/* * Copyright (c) 2015 - 2016, Freescale Semiconductor, Inc. * Copyright 2016-2023 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_enet.h" #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL #include "fsl_cache.h" #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ /******************************************************************************* * Definitions ******************************************************************************/ /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.enet" #endif /*! @brief Ethernet mac address length. */ #define ENET_FRAME_MACLEN 6U /*! @brief MDC frequency. */ #define ENET_MDC_FREQUENCY 2500000U /*! @brief NanoSecond in one second. */ #define ENET_NANOSECOND_ONE_SECOND 1000000000U /*! @brief Define the ENET ring/class bumber . */ enum { kENET_Ring0 = 0U, /*!< ENET ring/class 0. */ #if FSL_FEATURE_ENET_QUEUE > 1 kENET_Ring1 = 1U, /*!< ENET ring/class 1. */ kENET_Ring2 = 2U /*!< ENET ring/class 2. */ #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ }; /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to enet clocks for each instance. */ #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) const clock_ip_name_t s_enetClock[] = ENET_CLOCKS; #if defined(FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE) && FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE const clock_ip_name_t s_enetExtraClock[] = ENET_EXTRA_CLOCKS; #endif #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /*! @brief Pointers to enet transmit IRQ number for each instance. */ static const IRQn_Type s_enetTxIrqId[] = ENET_Transmit_IRQS; /*! @brief Pointers to enet receive IRQ number for each instance. */ static const IRQn_Type s_enetRxIrqId[] = ENET_Receive_IRQS; #if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /*! @brief Pointers to enet timestamp IRQ number for each instance. */ static const IRQn_Type s_enetTsIrqId[] = ENET_Ts_IRQS; /*! @brief Pointers to enet 1588 timestamp IRQ number for each instance. */ static const IRQn_Type s_enet1588TimerIrqId[] = ENET_1588_Timer_IRQS; #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /*! @brief Pointers to enet error IRQ number for each instance. */ static const IRQn_Type s_enetErrIrqId[] = ENET_Error_IRQS; /*! @brief Pointers to enet bases for each instance. */ static ENET_Type *const s_enetBases[] = ENET_BASE_PTRS; /*! @brief Pointers to enet handles for each instance. */ static enet_handle_t *s_ENETHandle[ARRAY_SIZE(s_enetBases)]; /* ENET ISR for transactional APIs. */ #if FSL_FEATURE_ENET_QUEUE > 1 static enet_isr_ring_t s_enetTxIsr[ARRAY_SIZE(s_enetBases)]; static enet_isr_ring_t s_enetRxIsr[ARRAY_SIZE(s_enetBases)]; #else static enet_isr_t s_enetTxIsr[ARRAY_SIZE(s_enetBases)]; static enet_isr_t s_enetRxIsr[ARRAY_SIZE(s_enetBases)]; #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ static enet_isr_t s_enetErrIsr[ARRAY_SIZE(s_enetBases)]; static enet_isr_t s_enetTsIsr[ARRAY_SIZE(s_enetBases)]; static enet_isr_t s_enet1588TimerIsr[ARRAY_SIZE(s_enetBases)]; /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Set ENET MAC controller with the configuration. * * @param base ENET peripheral base address. * @param config ENET Mac configuration. * @param bufferConfig ENET buffer configuration. * @param macAddr ENET six-byte mac address. * @param srcClock_Hz ENET module clock source, normally it's system clock. */ static void ENET_SetMacController(ENET_Type *base, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz); /*! * @brief Set ENET handler. * * @param base ENET peripheral base address. * @param handle The ENET handle pointer. * @param config ENET configuration stucture pointer. * @param bufferConfig ENET buffer configuration. */ static void ENET_SetHandler(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint32_t srcClock_Hz); /*! * @brief Set ENET MAC transmit buffer descriptors. * * @param config The ENET configuration structure. * @param bufferConfig The ENET buffer configuration. */ static void ENET_SetTxBufferDescriptors(const enet_config_t *config, const enet_buffer_config_t *bufferConfig); /*! * @brief Set ENET MAC receive buffer descriptors. * * @param base ENET peripheral base address. * @param config The ENET configuration structure. * @param bufferConfig The ENET buffer configuration. */ static status_t ENET_SetRxBufferDescriptors(ENET_Type *base, const enet_config_t *config, const enet_buffer_config_t *bufferConfig); /*! * @brief Updates the ENET read buffer descriptors. * * @param base ENET peripheral base address. * @param handle The ENET handle pointer. * @param ringId The descriptor ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1). */ static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint8_t ringId); /*! * @brief Updates index. */ static uint16_t ENET_IncreaseIndex(uint16_t index, uint16_t max); /*! * @brief Frees all Rx buffers in BDs. */ static void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle); /******************************************************************************* * Code ******************************************************************************/ /*! * @brief Get the ENET instance from peripheral base address. * * @param base ENET peripheral base address. * @return ENET instance. */ uint32_t ENET_GetInstance(ENET_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_enetBases); instance++) { if (s_enetBases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_enetBases)); return instance; } /*! * brief Gets the ENET default configuration structure. * * The purpose of this API is to get the default ENET MAC controller * configure structure for ENET_Init(). User may use the initialized * structure unchanged in ENET_Init(), or modify some fields of the * structure before calling ENET_Init(). * Example: code enet_config_t config; ENET_GetDefaultConfig(&config); endcode * param config The ENET mac controller configuration structure pointer. */ void ENET_GetDefaultConfig(enet_config_t *config) { /* Checks input parameter. */ assert(config != NULL); /* Initializes the MAC configure structure to zero. */ (void)memset(config, 0, sizeof(enet_config_t)); /* Sets MII mode, full duplex, 100Mbps for MAC and PHY data interface. */ #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB config->miiMode = kENET_RgmiiMode; #else config->miiMode = kENET_RmiiMode; #endif config->miiSpeed = kENET_MiiSpeed100M; config->miiDuplex = kENET_MiiFullDuplex; config->ringNum = 1; /* Sets the maximum receive frame length. */ config->rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN; } /*! * brief Initializes the ENET module. * * This function initializes the module with the ENET configuration. * note ENET has two buffer descriptors legacy buffer descriptors and * enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To * use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor * by defining "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" and calling ENET_Ptp1588Configure() * to configure the 1588 feature and related buffers after calling ENET_Up(). * * param base ENET peripheral base address. * param handle ENET handler pointer. * param config ENET mac configuration structure pointer. * The "enet_config_t" type mac configuration return from ENET_GetDefaultConfig * can be used directly. It is also possible to verify the Mac configuration using other methods. * param bufferConfig ENET buffer configuration structure pointer. * The buffer configuration should be prepared for ENET Initialization. * It is the start address of "ringNum" enet_buffer_config structures. * To support added multi-ring features in some soc and compatible with the previous * enet driver version. For single ring supported, this bufferConfig is a buffer * configure structure pointer, for multi-ring supported and used case, this bufferConfig * pointer should be a buffer configure structure array pointer. * param macAddr ENET mac address of Ethernet device. This MAC address should be * provided. * param srcClock_Hz The internal module clock source for MII clock. * retval kStatus_Success Succeed to initialize the ethernet driver. * retval kStatus_ENET_InitMemoryFail Init fails since buffer memory is not enough. */ status_t ENET_Up(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz) { /* Checks input parameters. */ assert(handle != NULL); assert(config != NULL); assert(bufferConfig != NULL); assert(macAddr != NULL); assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); assert(config->ringNum <= (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); status_t result = kStatus_Success; /* Set all buffers or data in handler for data transmit/receive process. */ ENET_SetHandler(base, handle, config, bufferConfig, srcClock_Hz); /* Initializes the ENET transmit buffer descriptors. */ ENET_SetTxBufferDescriptors(config, bufferConfig); /* Initializes the ENET receive buffer descriptors. */ result = ENET_SetRxBufferDescriptors(base, config, bufferConfig); if (result == kStatus_ENET_InitMemoryFail) { ENET_RxBufferFreeAll(base, handle); return result; } /* Initializes the ENET MAC controller with basic function. */ ENET_SetMacController(base, config, bufferConfig, macAddr, srcClock_Hz); return result; } /*! * brief Initializes the ENET module. * * This function ungates the module clock and initializes it with the ENET configuration. * note ENET has two buffer descriptors legacy buffer descriptors and * enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To * use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor * by defining "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" and calling ENET_Ptp1588Configure() * to configure the 1588 feature and related buffers after calling ENET_Init(). * * param base ENET peripheral base address. * param handle ENET handler pointer. * param config ENET mac configuration structure pointer. * The "enet_config_t" type mac configuration return from ENET_GetDefaultConfig * can be used directly. It is also possible to verify the Mac configuration using other methods. * param bufferConfig ENET buffer configuration structure pointer. * The buffer configuration should be prepared for ENET Initialization. * It is the start address of "ringNum" enet_buffer_config structures. * To support added multi-ring features in some soc and compatible with the previous * enet driver version. For single ring supported, this bufferConfig is a buffer * configure structure pointer, for multi-ring supported and used case, this bufferConfig * pointer should be a buffer configure structure array pointer. * param macAddr ENET mac address of Ethernet device. This MAC address should be * provided. * param srcClock_Hz The internal module clock source for MII clock. * retval kStatus_Success Succeed to initialize the ethernet driver. * retval kStatus_ENET_InitMemoryFail Init fails since buffer memory is not enough. */ status_t ENET_Init(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz) { #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) uint32_t instance = ENET_GetInstance(base); /* Ungate ENET clock. */ (void)CLOCK_EnableClock(s_enetClock[instance]); #if defined(FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE) && FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE /* Ungate ENET extra clock. */ (void)CLOCK_EnableClock(s_enetExtraClock[instance]); #endif #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset ENET module. */ ENET_Reset(base); return ENET_Up(base, handle, config, bufferConfig, macAddr, srcClock_Hz); } /*! * brief Stops the ENET module. * This function disables the ENET module. * * param base ENET peripheral base address. */ void ENET_Down(ENET_Type *base) { uint32_t instance = ENET_GetInstance(base); enet_handle_t *handle = s_ENETHandle[instance]; /* Disable interrupt. */ base->EIMR = 0; /* Disable ENET. */ base->ECR &= ~ENET_ECR_ETHEREN_MASK; if (handle->rxBuffFree != NULL) { ENET_RxBufferFreeAll(base, handle); } } /*! * brief Deinitializes the ENET module. * This function gates the module clock, clears ENET interrupts, and disables the ENET module. * * param base ENET peripheral base address. */ void ENET_Deinit(ENET_Type *base) { ENET_Down(base); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disables the clock source. */ (void)CLOCK_DisableClock(s_enetClock[ENET_GetInstance(base)]); #if defined(FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE) && FSL_FEATURE_ENET_HAS_EXTRA_CLOCK_GATE /* Disables ENET extra clock. */ (void)CLOCK_DisableClock(s_enetExtraClock[ENET_GetInstance(base)]); #endif #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } #if FSL_FEATURE_ENET_QUEUE > 1 void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_ring_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetRxIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetRxIrqId[instance]); } void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_ring_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetTxIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetTxIrqId[instance]); } #else