/****************************************************************************** * @file fast_math_functions.h * @brief Public header file for CMSIS DSP Library * @version V1.9.0 * @date 23 April 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _FAST_MATH_FUNCTIONS_H_ #define _FAST_MATH_FUNCTIONS_H_ #include "arm_math_types.h" #include "arm_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Macros required for SINE and COSINE Fast math approximations */ #define FAST_MATH_TABLE_SIZE 512 #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #ifndef PI #define PI 3.14159265358979f #endif /** * @defgroup groupFastMath Fast Math Functions * This set of functions provides a fast approximation to sine, cosine, and square root. * As compared to most of the other functions in the CMSIS math library, the fast math functions * operate on individual values and not arrays. * There are separate functions for Q15, Q31, and floating-point data. * */ /** * @ingroup groupFastMath */ /** @addtogroup sin @{ */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. * @param[in] x input value in radians. * @return sin(x). */ float32_t arm_sin_f32( float32_t x); /** * @brief Fast approximation to the trigonometric sine function for Q31 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q31_t arm_sin_q31( q31_t x); /** * @brief Fast approximation to the trigonometric sine function for Q15 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q15_t arm_sin_q15( q15_t x); /** @} end of sin group */ /** @addtogroup cos @{ */ /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. * @param[in] x input value in radians. * @return cos(x). */ float32_t arm_cos_f32( float32_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q31 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q31_t arm_cos_q31( q31_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q15 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q15_t arm_cos_q15( q15_t x); /** @} end of cos group */ /** @brief Floating-point vector of log values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector @return none */ void arm_vlog_f32( const float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** @brief Floating-point vector of exp values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector @return none */ void arm_vexp_f32( const float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** * @defgroup SQRT Square Root * * Computes the square root of a number. * There are separate functions for Q15, Q31, and floating-point data types. * The square root function is computed using the Newton-Raphson algorithm. * This is an iterative algorithm of the form: *
* x1 = x0 - f(x0)/f'(x0) ** where
x1
is the current estimate,
* x0
is the previous estimate, and
* f'(x0)
is the derivative of f()
evaluated at x0
.
* For the square root function, the algorithm reduces to:
* * x0 = in/2 [initial guess] * x1 = 1/2 * ( x0 + in / x0) [each iteration] **/ /** * @addtogroup SQRT * @{ */ /** @brief Floating-point square root function. @param[in] in input value @param[out] pOut square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ __STATIC_FORCEINLINE arm_status arm_sqrt_f32( float32_t in, float32_t * pOut) { if (in >= 0.0f) { #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP *pOut = __sqrtf(in); #else *pOut = sqrtf(in); #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif #else *pOut = sqrtf(in); #endif return (ARM_MATH_SUCCESS); } else { *pOut = 0.0f; return (ARM_MATH_ARGUMENT_ERROR); } } /** @brief Q31 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ arm_status arm_sqrt_q31( q31_t in, q31_t * pOut); /** @brief Q15 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ arm_status arm_sqrt_q15( q15_t in, q15_t * pOut); /** * @brief Vector Floating-point square root function. * @param[in] pIn input vector. * @param[out] pOut vector of square roots of input elements. * @param[in] len length of input vector. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if *
in
is negative value and returns zero output for negative values.
*/
void arm_vsqrt_f32(
float32_t * pIn,
float32_t * pOut,
uint16_t len);
void arm_vsqrt_q31(
q31_t * pIn,
q31_t * pOut,
uint16_t len);
void arm_vsqrt_q15(
q15_t * pIn,
q15_t * pOut,
uint16_t len);
/**
* @} end of SQRT group
*/
/**
@brief Fixed point division
@param[in] numerator Numerator
@param[in] denominator Denominator
@param[out] quotient Quotient value normalized between -1.0 and 1.0
@param[out] shift Shift left value to get the unnormalized quotient
@return error status
When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced
to the saturated negative or positive value.
*/
arm_status arm_divide_q15(q15_t numerator,
q15_t denominator,
q15_t *quotient,
int16_t *shift);
#ifdef __cplusplus
}
#endif
#endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */