/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_f64.c
* Description: Combined Radix Decimation in Frequency CFFT Double Precision Floating point processing function
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions.h"
#include "arm_common_tables.h"
extern void arm_radix4_butterfly_f64(
float64_t * pSrc,
uint16_t fftLen,
const float64_t * pCoef,
uint16_t twidCoefModifier);
extern void arm_bitreversal_64(
uint64_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
/**
* @} end of ComplexFFT group
*/
/* ----------------------------------------------------------------------
* Internal helper function used by the FFTs
* ---------------------------------------------------------------------- */
/*
* @brief Core function for the Double Precision floating-point CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to the twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_f64(
float64_t * pSrc,
uint16_t fftLen,
const float64_t * pCoef,
uint16_t twidCoefModifier)
{
float64_t co1, co2, co3, si1, si2, si3;
uint32_t ia1, ia2, ia3;
uint32_t i0, i1, i2, i3;
uint32_t n1, n2, j, k;
float64_t t1, t2, r1, r2, s1, s2;
/* Initializations for the fft calculation */
n2 = fftLen;
n1 = n2;
for (k = fftLen; k > 1U; k >>= 2U)
{
/* Initializations for the fft calculation */
n1 = n2;
n2 >>= 2U;
ia1 = 0U;
/* FFT Calculation */
j = 0;
do
{
/* index calculation for the coefficients */
ia2 = ia1 + ia1;
ia3 = ia2 + ia1;
co1 = pCoef[ia1 * 2U];
si1 = pCoef[(ia1 * 2U) + 1U];
co2 = pCoef[ia2 * 2U];
si2 = pCoef[(ia2 * 2U) + 1U];
co3 = pCoef[ia3 * 2U];
si3 = pCoef[(ia3 * 2U) + 1U];
/* Twiddle coefficients index modifier */
ia1 = ia1 + twidCoefModifier;
i0 = j;
do
{
/* index calculation for the input as, */
/* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
i1 = i0 + n2;
i2 = i1 + n2;
i3 = i2 + n2;
/* xa + xc */
r1 = pSrc[(2U * i0)] + pSrc[(2U * i2)];
/* xa - xc */
r2 = pSrc[(2U * i0)] - pSrc[(2U * i2)];
/* ya + yc */
s1 = pSrc[(2U * i0) + 1U] + pSrc[(2U * i2) + 1U];
/* ya - yc */
s2 = pSrc[(2U * i0) + 1U] - pSrc[(2U * i2) + 1U];
/* xb + xd */
t1 = pSrc[2U * i1] + pSrc[2U * i3];
/* xa' = xa + xb + xc + xd */
pSrc[2U * i0] = r1 + t1;
/* xa + xc -(xb + xd) */
r1 = r1 - t1;
/* yb + yd */
t2 = pSrc[(2U * i1) + 1U] + pSrc[(2U * i3) + 1U];
/* ya' = ya + yb + yc + yd */
pSrc[(2U * i0) + 1U] = s1 + t2;
/* (ya + yc) - (yb + yd) */
s1 = s1 - t2;
/* (yb - yd) */
t1 = pSrc[(2U * i1) + 1U] - pSrc[(2U * i3) + 1U];
/* (xb - xd) */
t2 = pSrc[2U * i1] - pSrc[2U * i3];
/* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */
pSrc[2U * i1] = (r1 * co2) + (s1 * si2);
/* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */
pSrc[(2U * i1) + 1U] = (s1 * co2) - (r1 * si2);
/* (xa - xc) + (yb - yd) */
r1 = r2 + t1;
/* (xa - xc) - (yb - yd) */
r2 = r2 - t1;
/* (ya - yc) - (xb - xd) */
s1 = s2 - t2;
/* (ya - yc) + (xb - xd) */
s2 = s2 + t2;
/* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */
pSrc[2U * i2] = (r1 * co1) + (s1 * si1);
/* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */
pSrc[(2U * i2) + 1U] = (s1 * co1) - (r1 * si1);
/* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */
pSrc[2U * i3] = (r2 * co3) + (s2 * si3);
/* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */
pSrc[(2U * i3) + 1U] = (s2 * co3) - (r2 * si3);
i0 += n1;
} while ( i0 < fftLen);
j++;
} while (j <= (n2 - 1U));
twidCoefModifier <<= 2U;
}
}
/*
* @brief Core function for the Double Precision floating-point CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to the twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_cfft_radix4by2_f64(
float64_t * pSrc,
uint32_t fftLen,
const float64_t * pCoef)
{
uint32_t i, l;
uint32_t n2, ia;
float64_t xt, yt, cosVal, sinVal;
float64_t p0, p1,p2,p3,a0,a1;
n2 = fftLen >> 1;
ia = 0;
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2*ia];
sinVal = pCoef[2*ia + 1];
ia++;
l = i + n2;
/* Butterfly implementation */
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 + p1;
pSrc[2 * l + 1] = p2 - p3;
}
// first col
arm_radix4_butterfly_f64( pSrc, n2, (float64_t*)pCoef, 2U);
// second col
arm_radix4_butterfly_f64( pSrc + fftLen, n2, (float64_t*)pCoef, 2U);
}
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for the Double Precision floating-point complex FFT.
@param[in] S points to an instance of the Double Precision floating-point CFFT structure
@param[in,out] p1 points to the complex data buffer of size 2*fftLen
. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_f64(
const arm_cfft_instance_f64 * S,
float64_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen, l;
float64_t invL, * pSrc;
if (ifftFlag == 1U)
{
/* Conjugate input data */
pSrc = p1 + 1;
for(l=0; lpTwiddle, 1U);
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_f64 ( p1, L, (float64_t*)S->pTwiddle);
break;
}
if ( bitReverseFlag )
arm_bitreversal_64((uint64_t*)p1, S->bitRevLength,S->pBitRevTable);
if (ifftFlag == 1U)
{
invL = 1.0 / (float64_t)L;
/* Conjugate and scale output data */
pSrc = p1;
for(l=0; l