void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetRxIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetRxIrqId[instance]); } void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetTxIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetTxIrqId[instance]); } #endif void ENET_SetErrISRHandler(ENET_Type *base, enet_isr_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetErrIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetErrIrqId[instance]); } #if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE void ENET_SetTsISRHandler(ENET_Type *base, enet_isr_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enetTsIsr[instance] = ISRHandler; (void)EnableIRQ(s_enetTsIrqId[instance]); } void ENET_Set1588TimerISRHandler(ENET_Type *base, enet_isr_t ISRHandler) { uint32_t instance = ENET_GetInstance(base); s_enet1588TimerIsr[instance] = ISRHandler; (void)EnableIRQ(s_enet1588TimerIrqId[instance]); } #endif static void ENET_SetHandler(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint32_t srcClock_Hz) { uint8_t count; uint32_t instance = ENET_GetInstance(base); const enet_buffer_config_t *buffCfg = bufferConfig; /* Store transfer parameters in handle pointer. */ (void)memset(handle, 0, sizeof(enet_handle_t)); for (count = 0; count < config->ringNum; count++) { assert(buffCfg->rxBuffSizeAlign * buffCfg->rxBdNumber > config->rxMaxFrameLen); handle->rxBdRing[count].rxBdBase = buffCfg->rxBdStartAddrAlign; handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign; handle->rxBdRing[count].rxRingLen = buffCfg->rxBdNumber; handle->rxMaintainEnable[count] = buffCfg->rxMaintainEnable; handle->txBdRing[count].txBdBase = buffCfg->txBdStartAddrAlign; handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign; handle->txBdRing[count].txRingLen = buffCfg->txBdNumber; handle->txMaintainEnable[count] = buffCfg->txMaintainEnable; handle->txDirtyRing[count].txDirtyBase = buffCfg->txFrameInfo; handle->txDirtyRing[count].txRingLen = buffCfg->txBdNumber; buffCfg++; } handle->ringNum = config->ringNum; handle->rxBuffAlloc = config->rxBuffAlloc; handle->rxBuffFree = config->rxBuffFree; handle->callback = config->callback; handle->userData = config->userData; #if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID handle->enetClock = srcClock_Hz; #endif /* Save the handle pointer in the global variables. */ s_ENETHandle[instance] = handle; /* Set the IRQ handler when the interrupt is enabled. */ if (0U != (config->interrupt & (uint32_t)ENET_TX_INTERRUPT)) { ENET_SetTxISRHandler(base, ENET_TransmitIRQHandler); } if (0U != (config->interrupt & (uint32_t)ENET_RX_INTERRUPT)) { ENET_SetRxISRHandler(base, ENET_ReceiveIRQHandler); } if (0U != (config->interrupt & (uint32_t)ENET_ERR_INTERRUPT)) { ENET_SetErrISRHandler(base, ENET_ErrorIRQHandler); } } static void ENET_SetMacController(ENET_Type *base, const enet_config_t *config, const enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz) { #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1) { /* Check the MII mode/speed/duplex setting. */ if (config->miiSpeed == kENET_MiiSpeed1000M) { /* Only RGMII mode has the 1000M bit/s. The 1000M only support full duplex. */ assert(config->miiMode == kENET_RgmiiMode); assert(config->miiDuplex == kENET_MiiFullDuplex); } } #endif /* FSL_FEATURE_ENET_HAS_AVB */ uint32_t rcr = 0; uint32_t tcr = 0; uint32_t ecr = base->ECR; uint32_t macSpecialConfig = config->macSpecialConfig; uint32_t maxFrameLen = config->rxMaxFrameLen; uint32_t configVal = 0; /* Maximum frame length check. */ if (0U != (macSpecialConfig & (uint32_t)kENET_ControlVLANTagEnable)) { maxFrameLen = (ENET_FRAME_MAX_FRAMELEN + ENET_FRAME_VLAN_TAGLEN); #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1) { if (0U != (macSpecialConfig & (uint32_t)kENET_ControlSVLANEnable)) { /* Double vlan tag (SVLAN) supported. */ maxFrameLen += ENET_FRAME_VLAN_TAGLEN; } ecr |= (uint32_t)(((macSpecialConfig & (uint32_t)kENET_ControlSVLANEnable) != 0U) ? (ENET_ECR_SVLANEN_MASK | ENET_ECR_SVLANDBL_MASK) : 0U) | (uint32_t)(((macSpecialConfig & (uint32_t)kENET_ControlVLANUseSecondTag) != 0U) ? ENET_ECR_VLANUSE2ND_MASK : 0U); } #endif /* FSL_FEATURE_ENET_HAS_AVB */ } /* Configures MAC receive controller with user configure structure. */ rcr = ((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxPayloadCheckEnable)) ? ENET_RCR_NLC_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable)) ? ENET_RCR_CFEN_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable)) ? ENET_RCR_FCE_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxPadRemoveEnable)) ? ENET_RCR_PADEN_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxBroadCastRejectEnable)) ? ENET_RCR_BC_REJ_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlPromiscuousEnable)) ? ENET_RCR_PROM_MASK : 0U) | ENET_RCR_MAX_FL(maxFrameLen) | ENET_RCR_CRCFWD_MASK; /* Set the RGMII or RMII, MII mode and control register. */ #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1) { if (config->miiMode == kENET_RgmiiMode) { rcr |= ENET_RCR_RGMII_EN_MASK; } else { rcr &= ~ENET_RCR_RGMII_EN_MASK; } if (config->miiSpeed == kENET_MiiSpeed1000M) { ecr |= ENET_ECR_SPEED_MASK; } else { ecr &= ~ENET_ECR_SPEED_MASK; } } #endif /* FSL_FEATURE_ENET_HAS_AVB */ rcr |= ENET_RCR_MII_MODE_MASK; if (config->miiMode == kENET_RmiiMode) { rcr |= ENET_RCR_RMII_MODE_MASK; } /* Speed. */ if (config->miiSpeed == kENET_MiiSpeed10M) { rcr |= ENET_RCR_RMII_10T_MASK; } /* Receive setting for half duplex. */ if (config->miiDuplex == kENET_MiiHalfDuplex) { rcr |= ENET_RCR_DRT_MASK; } /* Sets internal loop only for MII mode. */ if ((0U != (config->macSpecialConfig & (uint32_t)kENET_ControlMIILoopEnable)) && (config->miiMode != kENET_RmiiMode)) { rcr |= ENET_RCR_LOOP_MASK; rcr &= ~ENET_RCR_DRT_MASK; } base->RCR = rcr; /* Configures MAC transmit controller: duplex mode, mac address insertion. */ tcr = base->TCR & ~(ENET_TCR_FDEN_MASK | ENET_TCR_ADDINS_MASK); tcr |= ((kENET_MiiHalfDuplex != config->miiDuplex) ? (uint32_t)ENET_TCR_FDEN_MASK : 0U) | ((0U != (macSpecialConfig & (uint32_t)kENET_ControlMacAddrInsert)) ? (uint32_t)ENET_TCR_ADDINS_MASK : 0U); base->TCR = tcr; /* Configures receive and transmit accelerator. */ base->TACC = config->txAccelerConfig; base->RACC = config->rxAccelerConfig; /* Sets the pause duration and FIFO threshold for the flow control enabled case. */ if (0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable)) { uint32_t reemReg; base->OPD = config->pauseDuration; reemReg = ENET_RSEM_RX_SECTION_EMPTY(config->rxFifoEmptyThreshold); #if defined(FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD) && FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD reemReg |= ENET_RSEM_STAT_SECTION_EMPTY(config->rxFifoStatEmptyThreshold); #endif /* FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD */ base->RSEM = reemReg; } /* FIFO threshold setting for store and forward enable/disable case. */ if (0U != (macSpecialConfig & (uint32_t)kENET_ControlStoreAndFwdDisable)) { /* Transmit fifo watermark settings. */ configVal = ((uint32_t)config->txFifoWatermark) & ENET_TFWR_TFWR_MASK; base->TFWR = configVal; /* Receive fifo full threshold settings. */ configVal = ((uint32_t)config->rxFifoFullThreshold) & ENET_RSFL_RX_SECTION_FULL_MASK; base->RSFL = configVal; } else { /* Transmit fifo watermark settings. */ base->TFWR = ENET_TFWR_STRFWD_MASK; base->RSFL = 0; } /* Enable store and forward when accelerator is enabled */ if (0U != (config->txAccelerConfig & ((uint32_t)kENET_TxAccelIpCheckEnabled | (uint32_t)kENET_TxAccelProtoCheckEnabled))) { base->TFWR = ENET_TFWR_STRFWD_MASK; } if (0U != ((config->rxAccelerConfig & ((uint32_t)kENET_RxAccelIpCheckEnabled | (uint32_t)kENET_RxAccelProtoCheckEnabled)))) { base->RSFL = 0; } /* Initializes the ring 0. */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET base->TDSR = MEMORY_ConvertMemoryMapAddress((uintptr_t)bufferConfig->txBdStartAddrAlign, kMEMORY_Local2DMA); base->RDSR = MEMORY_ConvertMemoryMapAddress((uintptr_t)bufferConfig->rxBdStartAddrAlign, kMEMORY_Local2DMA); #else base->TDSR = (uint32_t)(uintptr_t)bufferConfig->txBdStartAddrAlign; base->RDSR = (uint32_t)(uintptr_t)bufferConfig->rxBdStartAddrAlign; #endif base->MRBR = (uint32_t)bufferConfig->rxBuffSizeAlign; #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1) { const enet_buffer_config_t *buffCfg = bufferConfig; if (config->ringNum > 1U) { /* Initializes the ring 1. */ buffCfg++; #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET base->TDSR1 = MEMORY_ConvertMemoryMapAddress((uintptr_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA); base->RDSR1 = MEMORY_ConvertMemoryMapAddress((uintptr_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA); #else base->TDSR1 = (uint32_t)(uintptr_t)buffCfg->txBdStartAddrAlign; base->RDSR1 = (uint32_t)(uintptr_t)buffCfg->rxBdStartAddrAlign; #endif base->MRBR1 = (uint32_t)buffCfg->rxBuffSizeAlign; /* Enable the DMAC for ring 1 and with no rx classification set. */ base->DMACFG[0] = ENET_DMACFG_DMA_CLASS_EN_MASK; } if (config->ringNum > 2U) { /* Initializes the ring 2. */ buffCfg++; #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET base->TDSR2 = MEMORY_ConvertMemoryMapAddress((uintptr_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA); base->RDSR2 = MEMORY_ConvertMemoryMapAddress((uintptr_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA); #else base->TDSR2 = (uint32_t)(uintptr_t)buffCfg->txBdStartAddrAlign; base->RDSR2 = (uint32_t)(uintptr_t)buffCfg->rxBdStartAddrAlign; #endif base->MRBR2 = (uint32_t)buffCfg->rxBuffSizeAlign; /* Enable the DMAC for ring 2 and with no rx classification set. */ base->DMACFG[1] = ENET_DMACFG_DMA_CLASS_EN_MASK; } /* Defaulting the class/ring 1 and 2 are not enabled and the receive classification is disabled * so we set the default transmit scheme with the round-robin mode. Beacuse the legacy bd mode * only supports the round-robin mode. If the avb feature is required, just call the setup avb * feature API. */ base->QOS |= ENET_QOS_TX_SCHEME(1); } #endif /* FSL_FEATURE_ENET_HAS_AVB */ /* Configures the Mac address. */ ENET_SetMacAddr(base, macAddr); /* Initialize the SMI if uninitialized. */ if (!ENET_GetSMI(base)) { ENET_SetSMI(base, srcClock_Hz, ((0U != (config->macSpecialConfig & (uint32_t)kENET_ControlSMIPreambleDisable)) ? true : false)); } /* Enables Ethernet interrupt, enables the interrupt coalsecing if it is required. */ #if defined(FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE) && FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE uint8_t queue = 0; if (NULL != config->intCoalesceCfg) { uint32_t intMask = (ENET_EIMR_TXB_MASK | ENET_EIMR_RXB_MASK); #if FSL_FEATURE_ENET_QUEUE > 1 if (FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) > 1) { intMask |= ENET_EIMR_TXB2_MASK | ENET_EIMR_RXB2_MASK | ENET_EIMR_TXB1_MASK | ENET_EIMR_RXB1_MASK; } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ /* Clear all buffer interrupts. */ base->EIMR &= ~intMask; /* Set the interrupt coalescence. */ for (queue = 0; queue < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base); queue++) { base->TXIC[queue] = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[queue]) | config->intCoalesceCfg->txCoalesceTimeCount[queue] | ENET_TXIC_ICCS_MASK | ENET_TXIC_ICEN_MASK; base->RXIC[queue] = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[queue]) | config->intCoalesceCfg->rxCoalesceTimeCount[queue] | ENET_RXIC_ICCS_MASK | ENET_RXIC_ICEN_MASK; } } #endif /* FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE */ ENET_EnableInterrupts(base, config->interrupt); #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* Sets the 1588 enhanced feature. */ ecr |= ENET_ECR_EN1588_MASK; #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Enables Ethernet module after all configuration except the buffer descriptor active. */ ecr |= ENET_ECR_ETHEREN_MASK | ENET_ECR_DBSWP_MASK; base->ECR = ecr; } static void ENET_SetTxBufferDescriptors(const enet_config_t *config, const enet_buffer_config_t *bufferConfig) { const enet_buffer_config_t *buffCfg = bufferConfig; uintptr_t txBuffer = 0; uint32_t txBuffSizeAlign; uint16_t txBdNumber; uint8_t ringNum; uint16_t count; /* Check the input parameters. */ for (ringNum = 0; ringNum < config->ringNum; ringNum++) { if (buffCfg->txBdStartAddrAlign != NULL) { volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign; txBuffSizeAlign = buffCfg->txBuffSizeAlign; txBdNumber = buffCfg->txBdNumber; if (buffCfg->txBufferAlign != NULL) { #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET txBuffer = MEMORY_ConvertMemoryMapAddress((uintptr_t)buffCfg->txBufferAlign, kMEMORY_Local2DMA); #else txBuffer = (uintptr_t)buffCfg->txBufferAlign; #endif assert((uint64_t)txBuffer + (uint64_t)txBdNumber * txBuffSizeAlign - 1U <= UINT32_MAX); } for (count = 0; count < txBdNumber; count++) { if (buffCfg->txBufferAlign != NULL) { /* Set data buffer address. */ curBuffDescrip->buffer = (uint32_t)(txBuffer + count * txBuffSizeAlign); } /* Initializes data length. */ curBuffDescrip->length = 