- * Internal helper function used by the FFTs * ---------------------------------------------------------------------- */ /* * @brief Core function for the Double Precision floating-point CFFT butterfly process. * @param[in, out] *pSrc points to the in-place buffer of F64 data type. * @param[in] fftLen length of the FFT. * @param[in] *pCoef points to the twiddle coefficient buffer. * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_radix4_butterfly_f64( float64_t * pSrc, uint16_t fftLen, const float64_t * pCoef, uint16_t twidCoefModifier) { float64_t co1, co2, co3, si1, si2, si3; uint32_t ia1, ia2, ia3; uint32_t i0, i1, i2, i3; uint32_t n1, n2, j, k; float64_t t1, t2, r1, r2, s1, s2; /* Initializations for the fft calculation */ n2 = fftLen; n1 = n2; for (k = fftLen; k > 1U; k >>= 2U) { /* Initializations for the fft calculation */ n1 = n2; n2 >>= 2U; ia1 = 0U; /* FFT Calculation */ j = 0; do { /* index calculation for the coefficients */ ia2 = ia1 + ia1; ia3 = ia2 + ia1; co1 = pCoef[ia1 * 2U]; si1 = pCoef[(ia1 * 2U) + 1U]; co2 = pCoef[ia2 * 2U]; si2 = pCoef[(ia2 * 2U) + 1U]; co3 = pCoef[ia3 * 2U]; si3 = pCoef[(ia3 * 2U) + 1U]; /* Twiddle coefficients index modifier */ ia1 = ia1 + twidCoefModifier; i0 = j; do { /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* xa + xc */ r1 = pSrc[(2U * i0)] + pSrc[(2U * i2)]; /* xa - xc */ r2 = pSrc[(2U * i0)] - pSrc[(2U * i2)]; /* ya + yc */ s1 = pSrc[(2U * i0) + 1U] + pSrc[(2U * i2) + 1U]; /* ya - yc */ s2 = pSrc[(2U * i0) + 1U] - pSrc[(2U * i2) + 1U]; /* xb + xd */ t1 = pSrc[2U * i1] + pSrc[2U * i3]; /* xa' = xa + xb + xc + xd */ pSrc[2U * i0] = r1 + t1; /* xa + xc -(xb + xd) */ r1 = r1 - t1; /* yb + yd */ t2 = pSrc[(2U * i1) + 1U] + pSrc[(2U * i3) + 1U]; /* ya' = ya + yb + yc + yd */ pSrc[(2U * i0) + 1U] = s1 + t2; /* (ya + yc) - (yb + yd) */ s1 = s1 - t2; /* (yb - yd) */ t1 = pSrc[(2U * i1) + 1U] - pSrc[(2U * i3) + 1U]; /* (xb - xd) */ t2 = pSrc[2U * i1] - pSrc[2U * i3]; /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */ pSrc[2U * i1] = (r1 * co2) + (s1 * si2); /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */ pSrc[(2U * i1) + 1U] = (s1 * co2) - (r1 * si2); /* (xa - xc) + (yb - yd) */ r1 = r2 + t1; /* (xa - xc) - (yb - yd) */ r2 = r2 - t1; /* (ya - yc) - (xb - xd) */ s1 = s2 - t2; /* (ya - yc) + (xb - xd) */ s2 = s2 + t2; /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */ pSrc[2U * i2] = (r1 * co1) + (s1 * si1); /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */ pSrc[(2U * i2) + 1U] = (s1 * co1) - (r1 * si1); /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */ pSrc[2U * i3] = (r2 * co3) + (s2 * si3); /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */ pSrc[(2U * i3) + 1U] = (s2 * co3) - (r2 * si3); i0 += n1; } while ( i0 < fftLen); j++; } while (j <= (n2 - 1U)); twidCoefModifier <<= 2U; } } /* * @brief Core function for the Double Precision floating-point CFFT butterfly process. * @param[in, out] *pSrc points to the in-place buffer of F64 data type. * @param[in] fftLen length of the FFT. * @param[in] *pCoef points to the twiddle coefficient buffer. * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_cfft_radix4by2_f64( float64_t * pSrc, uint32_t fftLen, const float64_t * pCoef) { uint32_t i, l; uint32_t n2, ia; float64_t xt, yt, cosVal, sinVal; float64_t p0, p1,p2,p3,a0,a1; n2 = fftLen >> 1; ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[2*ia]; sinVal = pCoef[2*ia + 1]; ia++; l = i + n2; /* Butterfly implementation */ a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 + p1; pSrc[2 * l + 1] = p2 - p3; } // first col arm_radix4_butterfly_f64( pSrc, n2, (float64_t*)pCoef, 2U); // second col arm_radix4_butterfly_f64( pSrc + fftLen, n2, (float64_t*)pCoef, 2U); } /** @addtogroup ComplexFFT @{ */ /** @brief Processing function for the Double Precision floating-point complex FFT. @param[in] S points to an instance of the Double Precision floating-point CFFT structure @param[in,out] p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place @param[in] ifftFlag flag that selects transform direction - value = 0: forward transform - value = 1: inverse transform @param[in] bitReverseFlag flag that enables / disables bit reversal of output - value = 0: disables bit reversal of output - value = 1: enables bit reversal of output @return none */ void arm_cfft_f64( const arm_cfft_instance_f64 * S, float64_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen, l; float64_t invL, * pSrc; if (ifftFlag == 1U) { /* Conjugate input data */ pSrc = p1 + 1; for(l=0; lpTwiddle, 1U); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_f64 ( p1, L, (float64_t*)S->pTwiddle); break; } if ( bitReverseFlag ) arm_bitreversal_64((uint64_t*)p1, S->bitRevLength,S->pBitRevTable); if (ifftFlag == 1U) { invL = 1.0 / (float64_t)L; /* Conjugate and scale output data */ pSrc = p1; for(l=0; l