/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_spline_interp_f32.c * Description: Floating-point cubic spline interpolation * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/interpolation_functions.h" /** @ingroup groupInterpolation */ /** @defgroup SplineInterpolate Cubic Spline Interpolation Spline interpolation is a method of interpolation where the interpolant is a piecewise-defined polynomial called "spline". @par Introduction Given a function f defined on the interval [a,b], a set of n nodes x(i) where a=x(1) S1(x) x(1) < x < x(2) S(x) = ... Sn-1(x) x(n-1) < x < x(n) where
 
  Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3    i=1, ..., n-1
  
@par Algorithm Having defined h(i) = x(i+1) - x(i)
  h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)]    i=2, ..., n-1
  
It is possible to write the previous conditions in matrix form (Ax=B). In order to solve the system two boundary conidtions are needed. - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0 In matrix form:
  |  1        0         0  ...    0         0           0     ||  c(1)  | |                        0                        |
  | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
  | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
  |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
  |  0        0         0  ...    0         0           1     ||  c(n)  | |                        0                        |
  
- Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n) In matrix form:
  |  1       -1         0  ...    0         0           0     ||  c(1)  | |                        0                        |
  | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
  | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
  |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
  |  0        0         0  ...    0        -1           1     ||  c(n)  | |                        0                        |
  
A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization algorithms (A=LU) can be simplified considerably because a large number of zeros appear in regular patterns. The Crout method has been used: 1) Solve LZ=B
  u(1,2) = A(1,2)/A(1,1)
  z(1)   = B(1)/l(11)
 
  FOR i=2, ..., N-1
    l(i,i)   = A(i,i)-A(i,i-1)u(i-1,i)
    u(i,i+1) = a(i,i+1)/l(i,i)
    z(i)     = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
  
  l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
  z(N)   = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
  
2) Solve UX=Z
  c(N)=z(N)
  
  FOR i=N-1, ..., 1
    c(i)=z(i)-u(i,i+1)c(i+1) 
  
c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials. b(i) and d(i) are computed as: - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3 - d(i) = [c(i+1)-c(i)]/[3*h(i)] Moreover, a(i)=y(i). @par Behaviour outside the given intervals It is possible to compute the interpolated vector for x values outside the input range (xqx(n)). The coefficients used to compute the y values for xqx(n) the coefficients used for the last interval. */ /** @addtogroup SplineInterpolate @{ */ /** * @brief Processing function for the floating-point cubic spline interpolation. * @param[in] S points to an instance of the floating-point spline structure. * @param[in] xq points to the x values of the interpolated data points. * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples of output data. */ void arm_spline_f32( arm_spline_instance_f32 * S, const float32_t * xq, float32_t * pDst, uint32_t blockSize) { const float32_t * x = S->x; const float32_t * y = S->y; int32_t n = S->n_x; /* Coefficients (a==y for i<=n-1) */ float32_t * b = (S->coeffs); float32_t * c = (S->coeffs)+(n-1); float32_t * d = (S->coeffs)+(2*(n-1)); const float32_t * pXq = xq; int32_t blkCnt = (int32_t)blockSize; int32_t blkCnt2; int32_t i; float32_t x_sc; #ifdef ARM_MATH_NEON float32x4_t xiv; float32x4_t aiv; float32x4_t biv; float32x4_t civ; float32x4_t div; float32x4_t xqv; float32x4_t temp; float32x4_t diff; float32x4_t yv; #endif /* Create output for x(i) 4 ) { /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */ xqv = vld1q_f32(pXq); pXq+=4; /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */ diff = vsubq_f32(xqv, xiv); temp = diff; /* y(i) = a(i) + ... */ yv = aiv; /* ... + b(i)*(x-x(i)) + ... */ yv = vmlaq_f32(yv, biv, temp); /* ... + c(i)*(x-x(i))^2 + ... */ temp = vmulq_f32(temp, diff); yv = vmlaq_f32(yv, civ, temp); /* ... + d(i)*(x-x(i))^3 */ temp = vmulq_f32(temp, diff); yv = vmlaq_f32(yv, div, temp); /* Store [y(k) y(k+1) y(k+2) y(k+3)] */ vst1q_f32(pDst, yv); pDst+=4; blkCnt-=4; } #endif while( *pXq <= x[i+1] && blkCnt > 0 ) { x_sc = *pXq++; *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]); pDst++; blkCnt--; } } /* Create output for remaining samples (x>=x(n)) */ #ifdef ARM_MATH_NEON /* Compute 4 outputs at a time */ blkCnt2 = blkCnt >> 2; while(blkCnt2 > 0) { /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */ xqv = vld1q_f32(pXq); pXq+=4; /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */ diff = vsubq_f32(xqv, xiv); temp = diff; /* y(i) = a(i) + ... */ yv = aiv; /* ... + b(i)*(x-x(i)) + ... */ yv = vmlaq_f32(yv, biv, temp); /* ... + c(i)*(x-x(i))^2 + ... */ temp = vmulq_f32(temp, diff); yv = vmlaq_f32(yv, civ, temp); /* ... + d(i)*(x-x(i))^3 */ temp = vmulq_f32(temp, diff); yv = vmlaq_f32(yv, div, temp); /* Store [y(k) y(k+1) y(k+2) y(k+3)] */ vst1q_f32(pDst, yv); pDst+=4; blkCnt2--; } /* Tail */ blkCnt2 = blkCnt & 3; #else blkCnt2 = blkCnt; #endif while(blkCnt2 > 0) { x_sc = *pXq++; *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]); pDst++; blkCnt2--; } } /** @} end of SplineInterpolate group */