0; /* Sets the crc. */ curBuffDescrip->control = ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK; /* Sets the last buffer descriptor with the wrap flag. */ if (count == (txBdNumber - 1U)) { curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_WRAP_MASK; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* Enable transmit interrupt for store the transmit timestamp. */ curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK; #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB /* Set the type of the frame when the credit-based scheme is used. */ curBuffDescrip->controlExtend1 |= (uint16_t)(ENET_BD_FTYPE(ringNum)); #endif /* FSL_FEATURE_ENET_HAS_AVB */ #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Increase the index. */ curBuffDescrip++; } } buffCfg++; } } static status_t ENET_SetRxBufferDescriptors(ENET_Type *base, const enet_config_t *config, const enet_buffer_config_t *bufferConfig) { const enet_buffer_config_t *buffCfg = bufferConfig; uintptr_t rxBuffer = 0; uint8_t ringNum; uint16_t count; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE uint32_t mask = ((uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt); #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Check the input parameters. */ for (ringNum = 0; ringNum < config->ringNum; ringNum++) { assert(buffCfg->rxBuffSizeAlign >= ENET_RX_MIN_BUFFERSIZE); #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE #if FSL_FEATURE_ENET_QUEUE > 1 if (ringNum == 1U) { mask = ((uint32_t)kENET_RxFrame1Interrupt | (uint32_t)kENET_RxBuffer1Interrupt); } else if (ringNum == 2U) { mask = ((uint32_t)kENET_RxFrame2Interrupt | (uint32_t)kENET_RxBuffer2Interrupt); } else { /* Intentional empty */ } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Initialize the Rx buffer descriptor. */ if ((buffCfg->rxBdStartAddrAlign != NULL) && ((buffCfg->rxBufferAlign != NULL) || config->rxBuffAlloc != NULL)) { volatile enet_rx_bd_struct_t *curBuffDescrip = buffCfg->rxBdStartAddrAlign; for (count = 0; count < buffCfg->rxBdNumber; count++) { /* If zero copy is enabled, used buffer from allocation. */ if (config->rxBuffAlloc == NULL) { rxBuffer = (uintptr_t)buffCfg->rxBufferAlign + (uintptr_t)count * buffCfg->rxBuffSizeAlign; } else { rxBuffer = (uintptr_t)(uint8_t *)config->rxBuffAlloc(base, config->userData, ringNum); if (rxBuffer == 0U) { return kStatus_ENET_InitMemoryFail; } } assert((uint64_t)rxBuffer + buffCfg->rxBuffSizeAlign - 1U <= UINT32_MAX); #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (buffCfg->rxMaintainEnable) { /* Invalidate rx buffers before DMA transfer data into them. */ DCACHE_InvalidateByRange(rxBuffer, (uint32_t)buffCfg->rxBuffSizeAlign); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET rxBuffer = MEMORY_ConvertMemoryMapAddress(rxBuffer, kMEMORY_Local2DMA); #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ /* Set data buffer and the length. */ curBuffDescrip->buffer = (uint32_t)rxBuffer; curBuffDescrip->length = 0; /* Initializes the buffer descriptors with empty bit. */ curBuffDescrip->control = ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; /* Sets the last buffer descriptor with the wrap flag. */ if (count == (buffCfg->rxBdNumber - 1U)) { curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE if (0U != (config->interrupt & mask)) { /* Enable receive interrupt. */ curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_RX_INTERRUPT_MASK; } else { curBuffDescrip->controlExtend1 = 0; } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Increase the index. */ curBuffDescrip++; } } buffCfg++; } return kStatus_Success; } /*! * brief Frees all Rx buffers in BDs. */ static void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle) { assert(handle->rxBuffFree != NULL); uint16_t index; enet_rx_bd_ring_t *rxBdRing; volatile enet_rx_bd_struct_t *curBuffDescrip; uintptr_t buffer; uint16_t ringId; for (ringId = 0; ringId < handle->ringNum; ringId++) { assert(handle->rxBdRing[ringId].rxBdBase != NULL); rxBdRing = &handle->rxBdRing[ringId]; curBuffDescrip = rxBdRing->rxBdBase; index = 0; /* Free memory for all buffers in buffer descriptor */ do { if (curBuffDescrip->buffer != 0U) { #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET buffer = MEMORY_ConvertMemoryMapAddress(curBuffDescrip->buffer, kMEMORY_DMA2Local); #else buffer = curBuffDescrip->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ handle->rxBuffFree(base, (void *)(uint8_t *)buffer, handle->userData, ringId); curBuffDescrip->buffer = 0; /* Clears status. */ curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; } /* Increase the buffer descriptor, if it's the last one, increase to first one of the ring. */ index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + index; } while (index != 0U); } } /*! * brief Activates frame reception for specified ring. * * This function is to active the enet read process for specified ring. * note This must be called after the MAC configuration and * state are ready. It must be called after the ENET_Init() and * ENET_Ptp1588Configure(). This should be called when the ENET receive required. * * param base ENET peripheral base address. * param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1). */ static inline void ENET_ActiveReadRing(ENET_Type *base, uint8_t ringId) { assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); /* Ensure previous data update is completed with Data Synchronization Barrier before activing Rx BD. */ __DSB(); /* Actives the receive buffer descriptor. */ switch (ringId) { case kENET_Ring0: base->RDAR = ENET_RDAR_RDAR_MASK; break; #if FSL_FEATURE_ENET_QUEUE > 1 case kENET_Ring1: base->RDAR1 = ENET_RDAR1_RDAR_MASK; break; case kENET_Ring2: base->RDAR2 = ENET_RDAR2_RDAR_MASK; break; #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ default: assert(false); break; } } /*! * brief Activates frame sending for specified ring. * note This must be called after the MAC configuration and * state are ready. It must be called after the ENET_Init() and * this should be called when the ENET receive required. * * param base ENET peripheral base address. * param ringId The descriptor ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1). * */ static void ENET_ActiveSendRing(ENET_Type *base, uint8_t ringId) { assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); volatile uint32_t *txDesActive = NULL; /* Ensure previous data update is completed with Data Synchronization Barrier before activing Tx BD. */ __DSB(); switch (ringId) { case kENET_Ring0: txDesActive = &(base->TDAR); break; #if FSL_FEATURE_ENET_QUEUE > 1 case kENET_Ring1: txDesActive = &(base->TDAR1); break; case kENET_Ring2: txDesActive = &(base->TDAR2); break; #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ default: txDesActive = &(base->TDAR); break; } #if defined(FSL_FEATURE_ENET_HAS_ERRATA_007885) && FSL_FEATURE_ENET_HAS_ERRATA_007885 /* There is a TDAR race condition for mutliQ when the software sets TDAR * and the UDMA clears TDAR simultaneously or in a small window (2-4 cycles). * This will cause the udma_tx and udma_tx_arbiter state machines to hang. * Software workaround: introduces a delay by reading the relevant ENET_TDARn_TDAR 4 times */ for (uint8_t i = 0; i < 4U; i++) { if (*txDesActive == 0U) { break; } } #endif /* Write to active tx descriptor */ *txDesActive = 0; } /*! * brief Sets the ENET MII speed and duplex. * * This API is provided to dynamically change the speed and dulpex for MAC. * * param base ENET peripheral base address. * param speed The speed of the RMII mode. * param duplex The duplex of the RMII mode. */ void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex) { uint32_t rcr = base->RCR; uint32_t tcr = base->TCR; #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1) { uint32_t ecr = base->ECR; if (kENET_MiiSpeed1000M == speed) { assert(duplex == kENET_MiiFullDuplex); ecr |= ENET_ECR_SPEED_MASK; } else { ecr &= ~ENET_ECR_SPEED_MASK; } base->ECR = ecr; } #endif /* FSL_FEATURE_ENET_HAS_AVB */ /* Sets speed mode. */ if (kENET_MiiSpeed10M == speed) { rcr |= ENET_RCR_RMII_10T_MASK; } else { rcr &= ~ENET_RCR_RMII_10T_MASK; } /* Set duplex mode. */ if (duplex == kENET_MiiHalfDuplex) { rcr |= ENET_RCR_DRT_MASK; tcr &= ~ENET_TCR_FDEN_MASK; } else { rcr &= ~ENET_RCR_DRT_MASK; tcr |= ENET_TCR_FDEN_MASK; } base->RCR = rcr; base->TCR = tcr; } /*! * brief Sets the ENET module Mac address. * * param base ENET peripheral base address. * param macAddr The six-byte Mac address pointer. * The pointer is allocated by application and input into the API. */ void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr) { uint32_t address; /* Set physical address lower register. */ address = (uint32_t)(((uint32_t)macAddr[0] << 24U) | ((uint32_t)macAddr[1] << 16U) | ((uint32_t)macAddr[2] << 8U) | (uint32_t)macAddr[3]); base->PALR = address; /* Set physical address high register. */ address = (uint32_t)(((uint32_t)macAddr[4] << 8U) | ((uint32_t)macAddr[5])); base->PAUR = address << ENET_PAUR_PADDR2_SHIFT; } /*! * brief Gets the ENET module Mac address. * * param base ENET peripheral base address. * param macAddr The six-byte Mac address pointer. * The pointer is allocated by application and input into the API. */ void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr) { assert(macAddr != NULL); uint32_t address; /* Get from physical address lower register. */ address = base->PALR; macAddr[0] = 0xFFU & (uint8_t)(address >> 24U); macAddr[1] = 0xFFU & (uint8_t)(address >> 16U); macAddr[2] = 0xFFU & (uint8_t)(address >> 8U); macAddr[3] = 0xFFU & (uint8_t)address; /* Get from physical address high register. */ address = (base->PAUR & ENET_PAUR_PADDR2_MASK) >> ENET_PAUR_PADDR2_SHIFT; macAddr[4] = 0xFFU & (uint8_t)(address >> 8U); macAddr[5] = 0xFFU & (uint8_t)address; } /*! * brief Sets the ENET SMI(serial management interface)- MII management interface. * * param base ENET peripheral base address. * param srcClock_Hz This is the ENET module clock frequency. See clock distribution. * param isPreambleDisabled The preamble disable flag. * - true Enables the preamble. * - false Disables the preamble. */ void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled) { /* Due to bits limitation of SPEED and HOLDTIME, srcClock_Hz must ensure MDC <= 2.5M and holdtime >= 10ns. */ assert((srcClock_Hz != 0U) && (srcClock_Hz <= 320000000U)); uint32_t clkCycle = 0; uint32_t speed = 0; uint32_t mscr = 0; /* Use (param + N - 1) / N to increase accuracy with rounding. */ /* Calculate the MII speed which controls the frequency of the MDC. */ speed = (srcClock_Hz + 2U * ENET_MDC_FREQUENCY - 1U) / (2U * ENET_MDC_FREQUENCY) - 1U; /* Calculate the hold time on the MDIO output. */ clkCycle = (10U + ENET_NANOSECOND_ONE_SECOND / srcClock_Hz - 1U) / (ENET_NANOSECOND_ONE_SECOND / srcClock_Hz) - 1U; /* Build the configuration for MDC/MDIO control. */ mscr = ENET_MSCR_MII_SPEED(speed) | ENET_MSCR_HOLDTIME(clkCycle) | (isPreambleDisabled ? ENET_MSCR_DIS_PRE_MASK : 0U); base->MSCR = mscr; } static status_t ENET_MDIOWaitTransferOver(ENET_Type *base) { status_t result = kStatus_Success; #ifdef ENET_MDIO_TIMEOUT_COUNT uint32_t counter; #endif /* Wait for MDIO access to complete. */ #ifdef ENET_MDIO_TIMEOUT_COUNT for (counter = ENET_MDIO_TIMEOUT_COUNT; counter > 0U; counter--) { if (ENET_EIR_MII_MASK == (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)) { break; } } /* Check for timeout. */ if (0U == counter) { result = kStatus_Timeout; } #else while (ENET_EIR_MII_MASK != (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)) { } #endif return result; } /*! * @brief MDIO write with IEEE802.3 Clause 22 format. * * @param base ENET peripheral base address. * @param phyAddr The PHY address. * @param regAddr The PHY register. Range from 0 ~ 31. * @param data The data written to PHY. * @return kStatus_Success MDIO access succeeds. * @return kStatus_Timeout MDIO access timeout. */ status_t ENET_MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data) { status_t result = kStatus_Success; /* Clear the MDIO access complete event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts MDIO write command. */ ENET_StartSMIWrite(base, phyAddr, regAddr, kENET_MiiWriteValidFrame, data); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } /* Clear the MDIO access complete event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); return result; } /*! * @brief MDIO read with IEEE802.3 Clause 22 format. * * @param base ENET peripheral base address. * @param phyAddr The PHY address. * @param regAddr The PHY register. Range from 0 ~ 31. * @param pData The data read from PHY. * @return kStatus_Success MDIO access succeeds. * @return kStatus_Timeout MDIO access timeout. */ status_t ENET_MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t *pData) { assert(pData != NULL); status_t result = kStatus_Success; /* Clear the MDIO access complete event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts a MDIO read command operation. */ ENET_StartSMIRead(base, phyAddr, regAddr, kENET_MiiReadValidFrame); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } /* Get