/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_scale_q31.c * Description: Multiplies a Q31 matrix by a scalar * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @addtogroup MatrixScale @{ */ /** @brief Q31 matrix scaling. @param[in] pSrc points to input matrix @param[in] scaleFract fractional portion of the scale factor @param[in] shift number of bits to shift the result by @param[out] pDst points to output matrix structure @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed @par Scaling and Overflow Behavior The input data *pSrc and scaleFract are in 1.31 format. These are multiplied to yield a 2.62 intermediate result which is shifted with saturation to 1.31 format. */ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, arm_matrix_instance_q31 * pDst) { q31_t *pIn = pSrc->pData; /* input data matrix pointer */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ q31x4_t vecIn, vecOut; q31_t const *pInVec; int32_t totShift = shift + 1; /* shift to apply after scaling */ arm_status status; /* Status of matrix scaling */ pInVec = (q31_t const *) pIn; #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* * Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; blkCnt = numSamples >> 2; while (blkCnt > 0U) { /* * C(m,n) = A(m,n) * scale * Scaling and results are stored in the destination buffer. */ vecIn = vld1q(pInVec); pInVec += 4; /* multiply input with scaler value */ vecOut = vmulhq(vecIn, vdupq_n_s32(scaleFract)); /* apply shifting */ vecOut = vqshlq_r(vecOut, totShift); vst1q(pOut, vecOut); pOut += 4; /* * Decrement the blockSize loop counter */ blkCnt--; } /* * tail */ blkCnt = numSamples & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); vecIn = vld1q(pInVec); pInVec += 4; vecOut = vmulhq(vecIn, vdupq_n_s32(scaleFract)); vecOut = vqshlq_r(vecOut, totShift); vstrwq_p(pOut, vecOut, p0); } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, arm_matrix_instance_q31 * pDst) { q31_t *pIn = pSrc->pData; /* Input data matrix pointer */ q31_t *pOut = pDst->pData; /* Output data matrix pointer */ uint32_t numSamples; /* Total number of elements in the matrix */ uint32_t blkCnt; /* Loop counter */ arm_status status; /* Status of matrix scaling */ int32_t kShift = shift + 1; /* Shift to apply after scaling */ q31_t in, out; /* Temporary variabels */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * k */ /* Scale, saturate and store result in destination buffer. */ in = *pIn++; /* read four inputs from source */ in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */ out = in << kShift; /* apply shifting */ if (in != (out >> kShift)) /* saturate the results. */ out = 0x7FFFFFFF ^ (in >> 31); *pOut++ = out; /* Store result destination */ in = *pIn++; in = ((q63_t) in * scaleFract) >> 32; out = in << kShift; if (in != (out >> kShift)) out = 0x7FFFFFFF ^ (in >> 31); *pOut++ = out; in = *pIn++; in = ((q63_t) in * scaleFract) >> 32; out = in << kShift; if (in != (out >> kShift)) out = 0x7FFFFFFF ^ (in >> 31); *pOut++ = out; in = *pIn++; in = ((q63_t) in * scaleFract) >> 32; out = in << kShift; if (in != (out >> kShift)) out = 0x7FFFFFFF ^ (in >> 31); *pOut++ = out; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * k */ /* Scale, saturate and store result in destination buffer. */ in = *pIn++; in = ((q63_t) in * scaleFract) >> 32; out = in << kShift; if (in != (out >> kShift)) out = 0x7FFFFFFF ^ (in >> 31); *pOut++ = out; /* Decrement loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* defined(ARM_MATH_MVEI) */ /** @} end of MatrixScale group */