received data. */ *pData = (uint16_t)ENET_ReadSMIData(base); /* Clear the MDIO access complete event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); return result; } #if defined(FSL_FEATURE_ENET_HAS_EXTEND_MDIO) && FSL_FEATURE_ENET_HAS_EXTEND_MDIO /*! * @brief MDIO write with IEEE802.3 Clause 45 format. * * @param base ENET peripheral base address. * @param portAddr The MDIO port address(PHY address). * @param devAddr The device address. * @param regAddr The PHY register address. * @param data The data written to PHY. * @return kStatus_Success MDIO access succeeds. * @return kStatus_Timeout MDIO access timeout. */ status_t ENET_MDIOC45Write(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t data) { status_t result = kStatus_Success; /* Write the register address */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); ENET_StartExtC45SMIWriteReg(base, portAddr, devAddr, regAddr); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Write data to the specified register address */ ENET_StartExtC45SMIWriteData(base, portAddr, devAddr, data); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); return result; } /*! * @brief MDIO read with IEEE802.3 Clause 45 format. * * @param base ENET peripheral base address. * @param portAddr The MDIO port address(PHY address). * @param devAddr The device address. * @param regAddr The PHY register address. * @param pData The data read from PHY. * @return kStatus_Success MDIO access succeeds. * @return kStatus_Timeout MDIO access timeout. */ status_t ENET_MDIOC45Read(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t regAddr, uint16_t *pData) { assert(pData != NULL); status_t result = kStatus_Success; /* Write the register address */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); ENET_StartExtC45SMIWriteReg(base, portAddr, devAddr, regAddr); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } /* Read data from the specified register address */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); ENET_StartExtC45SMIReadData(base, portAddr, devAddr); result = ENET_MDIOWaitTransferOver(base); if (result != kStatus_Success) { return result; } ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); *pData = (uint16_t)ENET_ReadSMIData(base); return result; } #endif /* FSL_FEATURE_ENET_HAS_EXTEND_MDIO */ static uint16_t ENET_IncreaseIndex(uint16_t index, uint16_t max) { assert(index < max); /* Increase the index. */ index++; if (index >= max) { index = 0; } return index; } static inline bool ENET_TxDirtyRingAvailable(enet_tx_dirty_ring_t *txDirtyRing) { return !txDirtyRing->isFull; } /*! * brief Gets the error statistics of a received frame for ENET specified ring. * * This API must be called after the ENET_GetRxFrameSize and before the ENET_ReadFrame(). * If the ENET_GetRxFrameSize returns kStatus_ENET_RxFrameError, * the ENET_GetRxErrBeforeReadFrame can be used to get the exact error statistics. * This is an example. * code * status = ENET_GetRxFrameSize(&g_handle, &length, 0); * if (status == kStatus_ENET_RxFrameError) * { * ENET_GetRxErrBeforeReadFrame(&g_handle, &eErrStatic, 0); * ENET_ReadFrame(EXAMPLE_ENET, &g_handle, NULL, 0); * } * endcode * param handle The ENET handler structure pointer. This is the same handler pointer used in the ENET_Init. * param eErrorStatic The error statistics structure pointer. * param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1). */ void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic, uint8_t ringId) { assert(handle != NULL); assert(eErrorStatic != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); uint16_t control = 0; enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId]; volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; volatile enet_rx_bd_struct_t *cmpBuffDescrip = curBuffDescrip; do { /* The last buffer descriptor of a frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { control = curBuffDescrip->control; if (0U != (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK)) { /* The receive truncate error. */ eErrorStatic->statsRxTruncateErr++; } if (0U != (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK)) { /* The receive over run error. */ eErrorStatic->statsRxOverRunErr++; } if (0U != (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK)) { /* The receive length violation error. */ eErrorStatic->statsRxLenGreaterErr++; } if (0U != (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK)) { /* The receive alignment error. */ eErrorStatic->statsRxAlignErr++; } if (0U != (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK)) { /* The receive CRC error. */ eErrorStatic->statsRxFcsErr++; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE uint16_t controlExt = curBuffDescrip->controlExtend1; if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK)) { /* The MAC error. */ eErrorStatic->statsRxMacErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK)) { /* The PHY error. */ eErrorStatic->statsRxPhyErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK)) { /* The receive collision error. */ eErrorStatic->statsRxCollisionErr++; } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ break; } /* Increase the buffer descriptor, if it's the last one, increase to first one of the ring buffer. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)) { curBuffDescrip = rxBdRing->rxBdBase; } else { curBuffDescrip++; } } while (curBuffDescrip != cmpBuffDescrip); } /*! * brief Gets statistical data in transfer. * * param base ENET peripheral base address. * param statistics The statistics structure pointer. */ void ENET_GetStatistics(ENET_Type *base, enet_transfer_stats_t *statistics) { /* Rx statistics */ statistics->statsRxFrameCount = base->RMON_R_PACKETS; statistics->statsRxFrameOk = base->IEEE_R_FRAME_OK; statistics->statsRxCrcErr = base->IEEE_R_CRC; statistics->statsRxAlignErr = base->IEEE_R_ALIGN; statistics->statsRxDropInvalidSFD = base->IEEE_R_DROP; statistics->statsRxFifoOverflowErr = base->IEEE_R_MACERR; /* Tx statistics */ statistics->statsTxFrameCount = base->RMON_T_PACKETS; statistics->statsTxFrameOk = base->IEEE_T_FRAME_OK; statistics->statsTxCrcAlignErr = base->RMON_T_CRC_ALIGN; statistics->statsTxFifoUnderRunErr = base->IEEE_T_MACERR; } /*! * brief Gets the size of the read frame for specified ring. * * This function gets a received frame size from the ENET buffer descriptors. * note The FCS of the frame is automatically removed by MAC and the size is the length without the FCS. * After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called to receive frame and update the BD * if the result is not "kStatus_ENET_RxFrameEmpty". * * param handle The ENET handler structure. This is the same handler pointer used in the ENET_Init. * param length The length of the valid frame received. * param ringId The ring index or ring number. * retval kStatus_ENET_RxFrameEmpty No frame received. Should not call ENET_ReadFrame to read frame. * retval kStatus_ENET_RxFrameError Data error happens. ENET_ReadFrame should be called with NULL data * and NULL length to update the receive buffers. * retval kStatus_Success Receive a frame Successfully then the ENET_ReadFrame * should be called with the right data buffer and the captured data length input. */ status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length, uint8_t ringId) { assert(handle != NULL); assert(length != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); /* Reset the length to zero. */ *length = 0; uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId]; volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; uint16_t index = rxBdRing->rxGenIdx; bool isReturn = false; status_t result = kStatus_Success; /* Check the current buffer descriptor's empty flag. If empty means there is no frame received. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) { isReturn = true; result = kStatus_ENET_RxFrameEmpty; } else { do { /* Add check for abnormal case. */ if (curBuffDescrip->length == 0U) { isReturn = true; result = kStatus_ENET_RxFrameError; break; } /* Find the last buffer descriptor. */ if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK) { isReturn = true; /* The last buffer descriptor in the frame check the status of the received frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)) { result = kStatus_ENET_RxFrameError; break; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE if (0U != (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)) { result = kStatus_ENET_RxFrameError; break; } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* FCS is removed by MAC. */ *length = curBuffDescrip->length; break; } /* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */ index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + index; } while (index != rxBdRing->rxGenIdx); } if (isReturn == false) { /* The frame is on processing - set to empty status to make application to receive it next time. */ result = kStatus_ENET_RxFrameEmpty; } return result; } /*! * brief Reads a frame from the ENET device. * This function reads a frame (both the data and the length) from the ENET buffer descriptors. * User can get timestamp through ts pointer if the ts is not NULL. * note It doesn't store the timestamp in the receive timestamp queue. * The ENET_GetRxFrameSize should be used to get the size of the prepared data buffer. * This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer * in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time * consumption. * This is an example: * code * uint32_t length; * enet_handle_t g_handle; * Comments: Get the received frame size firstly. * status = ENET_GetRxFrameSize(&g_handle, &length, 0); * if (length != 0) * { * Comments: Allocate memory here with the size of "length" * uint8_t *data = memory allocate interface; * if (!data) * { * ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL); * Comments: Add the console warning log. * } * else * { * status = ENET_ReadFrame(ENET, &g_handle, data, length, 0, NULL); * Comments: Call stack input API to deliver the data to stack * } * } * else if (status == kStatus_ENET_RxFrameError) * { * Comments: Update the received buffer when a error frame is received. * ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL); * } * endcode * param base ENET peripheral base address. * param handle The ENET handler structure. This is the same handler pointer used in the ENET_Init. * param data The data buffer provided by user to store the frame which memory size should be at least "length". * param length The size of the data buffer which is still the length of the received frame. * param ringId The ring index or ring number. * param ts The timestamp address to store received timestamp. * return The execute status, successful or failure. */ status_t ENET_ReadFrame( ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint8_t ringId, uint32_t *ts) { assert(handle != NULL); assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); uint32_t len = 0; uint32_t offset = 0; uint16_t control; bool isLastBuff = false; enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId]; volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; uint16_t index = rxBdRing->rxGenIdx; status_t result = kStatus_Success; uintptr_t address; uintptr_t dest; /* For data-NULL input, only update the buffer descriptor. */ if (data == NULL) { do { /* Update the control flag. */ control = curBuffDescrip->control; /* Updates the receive buffer descriptors. */ ENET_UpdateReadBuffers(base, handle, ringId); /* Find the last buffer descriptor for the frame. */ if (0U != (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { break; } curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; } while (index != rxBdRing->rxGenIdx); } else { while (!isLastBuff) { /* A frame on one buffer or several receive buffers are both considered. */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET address = MEMORY_ConvertMemoryMapAddress(curBuffDescrip->buffer, kMEMORY_DMA2Local); #else address = curBuffDescrip->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->rxMaintainEnable[ringId]) { /* Add the cache invalidate maintain. */ DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ dest = (uintptr_t)data + offset; /* The last buffer descriptor of a frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { /* This is a valid frame. */ isLastBuff = true; if (length == curBuffDescrip->length) { /* Copy the frame to user's buffer without FCS. */ len = curBuffDescrip->length - offset; (void)memcpy((void *)(uint8_t *)dest, (void *)(uint8_t *)address, len); #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* Get the timestamp if the ts isn't NULL. */ if (ts != NULL) { *ts = curBuffDescrip->timestamp; } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Updates the receive buffer descriptors. */ ENET_UpdateReadBuffers(base, handle, ringId); break; } else { /* Updates the receive buffer descriptors. */ ENET_UpdateReadBuffers(base, handle, ringId); } } else { /* Store a frame on several buffer descriptors. */ isLastBuff = false; /* Length check. */ if (offset >= length) { result = kStatus_ENET_RxFrameFail; break; } (void)memcpy((void *)(uint8_t *)dest, (void *)(uint8_t *)address, handle->rxBuffSizeAlign[ringId]); offset += handle->rxBuffSizeAlign[ringId]; /* Updates the receive buffer descriptors. */ ENET_UpdateReadBuffers(base, handle, ringId); } /* Get the current buffer descriptor. */ curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; } } return result; } static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint8_t ringId) { assert(handle != NULL); assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId]; volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; /* Clears status. */ curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; /* Sets the receive buffer descriptor with the empty flag. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; /* Increase current buffer descriptor to the next one. */ rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen); ENET_ActiveReadRing(base, ringId); } /*! * brief Transmits an ENET frame for specified ring. * note The CRC is automatically appended to the data. Input the data to send without the CRC. * This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer * in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time * consumption. * * * param base ENET peripheral base address. * param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init. * param data The data buffer provided by user to send. * param length The length of the data to send. * param ringId The ring index or ring number. * param tsFlag Timestamp enable flag. * param context Used by user to handle some events after transmit over. * retval kStatus_Success Send frame succeed. * retval kStatus_ENET_TxFrameBusy Transmit buffer descriptor is busy under transmission. * The transmit busy happens when the data send rate is over the MAC capacity. * The waiting mechanism is recommended to be added after each call return with * kStatus_ENET_TxFrameBusy. */ status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data, uint32_t length, uint8_t ringId, bool tsFlag, void *context) { assert(handle != NULL); assert(data != NULL); assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); volatile enet_tx_bd_struct_t *curBuffDescrip; enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId]; enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId]; enet_frame_info_t *txDirty = NULL; uint32_t len = 0; uint32_t sizeleft = 0; uintptr_t address; status_t result = kStatus_Success; uintptr_t src; uint32_t configVal; bool isReturn = false; uint32_t primask; /* Check the frame length. */ if (length > ENET_FRAME_TX_LEN_LIMITATION(base)) { result = kStatus_ENET_TxFrameOverLen; } else { /* Check if the transmit buffer is ready. */ curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx; if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)) { result = kStatus_ENET_TxFrameBusy; } /* Check txDirtyRing if need frameinfo in tx interrupt callback. */ else if ((handle->txReclaimEnable[ringId]) && !ENET_TxDirtyRingAvailable(txDirtyRing)) { result = kStatus_ENET_TxFrameBusy; } else { /* One transmit buffer is enough for one frame. */ if (handle->txBuffSizeAlign[ringId] >= length) { /* Copy data to the buffer for uDMA transfer. */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET address = MEMORY_ConvertMemoryMapAddress(curBuffDescrip->buffer, kMEMORY_DMA2Local); #else address = curBuffDescrip->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ (void)memcpy((void *)(uint8_t *)address, (const void *)data, length); #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->txMaintainEnable[ringId]) { DCACHE_CleanByRange(address, length); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ /* Set data length. */ curBuffDescrip->length = (uint16_t)length; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* For enable the timestamp. */ if (tsFlag) { curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK; } else { curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK); } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK); /* Increase the buffer descriptor address. */ txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen); /* Add context to frame info ring */ if (handle->txReclaimEnable[ringId]) { txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx; txDirty->context = context; txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen); if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx) { txDirtyRing->isFull = true; } primask = DisableGlobalIRQ(); txBdRing->txDescUsed++; EnableGlobalIRQ(primask); } /* Active the transmit buffer descriptor. */ ENET_ActiveSendRing(base, ringId); } else { /* One frame requires more than one transmit buffers. */ do { #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* For enable the timestamp. */ if (tsFlag) { curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK; } else { curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK); } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Update the size left to be transmit. */ sizeleft = length - len; #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET address = MEMORY_ConvertMemoryMapAddress(curBuffDescrip->buffer, kMEMORY_DMA2Local); #else address = curBuffDescrip->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ src = (uintptr_t)data + len; /* Increase the current software index of BD */ txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen); if (sizeleft > handle->txBuffSizeAlign[ringId]) { /* Data copy. */ (void)memcpy((void *)(uint8_t *)address, (void *)(uint8_t *)src, handle->txBuffSizeAlign[ringId]); #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->txMaintainEnable[ringId]) { /* Add the cache clean maintain. */ DCACHE_CleanByRange(address, handle->txBuffSizeAlign[ringId]); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ /* Data length update. */ curBuffDescrip->length = handle->txBuffSizeAlign[ringId]; len += handle->txBuffSizeAlign[ringId]; /* Sets the control flag. */ configVal = (uint32_t)curBuffDescrip->control; configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK; configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK; curBuffDescrip->control = (uint16_t)configVal; if (handle->txReclaimEnable[ringId]) { primask = DisableGlobalIRQ(); txBdRing->txDescUsed++; EnableGlobalIRQ(primask); } /* Active the transmit buffer descriptor*/ ENET_ActiveSendRing(base, ringId); } else { (void)memcpy((void *)(uint8_t *)address, (void *)(uint8_t *)src, sizeleft); #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->txMaintainEnable[ringId]) { /* Add the cache clean maintain. */ DCACHE_CleanByRange(address, sizeleft); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ curBuffDescrip->length = (uint16_t)sizeleft; /* Set Last buffer wrap flag. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK; if (handle->txReclaimEnable[ringId]) { /* Add context to frame info ring */ txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx; txDirty->context = context; txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen); if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx) { txDirtyRing->isFull = true; } primask = DisableGlobalIRQ(); txBdRing->txDescUsed++; EnableGlobalIRQ(primask); } /* Active the transmit buffer descriptor. */ ENET_ActiveSendRing(base, ringId); isReturn = true; break; } /* Update the buffer descriptor address. */ curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx; } while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)); if (isReturn == false) { result = kStatus_ENET_TxFrameBusy; } } } } return result; } /*! * brief Enable or disable tx descriptors reclaim mechanism. * note This function must be called when no pending send frame action. * Set enable if you want to reclaim context or timestamp in interrupt. * * param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init. * param isEnable Enable or disable flag. * param ringId The ring index or ring number. * retval kStatus_Success Succeed to enable/disable Tx reclaim. * retval kStatus_Fail Fail to enable/disable Tx reclaim. */ status_t ENET_SetTxReclaim(enet_handle_t *handle, bool isEnable, uint8_t ringId) { assert(handle != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId]; enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId]; status_t result = kStatus_Success; /* If tx dirty ring is empty, can set this flag and reset txConsumIdx */ if ((txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx) && ENET_TxDirtyRingAvailable(txDirtyRing)) { if (isEnable) { handle->txReclaimEnable[ringId] = true; txBdRing->txConsumIdx = txBdRing->txGenIdx; } else { handle->txReclaimEnable[ringId] = false; } } else { result = kStatus_Fail; } return result; } /*! * brief Reclaim tx descriptors. * This function is used to update the tx descriptor status and * store the tx timestamp when the 1588 feature is enabled. * This is called by the transmit interupt IRQ handler after the * complete of a frame transmission. * * param base ENET peripheral base address. * param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init. * param ringId The ring index or ring number. */ void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t ringId) { assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base)); enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId]; volatile enet_tx_bd_struct_t *curBuffDescrip = txBdRing->txBdBase + txBdRing->txConsumIdx; enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId]; enet_frame_info_t *txDirty = NULL; uint32_t primask; /* Need to update the first index for transmit buffer free. */ while ((0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)) && (txBdRing->txDescUsed > 0U)) { if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK) != 0U) { txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txConsumIdx; txDirtyRing->txConsumIdx = ENET_IncreaseIndex(txDirtyRing->txConsumIdx, txDirtyRing->txRingLen); txDirtyRing->isFull = false; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE txDirty->isTsAvail = false; if ((curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK) != 0U) { enet_ptp_time_t *ts = &txDirty->timeStamp; /* Get transmit time stamp second. */ txDirty->isTsAvail = true; ts->second = handle->msTimerSecond; ts->nanosecond = curBuffDescrip->timestamp; } #endif /* For tx buffer free or requeue for last descriptor. * The tx interrupt callback should free/requeue the tx buffer. */ if (handle->callback != NULL) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, ringId, kENET_TxEvent, txDirty, handle->userData); #else handle->callback(base, handle, kENET_TxEvent, txDirty, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } primask = DisableGlobalIRQ(); txBdRing->txDescUsed--; EnableGlobalIRQ(primask); /* Update the index. */ txBdRing->txConsumIdx = ENET_IncreaseIndex(txBdRing->txConsumIdx, txBdRing->txRingLen); curBuffDescrip = txBdRing->txBdBase + txBdRing->txConsumIdx; } } static inline status_t ENET_GetRxFrameErr(enet_rx_bd_struct_t *rxDesc, enet_rx_frame_error_t *rxFrameError) { assert(rxDesc != NULL); assert(rxFrameError != NULL); status_t result = kStatus_Success; uint16_t control = rxDesc->control; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE uint16_t controlExtend1 = rxDesc->controlExtend1; #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ union _frame_error { uint32_t data; enet_rx_frame_error_t frameError; }; union _frame_error error; /* The last buffer descriptor in the frame check the status of the received frame. */ if (0U != (control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)) { result = kStatus_ENET_RxFrameError; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE else if (0U != (controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)) { result = kStatus_ENET_RxFrameError; } else { /* Intentional empty */ } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ if (result != kStatus_Success) { error.data = control; #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE error.data |= ((uint32_t)controlExtend1 << 16U); #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ *rxFrameError = error.frameError; } else { (void)memset((void *)rxFrameError, 0, sizeof(enet_rx_frame_error_t)); } return result; } /*! * brief Receives one frame in specified BD ring with zero copy. * * This function uses the user-defined allocation and free callbacks. Every time application gets one frame through * this function, driver stores the buffer address(es) in enet_buffer_struct_t and allocate new buffer(s) for the BD(s). * If there's no memory buffer in the pool, this function drops current one frame to keep the Rx frame in BD ring is as * fresh as possible. * note Application must provide a memory pool including at least BD number + n buffers in order for this function to work * properly, because each BD must always take one buffer while driver is running, then other extra n buffer(s) can be taken * by application. Here n is the ceil(max_frame_length(set by RCR) / bd_rx_size(set by MRBR)). Application must also provide * an array structure in rxFrame->rxBuffArray with n index to receive one complete frame in any case. * * param base ENET peripheral base address. * param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init. * param rxFrame The received frame information structure provided by user. * param ringId The ring index or ring number. * retval kStatus_Success Succeed to get one frame and allocate new memory for Rx buffer. * retval kStatus_ENET_RxFrameEmpty There's no Rx frame in the BD. * retval kStatus_ENET_RxFrameError There's issue in this receiving. * retval kStatus_ENET_RxFrameDrop There's no new buffer memory for BD, drop this frame. */ status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t *rxFrame, uint8_t ringId) { assert(handle != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); assert(handle->rxBdRing[ringId].rxBdBase != NULL); assert(rxFrame != NULL); assert(rxFrame->rxBuffArray != NULL); status_t result = kStatus_ENET_RxFrameEmpty; enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId]; volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; bool isLastBuff = false; uintptr_t newBuff = 0; uint16_t buffLen = 0; enet_buffer_struct_t *rxBuffer; uintptr_t address; uintptr_t buffer; uint16_t index; /* Check the current buffer descriptor's empty flag. If empty means there is no frame received. */ index = rxBdRing->rxGenIdx; while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) { /* Find the last buffer descriptor. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { /* The last buffer descriptor stores the error status of this received frame. */ result = ENET_GetRxFrameErr((enet_rx_bd_struct_t *)(uintptr_t)curBuffDescrip, &rxFrame->rxFrameError); break; } /* Get feedback that no-empty BD takes frame length of 0. Probably an IP issue and drop this BD. */ if (curBuffDescrip->length == 0U) { /* Set LAST bit manually to let following drop error frame operation drop this abnormal BD. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_LAST_MASK; result = kStatus_ENET_RxFrameError; break; } /* Can't find the last BD flag, no valid frame. */ index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + index; if (index == rxBdRing->rxGenIdx) { /* kStatus_ENET_RxFrameEmpty. */ break; } } /* Drop the error frame. */ if (result == kStatus_ENET_RxFrameError) { curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; do { /* The last buffer descriptor of a frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { isLastBuff = true; } /* Clears status including the owner flag. */ curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; /* Sets the receive buffer descriptor with the empty flag. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; /* Increase current buffer descriptor to the next one. */ rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; } while (!isLastBuff); ENET_ActiveReadRing(base, ringId); return result; } else if (result != kStatus_Success) { return result; } else { /* Intentional empty */ } /* Get the valid frame */ curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; index = 0; do { newBuff = (uintptr_t)(uint8_t *)handle->rxBuffAlloc(base, handle->userData, ringId); if (newBuff != 0U) { assert((uint64_t)newBuff + handle->rxBuffSizeAlign[ringId] - 1U <= UINT32_MAX); rxBuffer = &rxFrame->rxBuffArray[index]; #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET address = MEMORY_ConvertMemoryMapAddress(curBuffDescrip->buffer, kMEMORY_DMA2Local); #else address = curBuffDescrip->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->rxMaintainEnable[ringId]) { DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ rxBuffer->buffer = (void *)(uint8_t *)address; /* The last buffer descriptor of a frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { /* This is a valid frame. */ isLastBuff = true; rxFrame->totLen = curBuffDescrip->length; rxBuffer->length = curBuffDescrip->length - buffLen; rxFrame->rxAttribute.promiscuous = false; if (0U != (base->RCR & ENET_RCR_PROM_MASK)) { if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_MISS_MASK)) { rxFrame->rxAttribute.promiscuous = true; } } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE rxFrame->rxAttribute.timestamp = curBuffDescrip->timestamp; #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ } else { rxBuffer->length = curBuffDescrip->length; buffLen += rxBuffer->length; } /* Give new buffer from application to BD */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET buffer = MEMORY_ConvertMemoryMapAddress(newBuff, kMEMORY_Local2DMA); #else buffer = newBuff; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->rxMaintainEnable[ringId]) { DCACHE_InvalidateByRange(buffer, handle->rxBuffSizeAlign[ringId]); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ curBuffDescrip->buffer = (uint32_t)buffer; /* Clears status including the owner flag. */ curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; /* Sets the receive buffer descriptor with the empty flag. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; /* Increase Rx array index and the buffer descriptor address. */ index++; rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; } else { /* Drop frame if there's no new buffer memory */ /* Free the incomplete frame buffers. */ while (index-- != 0U) { handle->rxBuffFree(base, &rxFrame->rxBuffArray[index].buffer, handle->userData, ringId); } /* Update left buffers as ready for next coming frame */ do { /* The last buffer descriptor of a frame. */ if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)) { isLastBuff = true; } /* Clears status including the owner flag. */ curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK; /* Sets the receive buffer descriptor with the empty flag. */ curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK; /* Increase current buffer descriptor to the next one. */ rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen); curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx; } while (!isLastBuff); result = kStatus_ENET_RxFrameDrop; break; } } while (!isLastBuff); ENET_ActiveReadRing(base, ringId); return result; } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE static inline void ENET_PrepareTxDesc(volatile enet_tx_bd_struct_t *txDesc, enet_tx_config_struct_t *txConfig) { uint16_t controlExtend1 = 0U; /* For enable the timestamp. */ if (txConfig->intEnable) { controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK; } if (txConfig->tsEnable) { controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK; } if (txConfig->autoProtocolChecksum) { controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_PROTOCHECKSUM_MASK; } if (txConfig->autoIPChecksum) { controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_IPCHECKSUM_MASK; } #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB if (txConfig->tltEnable) { controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_USETXLAUNCHTIME_MASK; txDesc->txLaunchTimeLow |= txConfig->tltLow; txDesc->txLaunchTimeHigh |= txConfig->tltHigh; } controlExtend1 |= (uint16_t)ENET_BD_FTYPE(txConfig->AVBFrameType); #endif /* FSL_FEATURE_ENET_HAS_AVB */ txDesc->controlExtend1 = controlExtend1; } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /*! * brief Sends one frame in specified BD ring with zero copy. * * This function supports scattered buffer transmit, user needs to provide the buffer array. * note Tx reclaim should be enabled to ensure the Tx buffer ownership can be given back to * application after Tx is over. * * param base ENET peripheral base address. * param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init. * param txFrame The Tx frame structure. * param ringId The ring index or ring number. * retval kStatus_Success Succeed to send one frame. * retval kStatus_ENET_TxFrameBusy The BD is not ready for Tx or the reclaim operation still not finishs. * retval kStatus_ENET_TxFrameOverLen The Tx frame length is over max ethernet frame length. */ status_t ENET_StartTxFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t *txFrame, uint8_t ringId) { assert(handle != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); assert(txFrame->txBuffArray != NULL); assert(txFrame->txBuffNum != 0U); assert(handle->txReclaimEnable[ringId]); volatile enet_tx_bd_struct_t *curBuffDescrip; enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId]; enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId]; status_t result = kStatus_Success; enet_buffer_struct_t *txBuff = txFrame->txBuffArray; uint32_t txBuffNum = txFrame->txBuffNum; enet_frame_info_t *txDirty = NULL; uint32_t frameLen = 0; uint32_t idleDescNum = 0; uint16_t index = 0; uint32_t configVal; uint32_t primask; uintptr_t buffer; /* Calculate frame length and Tx data buffer number. */ do { frameLen += txBuff->length; txBuff++; } while (--txBuffNum != 0U); txBuffNum = txFrame->txBuffNum; /* Check whether the available BD number is enough for Tx data buffer. */ curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx; index = txBdRing->txGenIdx; do { if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)) { break; } /* Idle BD number is enough */ if (++idleDescNum >= txBuffNum) { break; } index = ENET_IncreaseIndex(index, txBdRing->txRingLen); curBuffDescrip = txBdRing->txBdBase + index; } while (index != txBdRing->txGenIdx); /* Check the frame length. */ if (frameLen > ENET_FRAME_TX_LEN_LIMITATION(base)) { result = kStatus_ENET_TxFrameOverLen; } /* Return busy if idle BD is not enough. */ else if (txBuffNum > idleDescNum) { result = kStatus_ENET_TxFrameBusy; } /* Check txDirtyRing if need frameinfo in tx interrupt callback. */ else if (!ENET_TxDirtyRingAvailable(txDirtyRing)) { result = kStatus_ENET_TxFrameBusy; } else { txBuff = txFrame->txBuffArray; do { assert(txBuff->buffer != NULL); assert((uint64_t)(uintptr_t)(uint8_t *)txBuff->buffer + txBuff->length - 1U <= UINT32_MAX); #if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL if (handle->txMaintainEnable[ringId]) { DCACHE_CleanByRange((uintptr_t)(uint8_t *)txBuff->buffer, txBuff->length); } #endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ #if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET /* Map loacl memory address to DMA for special platform. */ buffer = MEMORY_ConvertMemoryMapAddress((uintptr_t)(uint8_t *)txBuff->buffer, kMEMORY_Local2DMA); #else buffer = (uintptr_t)(uint8_t *)txBuff->buffer; #endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */ /* Set data buffer and length. */ curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx; curBuffDescrip->buffer = (uint32_t)buffer; curBuffDescrip->length = txBuff->length; /* Increase txBuffer array address and the buffer descriptor address. */ txBuff++; txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen); #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE ENET_PrepareTxDesc(curBuffDescrip, &txFrame->txConfig); #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /* Linked buffers */ if (--txBuffNum != 0U) { /* Set BD ready flag and clean last BD flag. */ configVal = (uint32_t)curBuffDescrip->control; configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK; configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK; curBuffDescrip->control = (uint16_t)configVal; primask = DisableGlobalIRQ(); txBdRing->txDescUsed++; EnableGlobalIRQ(primask); } else { curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK); /* Add context to frame info ring */ txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx; txDirty->context = txFrame->context; txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen); if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx) { txDirtyRing->isFull = true; } primask = DisableGlobalIRQ(); txBdRing->txDescUsed++; EnableGlobalIRQ(primask); } /* Active Tx BD everytime to speed up transfer */ ENET_ActiveSendRing(base, ringId); } while (txBuffNum != 0U); } return result; } /*! * brief Adds the ENET device to a multicast group. * * param base ENET peripheral base address. * param address The six-byte multicast group address which is provided by application. */ void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address) { assert(address != NULL); enet_handle_t *handle = s_ENETHandle[ENET_GetInstance(base)]; uint32_t crc = 0xFFFFFFFFU; uint32_t count1 = 0; uint32_t count2 = 0; uint32_t configVal = 0; /* Calculates the CRC-32 polynomial on the multicast group address. */ for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++) { uint8_t c = address[count1]; for (count2 = 0; count2 < 0x08U; count2++) { if (0U != ((c ^ crc) & 1U)) { crc >>= 1U; c >>= 1U; crc ^= 0xEDB88320U; } else { crc >>= 1U; c >>= 1U; } } } crc = crc >> 26U; handle->multicastCount[crc]++; /* Enable a multicast group address. */ configVal = ((uint32_t)1U << (crc & 0x1FU)); if (0U != (crc & 0x20U)) { base->GAUR |= configVal; } else { base->GALR |= configVal; } } /*! * brief Moves the ENET device from a multicast group. * * param base ENET peripheral base address. * param address The six-byte multicast group address which is provided by application. */ void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address) { assert(address != NULL); enet_handle_t *handle = s_ENETHandle[ENET_GetInstance(base)]; uint32_t crc = 0xFFFFFFFFU; uint32_t count1 = 0; uint32_t count2 = 0; uint32_t configVal = 0; /* Calculates the CRC-32 polynomial on the multicast group address. */ for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++) { uint8_t c = address[count1]; for (count2 = 0; count2 < 0x08U; count2++) { if (0U != ((c ^ crc) & 1U)) { crc >>= 1U; c >>= 1U; crc ^= 0xEDB88320U; } else { crc >>= 1U; c >>= 1U; } } } crc = crc >> 26U; handle->multicastCount[crc]--; /* Set the hash table if no collisions */ if (0U == handle->multicastCount[crc]) { configVal = ~((uint32_t)1U << (crc & 0x1FU)); if (0U != (crc & 0x20U)) { base->GAUR &= configVal; } else { base->GALR &= configVal; } } } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /*! * brief Gets the ENET transmit frame statistics after the data send for specified ring. * * This interface gets the error statistics of the transmit frame. * Because the error information is reported by the uDMA after the data delivery, this interface * should be called after the data transmit API. It is recommended to call this function on * transmit interrupt handler. After calling the ENET_SendFrame, the * transmit interrupt notifies the transmit completion. * * param handle The PTP handler pointer. This is the same handler pointer used in the ENET_Init. * param eErrorStatic The error statistics structure pointer. * param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1). * return The execute status. */ status_t ENET_GetTxErrAfterSendFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic, uint8_t ringId) { assert(handle != NULL); assert(eErrorStatic != NULL); assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE); uint16_t control = 0; uint16_t controlExt = 0; status_t result = kStatus_Success; bool isReturn = false; enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId]; volatile enet_tx_bd_struct_t *curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx; do { /* Get the current dirty transmit buffer descriptor. */ control = handle->txBdDirtyStatic[ringId]->control; controlExt = handle->txBdDirtyStatic[ringId]->controlExtend0; /* Get the control status data, If the buffer descriptor has not been processed break out. */ if (0U != (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)) { result = kStatus_ENET_TxFrameBusy; isReturn = true; break; } /* Increase the transmit dirty static pointer. */ if (0U != (handle->txBdDirtyStatic[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)) { handle->txBdDirtyStatic[ringId] = txBdRing->txBdBase; } else { handle->txBdDirtyStatic[ringId]++; } /* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */ if (0U != (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)) { if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK)) { /* Transmit error. */ eErrorStatic->statsTxErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK)) { /* Transmit excess collision error. */ eErrorStatic->statsTxExcessCollisionErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK)) { /* Transmit late collision error. */ eErrorStatic->statsTxLateCollisionErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK)) { /* Transmit under flow error. */ eErrorStatic->statsTxUnderFlowErr++; } if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK)) { /* Transmit over flow error. */ eErrorStatic->statsTxOverFlowErr++; } isReturn = true; break; } } while (handle->txBdDirtyStatic[ringId] != curBuffDescrip); if (isReturn == false) { result = kStatus_ENET_TxFrameFail; } return result; } void ENET_Ptp1588ConfigureHandler(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig) { assert(handle != NULL); assert(ptpConfig != NULL); uint8_t count; uint32_t mask = (uint32_t)kENET_TxBufferInterrupt; #if FSL_FEATURE_ENET_QUEUE > 1 mask |= (uint32_t)kENET_TxBuffer1Interrupt | (uint32_t)kENET_TxBuffer2Interrupt; #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ for (count = 0; count < handle->ringNum; count++) { handle->txBdDirtyStatic[count] = handle->txBdRing[count].txBdBase; } /* Setting the receive and transmit state for transaction. */ handle->msTimerSecond = 0; #if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID uint32_t refClock; /* The minimum time is defined by the greater of either six register clock cycles or six ptp clock cycles. */ if (handle->enetClock <= ptpConfig->ptp1588ClockSrc_Hz) { /* Caculate how many core cycles delay is needed. */ /* In the cases with this IP design issue, core clock = enetClock */ handle->tsDelayCount = 6U * handle->enetClock; } else { refClock = ptpConfig->ptp1588ClockSrc_Hz; /* Caculate how many core cycles delay is needed. */ /* In the cases with this IP design issue, core clock = enetClock */ handle->tsDelayCount = 6U * ((handle->enetClock + refClock - 1U) / refClock); } #endif ENET_DisableInterrupts(base, mask); /* Set the IRQ handler when the interrupt is enabled. */ ENET_SetTsISRHandler(base, ENET_TimeStampIRQHandler); ENET_SetTxISRHandler(base, ENET_TransmitIRQHandler); /* Enables the time stamp interrupt and transmit frame interrupt to * handle the time-stamp . */ ENET_EnableInterrupts(base, (ENET_TS_INTERRUPT | ENET_TX_INTERRUPT)); } /*! * brief Configures the ENET PTP IEEE 1588 feature with the basic configuration. * The function sets the clock for PTP 1588 timer and enables * time stamp interrupts and transmit interrupts for PTP 1588 features. * This API should be called when the 1588 feature is enabled * or the ENET_ENHANCEDBUFFERDESCRIPTOR_MODE is defined. * ENET_Init should be called before calling this API. * * note The PTP 1588 time-stamp second increase though time-stamp interrupt handler * and the transmit time-stamp store is done through transmit interrupt handler. * As a result, the TS interrupt and TX interrupt are enabled when you call this API. * * param base ENET peripheral base address. * param handle ENET handler pointer. * param ptpConfig The ENET PTP1588 configuration. */ void ENET_Ptp1588Configure(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig) { assert(handle != NULL); assert(ptpConfig != NULL); /* Start the 1588 timer. */ ENET_Ptp1588StartTimer(base, ptpConfig->ptp1588ClockSrc_Hz); ENET_Ptp1588ConfigureHandler(base, handle, ptpConfig); } /*! * brief Starts the ENET PTP 1588 Timer. * This function is used to initialize the PTP timer. After the PTP starts, * the PTP timer starts running. * * param base ENET peripheral base address. * param ptpClkSrc The clock source of the PTP timer. */ void ENET_Ptp1588StartTimer(ENET_Type *base, uint32_t ptpClkSrc) { /* Restart PTP 1588 timer, master clock. */ base->ATCR = ENET_ATCR_RESTART_MASK; /* Initializes PTP 1588 timer. */ base->ATINC = ENET_ATINC_INC(ENET_NANOSECOND_ONE_SECOND / ptpClkSrc); base->ATPER = ENET_NANOSECOND_ONE_SECOND; /* Sets periodical event and the event signal output assertion and Actives PTP 1588 timer. */ base->ATCR = ENET_ATCR_PEREN_MASK | ENET_ATCR_PINPER_MASK | ENET_ATCR_EN_MASK; } /*! * brief Gets the current ENET time from the PTP 1588 timer. * Interrupts are not disabled. * * param base ENET peripheral base address. * param handle The ENET state pointer. This is the same state pointer used in the ENET_Init. * param ptpTime The PTP timer structure. */ void ENET_Ptp1588GetTimerNoIrqDisable(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime) { /* Get the current PTP time. */ ptpTime->second = handle->msTimerSecond; /* Get the nanosecond from the master timer. */ base->ATCR |= ENET_ATCR_CAPTURE_MASK; #if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID /* The whole while loop includes at least three instructions(subs, nop and bne). */ uint32_t count = (handle->tsDelayCount + 3U - 1U) / 3U; while (0U != (count--)) { __NOP(); } #else /* Wait for capture over */ while (0U != (base->ATCR & ENET_ATCR_CAPTURE_MASK)) { } #endif /* Get the captured time. */ ptpTime->nanosecond = base->ATVR; } /*! * brief Gets the current ENET time from the PTP 1588 timer. * * param base ENET peripheral base address. * param handle The ENET state pointer. This is the same state pointer used in the ENET_Init. * param ptpTime The PTP timer structure. */ void ENET_Ptp1588GetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime) { assert(handle != NULL); assert(ptpTime != NULL); uint32_t primask; /* Disables the interrupt. */ primask = DisableGlobalIRQ(); ENET_Ptp1588GetTimerNoIrqDisable(base, handle, ptpTime); /* Get PTP timer wrap event. */ if (0U != (base->EIR & (uint32_t)kENET_TsTimerInterrupt)) { ptpTime->second++; } /* Enables the interrupt. */ EnableGlobalIRQ(primask); } /*! * brief Sets the ENET PTP 1588 timer to the assigned time. * * param base ENET peripheral base address. * param handle The ENET state pointer. This is the same state pointer used in the ENET_Init. * param ptpTime The timer to be set to the PTP timer. */ void ENET_Ptp1588SetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime) { assert(handle != NULL); assert(ptpTime != NULL); uint32_t primask; /* Disables the interrupt. */ primask = DisableGlobalIRQ(); /* Sets PTP timer. */ handle->msTimerSecond = ptpTime->second; base->ATVR = ptpTime->nanosecond; /* Enables the interrupt. */ EnableGlobalIRQ(primask); } /*! * brief Adjusts the ENET PTP 1588 timer. * * param base ENET peripheral base address. * param corrIncrease The correction increment value. This value is added every time the correction * timer expires. A value less than the PTP timer frequency(1/ptpClkSrc) slows down the timer, * a value greater than the 1/ptpClkSrc speeds up the timer. * param corrPeriod The PTP timer correction counter wrap-around value. This defines after how * many timer clock the correction counter should be reset and trigger a correction * increment on the timer. A value of 0 disables the correction counter and no correction occurs. */ void ENET_Ptp1588AdjustTimer(ENET_Type *base, uint32_t corrIncrease, uint32_t corrPeriod) { /* Set correction for PTP timer increment. */ base->ATINC = (base->ATINC & ~ENET_ATINC_INC_CORR_MASK) | (corrIncrease << ENET_ATINC_INC_CORR_SHIFT); /* Set correction for PTP timer period. */ base->ATCOR = (base->ATCOR & ~ENET_ATCOR_COR_MASK) | (corrPeriod << ENET_ATCOR_COR_SHIFT); } #if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB /*! * brief Sets the ENET AVB feature. * * ENET AVB feature configuration, set the Receive classification match and transmit * bandwidth. This API is called when the AVB feature is required. * * Note: The AVB frames transmission scheme is credit-based tx scheme and it's only supported * with the Enhanced buffer descriptors. so the AVB configuration should only done with * Enhanced buffer descriptor. so when the AVB feature is required, please make sure the * the "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" is defined. * * param base ENET peripheral base address. * param handle ENET handler pointer. * param config The ENET AVB feature configuration structure. */ void ENET_AVBConfigure(ENET_Type *base, enet_handle_t *handle, const enet_avb_config_t *config) { assert(config != NULL); assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1); uint8_t count = 0; for (count = 0; count < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) - 1U; count++) { /* Set the AVB receive ring classification match when the match is not 0. */ if (0U != (config->rxClassifyMatch[count])) { base->RCMR[count] = ((uint32_t)config->rxClassifyMatch[count] & 0xFFFFU) | ENET_RCMR_MATCHEN_MASK; } /* Set the dma controller for the extended ring. */ base->DMACFG[count] |= ENET_DMACFG_IDLE_SLOPE(config->idleSlope[count]); } /* Shall use the credit-based scheme for avb. */ base->QOS &= ~ENET_QOS_TX_SCHEME_MASK; base->QOS |= ENET_QOS_RX_FLUSH0_MASK; } #endif /* FSL_FEATURE_ENET_HAS_AVB */ #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ #if FSL_FEATURE_ENET_QUEUE > 1 /*! * brief The transmit IRQ handler. * * param base ENET peripheral base address. * param handle The ENET handler pointer. */ void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId) #else /*! * brief The transmit IRQ handler. * * param base ENET peripheral base address. * param handle The ENET handler pointer. */ void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle) #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ { assert(handle != NULL); uint32_t mask = (uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt; uint32_t index = 0; uint32_t irq; /* Check if the transmit interrupt happen. */ #if FSL_FEATURE_ENET_QUEUE > 1 switch (ringId) { case kENET_Ring1: mask = ((uint32_t)kENET_TxFrame1Interrupt | (uint32_t)kENET_TxBuffer1Interrupt); break; case kENET_Ring2: mask = ((uint32_t)kENET_TxFrame2Interrupt | (uint32_t)kENET_TxBuffer2Interrupt); break; default: mask = (uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt; break; } index = ringId; #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ while (0U != (mask & base->EIR)) { irq = base->EIR; /* Clear the transmit interrupt event. */ base->EIR = mask; /* Callback Handler. */ if (handle->txReclaimEnable[index] && (0U != (irq & (uint32_t)kENET_TxFrameInterrupt))) { ENET_ReclaimTxDescriptor(base, handle, (uint8_t)index); } else { if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, index, kENET_TxEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_TxEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } } } /*! * brief The receive IRQ handler. * * param base ENET peripheral base address. * param handle The ENET handler pointer. */ #if FSL_FEATURE_ENET_QUEUE > 1 void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId) #else void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle) #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ { assert(handle != NULL); uint32_t mask = (uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt; /* Check if the receive interrupt happen. */ #if FSL_FEATURE_ENET_QUEUE > 1 switch (ringId) { case kENET_Ring1: mask = ((uint32_t)kENET_RxFrame1Interrupt | (uint32_t)kENET_RxBuffer1Interrupt); break; case kENET_Ring2: mask = ((uint32_t)kENET_RxFrame2Interrupt | (uint32_t)kENET_RxBuffer2Interrupt); break; default: mask = (uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt; break; } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ while (0U != (mask & base->EIR)) { /* Clear the transmit interrupt event. */ base->EIR = mask; /* Callback function. */ if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, ringId, kENET_RxEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_RxEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } } /*! * brief Some special IRQ handler including the error, mii, wakeup irq handler. * * param base ENET peripheral base address. * param handle The ENET handler pointer. */ void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle) { assert(handle != NULL); uint32_t errMask = (uint32_t)kENET_BabrInterrupt | (uint32_t)kENET_BabtInterrupt | (uint32_t)kENET_EBusERInterrupt | (uint32_t)kENET_PayloadRxInterrupt | (uint32_t)kENET_LateCollisionInterrupt | (uint32_t)kENET_RetryLimitInterrupt | (uint32_t)kENET_UnderrunInterrupt; /* Check if the error interrupt happen. */ if (0U != ((uint32_t)kENET_WakeupInterrupt & base->EIR)) { /* Clear the wakeup interrupt. */ base->EIR = (uint32_t)kENET_WakeupInterrupt; /* wake up and enter the normal mode. */ ENET_EnableSleepMode(base, false); /* Callback function. */ if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, 0, kENET_WakeUpEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_WakeUpEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } else { /* Clear the error interrupt event status. */ errMask &= base->EIR; base->EIR = errMask; /* Callback function. */ if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, 0, kENET_ErrEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_ErrEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } } #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /*! * brief The IEEE 1588 PTP time stamp interrupt handler. * * param base ENET peripheral base address. * param handle The ENET state pointer. This is the same state pointer used in the ENET_Init. */ void ENET_TimeStampIRQHandler(ENET_Type *base, enet_handle_t *handle) { assert(handle != NULL); /* Check if the PTP time stamp interrupt happen. */ if (0U != ((uint32_t)kENET_TsTimerInterrupt & base->EIR)) { /* Clear the time stamp interrupt. */ base->EIR = (uint32_t)kENET_TsTimerInterrupt; /* Increase timer second counter. */ handle->msTimerSecond++; /* Callback function. */ if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, 0, kENET_TimeStampEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_TimeStampEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } if (0U != ((uint32_t)kENET_TsAvailInterrupt & base->EIR)) { /* Clear the time stamp interrupt. */ base->EIR = (uint32_t)kENET_TsAvailInterrupt; /* Callback function. */ if (NULL != handle->callback) { #if FSL_FEATURE_ENET_QUEUE > 1 handle->callback(base, handle, 0, kENET_TimeStampAvailEvent, NULL, handle->userData); #else handle->callback(base, handle, kENET_TimeStampAvailEvent, NULL, handle->userData); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } } #endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */ /*! * brief the common IRQ handler for the tx/rx/error etc irq handler. * * This is used for the combined tx/rx/error interrupt for single/mutli-ring (frame 0). * * param base ENET peripheral base address. */ void ENET_CommonFrame0IRQHandler(ENET_Type *base) { uint32_t event = base->EIR; uint32_t instance = ENET_GetInstance(base); event &= base->EIMR; if (0U != (event & ((uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt))) { if (s_enetTxIsr[instance] != NULL) { #if FSL_FEATURE_ENET_QUEUE > 1 s_enetTxIsr[instance](base, s_ENETHandle[instance], 0); #else s_enetTxIsr[instance](base, s_ENETHandle[instance]); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } if (0U != (event & ((uint32_t)kENET_RxBufferInterrupt | (uint32_t)kENET_RxFrameInterrupt))) { if (s_enetRxIsr[instance] != NULL) { #if FSL_FEATURE_ENET_QUEUE > 1 s_enetRxIsr[instance](base, s_ENETHandle[instance], 0); #else s_enetRxIsr[instance](base, s_ENETHandle[instance]); #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ } } if (0U != (event & ENET_TS_INTERRUPT) && (NULL != s_enetTsIsr[instance])) { s_enetTsIsr[instance](base, s_ENETHandle[instance]); } if (0U != (event & ENET_ERR_INTERRUPT) && (NULL != s_enetErrIsr[instance])) { s_enetErrIsr[instance](base, s_ENETHandle[instance]); } } #if FSL_FEATURE_ENET_QUEUE > 1 /*! * brief the common IRQ handler for the tx/rx irq handler. * * This is used for the combined tx/rx interrupt for multi-ring (frame 1). * * param base ENET peripheral base address. */ void ENET_CommonFrame1IRQHandler(ENET_Type *base) { uint32_t event = base->EIR; uint32_t instance = ENET_GetInstance(base); event &= base->EIMR; if (0U != (event & ((uint32_t)kENET_TxBuffer1Interrupt | (uint32_t)kENET_TxFrame1Interrupt))) { if (s_enetTxIsr[instance] != NULL) { s_enetTxIsr[instance](base, s_ENETHandle[instance], 1); } } if (0U != (event & ((uint32_t)kENET_RxBuffer1Interrupt | (uint32_t)kENET_RxFrame1Interrupt))) { if (s_enetRxIsr[instance] != NULL) { s_enetRxIsr[instance](base, s_ENETHandle[instance], 1); } } } /*! * brief the common IRQ handler for the tx/rx irq handler. * * This is used for the combined tx/rx interrupt for multi-ring (frame 2). * * param base ENET peripheral base address. */ void ENET_CommonFrame2IRQHandler(ENET_Type *base) { uint32_t event = base->EIR; uint32_t instance = ENET_GetInstance(base); event &= base->EIMR; if (0U != (event & ((uint32_t)kENET_TxBuffer2Interrupt | (uint32_t)kENET_TxFrame2Interrupt))) { if (s_enetTxIsr[instance] != NULL) { s_enetTxIsr[instance](base, s_ENETHandle[instance], 2); } } if (0U != (event & ((uint32_t)kENET_RxBuffer2Interrupt | (uint32_t)kENET_RxFrame2Interrupt))) { if (s_enetRxIsr[instance] != NULL) { s_enetRxIsr[instance](base, s_ENETHandle[instance], 2); } } } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ void ENET_Ptp1588IRQHandler(ENET_Type *base) { uint32_t instance = ENET_GetInstance(base); #if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE /* In some platforms, the 1588 event uses same irq with timestamp event. */ if ((s_enetTsIrqId[instance] == s_enet1588TimerIrqId[instance]) && (s_enetTsIrqId[instance] != NotAvail_IRQn)) { uint32_t event = base->EIR; event &= base->EIMR; if (0U != (event & ((uint32_t)kENET_TsTimerInterrupt | (uint32_t)kENET_TsAvailInterrupt))) { if (s_enetTsIsr[instance] != NULL) { s_enetTsIsr[instance](base, s_ENETHandle[instance]); } } } #endif if (s_enet1588TimerIsr[instance] != NULL) { s_enet1588TimerIsr[instance](base, s_ENETHandle[instance]); } } #if defined(ENET) #if FSL_FEATURE_ENET_QUEUE < 2 void ENET_TxIRQHandler(ENET_Type *base); void ENET_TxIRQHandler(ENET_Type *base) { uint32_t instance = ENET_GetInstance(base); if (s_enetTxIsr[instance] != NULL) { s_enetTxIsr[instance](base, s_ENETHandle[instance]); } SDK_ISR_EXIT_BARRIER; } void ENET_RxIRQHandler(ENET_Type *base); void ENET_RxIRQHandler(ENET_Type *base) { uint32_t instance = ENET_GetInstance(base); if (s_enetRxIsr[instance] != NULL) { s_enetRxIsr[instance](base, s_ENETHandle[instance]); } } void ENET_ErrIRQHandler(ENET_Type *base); void ENET_ErrIRQHandler(ENET_Type *base) { uint32_t instance = ENET_GetInstance(base); if (s_enetErrIsr[instance] != NULL) { s_enetErrIsr[instance](base, s_ENETHandle[instance]); } } void ENET_Transmit_DriverIRQHandler(void); void ENET_Transmit_DriverIRQHandler(void) { ENET_TxIRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } void ENET_Receive_DriverIRQHandler(void); void ENET_Receive_DriverIRQHandler(void) { ENET_RxIRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } void ENET_Error_DriverIRQHandler(void); void ENET_Error_DriverIRQHandler(void) { ENET_ErrIRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } #else void ENET_MAC0_Rx_Tx_Done1_DriverIRQHandler(void); void ENET_MAC0_Rx_Tx_Done1_DriverIRQHandler(void) { ENET_CommonFrame1IRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } void ENET_MAC0_Rx_Tx_Done2_DriverIRQHandler(void); void ENET_MAC0_Rx_Tx_Done2_DriverIRQHandler(void) { ENET_CommonFrame2IRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } #endif void ENET_DriverIRQHandler(void); void ENET_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } void ENET_1588_Timer_DriverIRQHandler(void); void ENET_1588_Timer_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } void ENET_TIMER_DriverIRQHandler(void); void ENET_TIMER_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(ENET); SDK_ISR_EXIT_BARRIER; } #endif /* ENET */ #if defined(ENET1) void ENET1_DriverIRQHandler(void); void ENET1_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(ENET1); SDK_ISR_EXIT_BARRIER; } #endif /* ENET1 */ #if defined(ENET2) void ENET2_DriverIRQHandler(void); void ENET2_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(ENET2); SDK_ISR_EXIT_BARRIER; } void ENET2_1588_Timer_DriverIRQHandler(void); void ENET2_1588_Timer_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(ENET2); SDK_ISR_EXIT_BARRIER; } #endif /* ENET2 */ #if defined(CONNECTIVITY__ENET0) void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET0); SDK_ISR_EXIT_BARRIER; } #if FSL_FEATURE_ENET_QUEUE > 1 void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void) { ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET0); SDK_ISR_EXIT_BARRIER; } void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void) { ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET0); SDK_ISR_EXIT_BARRIER; } void CONNECTIVITY_ENET0_TIMER_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET0_TIMER_INT_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(CONNECTIVITY__ENET0); SDK_ISR_EXIT_BARRIER; } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ #endif /* CONNECTIVITY__ENET0 */ #if defined(CONNECTIVITY__ENET1) void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET1); SDK_ISR_EXIT_BARRIER; } #if FSL_FEATURE_ENET_QUEUE > 1 void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void) { ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET1); SDK_ISR_EXIT_BARRIER; } void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void) { ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET1); SDK_ISR_EXIT_BARRIER; } void CONNECTIVITY_ENET1_TIMER_INT_DriverIRQHandler(void); void CONNECTIVITY_ENET1_TIMER_INT_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(CONNECTIVITY__ENET1); SDK_ISR_EXIT_BARRIER; } #endif /* FSL_FEATURE_ENET_QUEUE > 1 */ #endif /* CONNECTIVITY__ENET1 */ #if FSL_FEATURE_ENET_QUEUE > 1 #if defined(ENET_1G) void ENET_1G_DriverIRQHandler(void); void ENET_1G_DriverIRQHandler(void) { ENET_CommonFrame0IRQHandler(ENET_1G); SDK_ISR_EXIT_BARRIER; } void ENET_1G_MAC0_Tx_Rx_1_DriverIRQHandler(void); void ENET_1G_MAC0_Tx_Rx_1_DriverIRQHandler(void) { ENET_CommonFrame1IRQHandler(ENET_1G); SDK_ISR_EXIT_BARRIER; } void ENET_1G_MAC0_Tx_Rx_2_DriverIRQHandler(void); void ENET_1G_MAC0_Tx_Rx_2_DriverIRQHandler(void) { ENET_CommonFrame2IRQHandler(ENET_1G); SDK_ISR_EXIT_BARRIER; } void ENET_1G_1588_Timer_DriverIRQHandler(void); void ENET_1G_1588_Timer_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(ENET_1G); SDK_ISR_EXIT_BARRIER; } #endif /* ENET_1G */ #if defined(ENET1) void ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler(void); void ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler(void) { ENET_CommonFrame1IRQHandler(ENET1); SDK_ISR_EXIT_BARRIER; } void ENET1_MAC0_Rx_Tx_Done2_DriverIRQHandler(void); void ENET1_MAC0_Rx_Tx_Done2_DriverIRQHandler(void) { ENET_CommonFrame2IRQHandler(ENET1); SDK_ISR_EXIT_BARRIER; } void ENET1_1588_Timer_DriverIRQHandler(void); void ENET1_1588_Timer_DriverIRQHandler(void) { ENET_Ptp1588IRQHandler(ENET1); SDK_ISR_EXIT_BARRIER; } #endif /* ENET1 */ #endif /* FSL_FEATURE_ENET_QUEUE > 1 */